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Abstract: The number of people worldwide suffering from Alzheimer’s disease (AD) and type 2
diabetes (T2D) is on the rise. Amyloid polypeptides are thought to be associated with the onset of
both diseases. Amyloid-β (Aβ) that aggregates in the brain and human islet amyloid polypeptide
(hIAPP) that aggregates in the pancreas are considered cytotoxic and the cause of the development
of AD and T2D, respectively. Thus, inhibiting amyloid polypeptide aggregation and disaggrega-
tion existing amyloid aggregates are promising approaches in the therapy and prevention against
both diseases. Therefore, in this research, we evaluated the Aβ/hIAPP anti-aggregation and dis-
aggregation activities of A-type procyanidins 1–7 and their substructures 8 and 9, by conducting
structure–activity relationship studies and identified the active site. The thioflavin-T (Th-T) assay,
which quantifies the degree of aggregation of amyloid polypeptides based on fluorescence intensity,
and transmission electron microscopy (TEM), employed to directly observe amyloid polypeptides,
were used to evaluate the activity. The results showed that catechol-containing compounds 1–6 exhib-
ited Aβ/hIAPP anti-aggregation and disaggregation activities, while compound 7, without catechol,
showed no activity. This suggests that the presence of catechol is important for both activities. Daily
intake of foods containing A-type procyanidins may be effective in the prevention and treatment of
both diseases.

Keywords: Alzheimer’s disease; amyloid β; A-type procyanidin; catechol; human islet amyloid
polypeptide; type 2 diabetes

1. Introduction

The number of people worldwide suffering from Alzheimer’s disease (AD) and type 2
diabetes (T2D) is on the rise, posing serious health problems in aging societies. Numerous
studies have shown that a relationship exists between AD and T2D [1]. AD and T2D share
many common pathophysiological features, including aggregation of amyloid polypeptides
with an intermolecular β-sheet structure and increased oxidative stress [2–4]. Amyloid β

(Aβ) and human islet amyloid polypeptide (hIAPP) are amyloid polypeptides responsible
for AD and T2D, respectively [5–7]. hIAPP consists of 37 amino acids, and is secreted
from pancreatic β cells, while Aβ consists of 36–43 amino acids and is produced from
amyloid precursor protein in the brain [8]. Aβ and hIAPP show sequence identify (25%)
and similarity (50%) [9]; both amyloid polypeptides aggregate through a similar structure
called cross-β-sheet structures via the nucleation-elongation phase [10]. However, the
secondary structures distributions of Aβ and hIAPP are different [11]. These aggregates
attack cells in various ways [12], causing atrophy of the cerebrum and hippocampus in the
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brain and insulin deficiency in the pancreas. Furthermore, recent studies have shown that
hIAPP is mixed in senile plaques, aggregates of Aβ, present in the brains of AD patients [13].
On the other hand, Aβ has been found to aggregate in the pancreas of transgenic mice
expressing both Aβ and hIAPP [14]. Therefore, compounds that can inhibit the aggregation
of both amyloid proteins would be effective drugs for the prevention and treatment of
both diseases. It has been reported that epigallocatechin gallate and resveratrol display
Aβ/hIAPP aggregation inhibitory activities, and considerable attention has been devoted
toward polyphenols, which are abundant in various foods [15–18].

It is well known that several natural compounds, including polyphenols, can control
hIAPP aggregation, and many such polyphenols have antioxidant activity, and while the
hydrophobic and aromatic properties of polyphenols inhibit the formation and elongation
of amyloid fibrils, their antioxidant capacity has been found to promote the destabilization
of fibril aggregates [19]. Moreover, it has long been suggested that catechol is involved in
the inhibition of Aβ aggregation, and a recent structure–activity relationship study using
three tyrosol ligands also showed aggregation-inhibiting activity with catechol, which was
attributed to the stabilization of the Aβ-ligand interaction by H-bonding to Glu22 by the
hydroxyl group of catechol [20].

We have previously reported that caffeoylquinic acid, phenylethanoid glycoside,
and hispidin derivatives inhibit Aβ42 aggregation [21–24]. We have also recently shown
that kukoamines A and B, schizotenuin A, lycopic acids, rosmarinic acid, and clovamide
exhibit inhibitory activity against Aβ/hIAPP aggregation [25–29]. These compounds,
which inhibit Aβ42/hIAPP aggregation, all contain a catechol moiety, and catechol-type
polyphenols can potentially inhibit amyloid protein aggregation. In this study, we focused
on A-type procyanidins, which have two catechols, and investigated their effects on the
aggregation of amyloid proteins. A-type procyanidins are found in peanut skin and consist
of (+)-catechin or (−)-epicatechin. In addition, to identify the active site, anti-aggregation
activity tests of Aβ42/hIAPP were performed and structure–activity correlations were
examined by use of A-type procyanidins 1–7 and their substructures 8 and 9 (Figure 1).
Furthermore, degradation of already aggregated amyloid polypeptides (disaggregation
activity) was also evaluated, as well as the antioxidant activity of these compounds.
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2. Results
2.1. Evaluation of Aβ42 Aggregation Inhibitory Activity of Compounds 1–9

To assess the ability of synthetic A-type procyanidins 1–7 [30] and their substruc-
tures 8 and 9 to inhibit Aβ42 aggregation, thioflavin-T (Th-T) assay was conducted
(Figures 2 and S1). In this study, (−)-epigallocatechin gallate (EGCG), the activity of which
has been reported in previous studies, was used as the positive control [15,17,31]. The IC50
values for these compounds are shown in Table 1. Aβ42 aggregation was inhibited in a
concentration-dependent manner by all the compounds except compound 7. The Aβ42
aggregation inhibitory activity of these compounds was as follows: 1, 2, 3, 4, 5, and 6 > 8
and 9 >> 7. These results suggest that compounds containing two catechols are more active
than those with one (the activity is proportional to the number of catechols) and that the
presence of catechol is important.
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Figure 2. Efficacy of compounds 1, 3, 5, 7, and 8 against Aβ42 aggregation. Aβ42 (25 µM) fibril
formation was monitored by Th-T fluorescence with varying concentrations of these compounds.
(A) 1, (B) 3, (C) 5, (D) 7, and (E) 8. At an excitation wavelength of 420 nm and an emission wavelength
of 485 nm, fluorescence intensity was measured. Each value is represented the mean ± SD (n = 6).

To confirm the results of the Th-T assay, Aβ42 fibrils were observed directly using
TEM (Figures 3 and S2). In the case of the Aβ42-only reaction solution (no compound
added), it was confirmed that many Aβ42 aggregates were spread out in a mesh-like
pattern. Similar results were obtained for compound 7, which showed no activity in the
Th-T assay. By contrast, compounds 1–6, 8, and 9, which showed activity in the Th-T assay,
gave rise to reduced aggregation compared to Aβ42 alone. Furthermore, these results show
that compounds with two catechols are more active than those with one. These results
support the results of the Th-T assay.
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Table 1. Efficacy of compounds 1–9 against Aβ and hIAPP aggregations.

Compounds IC50 (Aβ/hIAPP, µM) a

1 (procyanidin A2) 4.8/8.4

2 (procyanidin A1) 4.6/12.9

3 (proanthocyanidin A6) 4.2/16.4

4 5.7/16.8

5 (proanthocyanidin A7) 2.4/13.4

6 6.8/11.6

7 >100/>100

8 [(−)-epicatechin)] 41.7/38.9

9 [(+)-catechin)] 56.8/40.9

EGCG (positive control) 3.8/1.1
a IC50 values were calculated based on the percentage (%) inhibition of amyloid polypeptide aggregation by Th-T
assay after 24 h for each compound whose concentrations was changed.
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2.2. Evaluation of hIAPP Aggregation Inhibitory Activity of Compounds 1–9

To assess the ability of synthetic A-type procyanidins 1–7 and their substructures 8
and 9 to inhibit hIAPP aggregation, thioflavin-T (Th-T) assay was conducted (Figures 4 and
S3). The IC50 values for these compounds are shown in Table 1. hIAPP aggregation was
inhibited in a concentration-dependent manner by all the compounds except compound 7.
The hIAPP aggregation inhibitory activities of these compounds were as follows: 1, 2, 3, 4,
5, and 6 > 8 and 9 >> 7. These results suggest that the presence of catechol is important for
activity and that the activity increases in proportion to the number of catechols. The hIAPP
aggregation inhibitory activity of each compound was higher than its Aβ42 aggregation
inhibitory activity, but the overall trend was similar to that of the Aβ42 aggregation
inhibitory activity.

To confirm the results of the Th-T assay, the hIAPP fibrils were observed directly using
TEM (Figures 5 and S4). In the case of the hIAPP-only reaction solution (no compound
added), it was confirmed that numerous hIAPP aggregates were distributed in a mesh-like
pattern. Similar results were obtained for compound 7, which showed no activity in the
Th-T assay. In contrast, compounds 1–6, 8, and 9, which showed activity in the Th-T assay,
gave rise to reduced aggregation compared to hIAPP alone. Furthermore, these results
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indicated that compounds with two catechols were more active than those with one. These
results support the results of the Th-T assay.
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Figure 4. Efficacy of compounds 1, 3, 5, 7, and 8 against hIAPP aggregation. hIAPP (25 µM) fibril
formation was monitored by Th-T fluorescence with varying concentrations of these compounds.
(A) 1, (B) 3, (C) 5, (D) 7, and (E) 8. At an excitation wavelength of 420 nm and an emission wavelength
of 485 nm, fluorescence intensity was measured. Each value is represented the mean ± SD (n = 6).
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Figure 5. Efficacy of compounds 1, 3, 5, 7, and 8 against hIAPP fibril formation visualized by use of
TEM. The formation of hIAPP fibrils was observed after incubation in 50 µM PBS buffer for 24 h. Scale
bar: 1.0 µM. (A) hIAPP + 1, (B) hIAPP + 3, (C) hIAPP + 5, (D) hIAPP + 7, (E) hIAPP + 8, and (F) hIAPP.
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2.3. Evaluation of Disaggregation Activity of Compounds 1, 3, 5, 7, and 8 on Pre-Existing
Aβ42 Aggregates

To assess the disaggregation ability of compounds 1, 3, 5, 7, and 8 on Aβ42 aggregates,
thioflavin-T (Th-T) assay was conducted (Figures 6 and S5). These compounds were
selected based on the number of catechols they contained, their steric structure, and
constituent units. The EC50 values for these compounds are shown in Table 2. For all
the compounds except compound 7, Aβ42 aggregates were disaggregated concentration-
dependently. The disaggregation activities of these compounds on Aβ42 aggregates were
as follows: 1 and 5 > 3 and 8 >> 7. These results suggest that the presence of catechol
is important for Aβ42 disaggregation activity. On the other hand, Aβ42 disaggregation
activities showed a different trend from the aggregation inhibition activities, as there was a
difference in activity even when the number of catechols was the same.
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Figure 6. Efficacy of compounds 1, 3, 7, and 8 against pre-existing Aβ42 aggregates. Aggregates of
Aβ42 (25 µM) were monitored by Th-T fluorescence with varying concentrations of these compounds.
(A) 1, (B) 3, (C) 7, and (D) 8. At an excitation wavelength of 420 nm and an emission wavelength of
485 nm, fluorescence intensity was measured. Each value is represented the mean ± SD (n = 6).

Table 2. Efficacy of compounds 1, 3, 5, 7, and 8 against pre-existing Aβ42 and hIAPP aggregates.

Compound EC50 (Aβ/hIAPP, µM) a

1 (procyanidin A2) 3.3/5.4

3 (proanthocyanidin A6) 23.0/4.9

5 (proanthocyanidin A7) 8.9/15.8

7 >100/>100

8 ((−)-epicatechin) 12.9/12.2

EGCG (positive control) 5.0/3.7
a EC50 values were calculated based on the disaggregation effective rate (%) of amyloid polypeptide aggregation
by Th-T assay after 24 h for each compound whose concentrations was changed.

To confirm the results of the Th-T assay, the Aβ42 fibrils were observed directly using
TEM (Figures 7 and S6). In the case of the Aβ42-only reaction solution (no compound
added), the presence of copious aggregates of Aβ42 distributed in a mesh-like pattern was
confirmed. Similar results were obtained for compound 7, which showed no activity in the
Th-T assay. In contrast, reduced aggregation was noted in the presence of compounds 1, 3,
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5, and 8, which showed activity in the Th-T assay, compared to Aβ42 alone. These results
support the results of the Th-T assay.
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2.4. Evaluation of Disaggregation Activity of Compounds 1, 3, 5, 7, and 8 on Pre-Existing hIAPP
Aggregates

To assess the disaggregation ability of compounds 1, 3, 5, 7, and 8 on hIAPP aggregates,
thioflavin-T (Th-T) assay was conducted (Figures 8 and S7). The EC50 values for these
compounds are shown in Table 2. For all the compounds except compound 7, hIAPP
aggregates were disaggregated concentration-dependently. The disaggregation activities of
these compounds on hIAPP aggregates were as follows: 1 and 3 > 5 and 8 >> 7. Therefore,
it suggests the importance of the presence of catechol for the disaggregation of hIAPP.
Moreover, hIAPP disaggregation activity showed a different trend from the aggregation
inhibition activity, as there was a difference in activity even when the number of catechols
was the same. This trend was different from that of hIAPP aggregation inhibitory activity.
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To confirm the results of the Th-T assay, the hIAPP fibrils were observed directly using
TEM (Figures 9 and S8). In the case of the hIAPP-only reaction solution (no compound
added), the presence of numerous aggregates of Aβ distributed in a mesh-like pattern was
observed. Similar results were obtained for compound 7, which showed no activity in
the Th-T assay. In contrast, in the presence of compounds 1, 3, 5, and 8, which showed
activity in the Th-T assay, aggregation was reduced compared to hIAPP alone. These
results support the results of the Th-T assay.
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2.5. Evaluation of Antioxidant Activity of A-Type Procyanidins and Their Related Compounds

To assess the antioxidant potential of the compounds 1–9, 2,2-diphenyl-1-picrylhydrazyl
(DPPH) free-radical-scavenging assay was conducted. The IC50 values for these compounds
are shown in Table 3. All of the compounds, except compound 7, exhibited radical-scavenging
activity, which increased in a concentration-dependent manner and show high antioxidant
rate at concentration of 50 µM. These results suggest that the presence of phenolic hydroxyl
groups is important for radical scavenging activity. In addition, the antioxidant activities
among the A-type procyanidins were comparable.

Table 3. Efficacy of compounds 1–9 against DPPH free radical.

Compound IC50 (µM) a

1 (procyanidin A2) 17.9

2 (procyanidin A1) 12.9

3 (proanthocyanidin A6) 14.9

4 14.4

5 (proanthocyanidin A7) 14.7

6 14.6

7 >50.0

8 [(-)-epicatechin] 18.6

9 [(+)-catechin] 28.8

EGCG (positive control) 9.5
a IC50 values were calculated from DPPH radical-scavenging rate (%) of each compound at varying concentration.

3. Discussion

In this research, we examined the effects of compounds 1–9 on the aggregation and
disaggregation of Aβ42 and hIAPP, as well as their antioxidant properties.

The results of structure–activity relationship studies of A-type procyanidin derivatives
confirmed that catechol is important for the inhibition of Aβ42 aggregation. In addition,
compounds bearing two catechols were more active than those with one catechol. This
trend is consistent with previous research showing that polyphenols with multiple catechol
moieties exhibit higher Aβ42 aggregation inhibitory activities [21–28]. In addition, it was
surmised that the steric structure and constituent units did not have a significant effect on
the activity. Catechol was also important for hIAPP aggregation inhibitory activity, which
followed a similar trend to that of Aβ42 aggregation inhibitory activity.

This tendency is consistent with the results of previous studies [25–27,29]. However,
the IC50 values for hIAPP aggregation were higher than those for Aβ42 aggregation. This
may be due to the differences in the amino acid sequence and 3D structure between Aβ42
and hIAPP, which affects their affinity for the compounds.

The catechol moiety readily auto-oxidizes to form o-benzoquinone, which may co-
valently bind to nucleophilic amino acid residues of amyloid proteins (Michael addition
and Schiff base formation) and destabilize the β-sheet structure [32–34]. The fact that the
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activity increased in proportion to the number of catechols is thought to be due to this
mechanism. On the other hand, compound 7 is suggested to have no amyloid polypeptide
aggregation inhibitory activity because o-benzoquinone is not formed in compound 7.
Previous research has indicated that π–π stacking interactions between amino acid residues
of Aβ42 and the aromatic ring of the compounds acting as an inhibitor as well as hydrogen
bond are possible factors that govern the inhibition of Aβ42 β-sheet formation [35]. How-
ever, compound 7, which has four aromatic rings and no phenolic hydroxyl group, did not
show amyloid polypeptide aggregation inhibitory activity, suggesting that π–π stacking
interactions may not be involved in the amyloid polypeptide aggregation inhibition mech-
anism of A-type procyanidin derivatives. On the other hand, because the bulkiness of the
methyl group of 7 may prevent it from entering the space between amino acid residues, we
plan to examine the inhibitory activity of A-type procyanidins on amylolytic polypeptide
aggregation under conditions where catechol is not oxidized by adding a reducing agent.
A more detailed analysis will be conducted in the future.

For Aβ42/hIAPP disaggregation activity of A-type procyanidin derivatives, structure–
activity relationship studies indicated that the presence of catechol is important for their ac-
tivity. However, unlike the Aβ42/hIAPP aggregation inhibitory activity, the Aβ42/hIAPP
disaggregation activity results suggest that the steric structure also contributes signifi-
cantly to the activity. The reason for these differences is that, unlike monomers, amyloid
polypeptides form aggregates and access to them is restricted. Moreover, several com-
pounds showed different activities against each aggregate, which may be due to differences
in accessibility resulting from differences in the steric structure and secondary structure
distribution of Aβ aggregates and hIAPP aggregates. Catechin and epicatechin have been
reported to destabilize Aβ fibrils, and several other aromatic compounds have been re-
ported to degrade amyloid polypeptide fibrils. However, the disaggregation mechanism
remains unclear; therefore, it is necessary to clarify this mechanism in the future.

The results of the DPPH radical scavenging activity test confirmed the antioxidant
activity of all the A-type procyanidin compounds except compound 7, suggesting the
importance of phenolic hydroxyl groups. It has been reported that amyloid polypeptides
generate radicals during the aggregation process, leading to further aggregation and
cell death [36–38]. On the other hand, as the DPPH radical does not exist in the body,
antioxidant activity must be further evaluated from additional perspectives, such as the
superoxide dismutase (SOD) activity test.

It has been reported that procyanidins with a low degree of polymerization, such as
dimers, can penetrate the blood-brain barrier (BBB). All procyanidins used in this study
were dimers. Therefore, in this research, we investigated A-type procyanidins for their
Aβ42/hIAPP aggregation inhibitory, Aβ42/hIAPP disaggregation, and antioxidant ac-
tivities, and showed that these active compounds have significant potential for use as
preventive and therapeutic agents for both diseases. On the other hand, nobiletin, an
O-methoxylated flavonoid, has been reported to have the potential to cause demethylation
in vivo [39] and to show efficacy in AD model mice [40]. Therefore, although compound 7
did not show any activity in the in vitro experimental system conducted in this study, the
presence or absence of in vivo activity needs to be investigated in the future. The results of
this research may contribute to the development of preventive and therapeutic agents for
AD and T2D. In the future, we aim to elucidate the inhibitory and disaggregation mecha-
nisms of A-type procyanidins in more detail. Furthermore, it is necessary to investigate
the cytoprotective activity using cells and the preventive effect on cognitive function using
mice as an in vivo experiment.

The results of this research suggest that dietary materials containing high amounts of
A-type procyanidins can potentially contribute to the development of functional foods for
the prevention of AD and T2D.
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4. Materials and Methods
4.1. A-Type Procyanidins and Their Substructures

Compounds 1–7 used in this study were synthesized [30], while compounds 8, 9, and
epigallocatechin gallate (EGCG) were purchased from Merck (Figure 1).

4.2. Thioflavin T (Th-T) Assay

The degree of aggregation of Aβ42/hIAPP was assessed using the Th-T method
developed by Naiki et al. [41]. The procedure for this is described elsewhere [42]. Briefly,
hIAPP (KareBay Biochem Inc., Monmouth Junction, NJ, USA) was dissolved in HFIP
solution (1% acetic acid aqueous solution = 1:1), and Aβ42 was dissolved in 0.1% NH4OH
solution at 250 µM. The amyloid solution was diluted tenfold with 50 mM PBS (pH 7.4) and
incubated with or without samples. The peptide solution (2.5 µL) was added to 250 µL of
1 mM Th-T in 50 mM Gly-NaOH (pH = 8.5). Using a Wallac 1420 ARVO MX Multidetection
Microplate Reader (PerkinElmer), the fluorescence intensity was measured at an excitation
wavelength of 420 nm and an emission wavelength of 485 nm, and IC50 values of each
compound were calculated based on the percentage inhibition of amyloid polypeptide
aggregation (%) after incubation at 37 ◦C for 24 h. In the disaggregation activity test,
amyloid polypeptides were pre-incubated for 24 h to form aggregates beforehand, and
then the compounds were added. EGCG, which is known to show aggregation inhibition
and disaggregation activities against amyloid polypeptide, was used as the positive control
in this assay [15,17,32].

4.3. Transmission Electron Microscope (TEM) Observations

Aβ42 and hIAPP (25 µM each) were treated with compounds 1–9 and EGCG (10 µM
for Aβ and 100 µM for hIAPP), dropped onto carbon-coated Formvar grids, incubated at
room temperature for 2 min, washed twice with H2O, and air-dried for 5 min. After 24 h of
incubation, the samples were observed using a JEOL JEM-1400 electron microscope.

4.4. DPPH Radical-Scavenging Assay

Each sample (10 µL) in MeOH was mixed with 2,2-diphenyl-1-picrylhydrazyl (DPPH)
solution (1 mM in EtOH/0.4 mM 2-morpholinoethanesulfonic acid (MES) buffer (pH
6.1)/Milli Q, 4:1:3) (190 µL). It was incubated in the dark for 15 min at room temperature,
and then the absorbance was measured at 490 nm (A sample). The absorbance of the
negative control (A control) consisting of solvent only and blank without DPPH (A blank)
were also measured at 490 nm. DPPH radical-scavenging activity was calculated by use of
the following equation:

DPPH radical-scavenging activity (%) = (1 − [A sample − A blank]/A control) × 100.

5. Conclusions

Structure–activity relationship studies by Th-T assay and TEM observation were
performed to investigate the Aβ/hIAPP anti-aggregation and disaggregation activities
of A-type procyanidins 1–7 and their substructures 8 and 9. These results suggested that
A-type procyanidins 1–6 with two catechol moieties exhibited potent Aβ/hIAPP anti-
aggregation and disaggregation activities, while compound 7, without catechol, showed
no activity. This suggests that the presence of catechol is important for both activities.

Therefore, this study suggests that dietary materials, containing high amounts of
A-type procyanidins, may contribute to the development of functional foods for the pre-
vention of AD and T2D.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14111118/s1, Figure S1: Efficacy of compounds 1–9 and EGCG against Aβ42 aggregation.
Figure S2: Efficacy of compounds 1–9 and EGCG against Aβ42 fibril formation visualized by use
of TEM. Figure S3: Efficacy of compounds 1–9 and EGCG against hIAPP aggregation. Figure S4:
Efficacy of compounds 1–9 and EGCG against hIAPP fibril formation visualized by use of TEM.

https://www.mdpi.com/article/10.3390/ph14111118/s1
https://www.mdpi.com/article/10.3390/ph14111118/s1
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Figure S5: Efficacy of compounds 1, 3, 5, 7, 8, and EGCG against pre-existing Aβ42 aggregates. Figure
S6: Efficacy of compounds 1, 3, 7, and 8 against pre-existing Aβ42 aggregates visualized by use of
TEM. Figure S7: Efficacy of compounds 1, 3, 5, 7, 8, and EGCG against pre-existing hIAPP aggregates.
Figure S8: Efficacy of compounds 1, 3, 7, and 8 against pre-existing hIAPP aggregates visualized by
use of TEM.
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