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Abstract
Background  Pancreatic cancer is one of the most common malignant tumors with extremely poor prognosis. It is 
urgent to identify promising prognostic biomarkers for pancreatic cancer.

Methods  A total of 266 patients with pancreatic adenocarcinoma (PAAD) in the Cancer Genome Atlas (TCGA)-PAAD 
cohort and the PACA-AU cohort were enrolled in this study. Firstly, prognostic tumor mutation burden (TMB)-related 
long non-coding RNAs (lncRNAs) were identified by DESeq2 and univariate analysis in the TCGA-PAAD cohort. And 
then, the TCGA-PAAD cohort was randomized into the training set and the testing set. Least absolute shrinkage and 
selection operator (LASSO) was used to construct the model in the training set. The testing set, the TCGA-PAAD cohort 
and the PACA-AU cohort was used as validation. The model was evaluated by multiple methods. Finally, functional 
analysis and immune status analysis were applied to explore the potential mechanism of our model.

Results  A prognostic model based on fourteen TMB-related lncRNAs was established in PAAD. Patients with High 
risk score was associated with worse prognosis compared to those with low risk score in all four datasets. Besides, the 
model had great performance in the prediction of 5-year overall survival in four datasets. Multivariate analysis also 
indicated that the risk score based on our model was independent prognostic factor in PAAD. Additionally, our model 
had the best predictive efficiency in PAAD compared to typical features and other three published models. And 
then, our findings also showed that high risk score was also associated with high TMB, microsatellite instability (MSI) 
and homologous recombination deficiency (HRD) score. Finally, we indicated that high risk score was related to low 
immune score and less infiltration of immune cells in PAAD.

Conclusion  we established a 14 TMB-related lncRNAs prognostic model in PAAD and the model had excellent 
performance in the prediction of prognosis in PAAD. Our findings provided new strategy for risk stratification and new 
clues for precision treatment in PAAD.
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Introduction
Pancreatic cancer is one of the most common fatal malig-
nancies and also known as the “king of cancers” [1]. 
Patients with pancreatic cancer have very poor outcomes 
and its 5-year survival rate is only 8% [2]. The morbidity 
and mortality of pancreatic cancer is continuous increas-
ing [3]. Clinically, the treatment that offers a potential 
cure of pancreatic cancer is surgical resection followed 
by the adjuvant chemotherapy. However, the prognosis of 
patients with pancreatic cancer is still very poor because 
of the difficult of early diagnosis and the exhibition of a 
remarkable resistance to therapies. Recently, neoadjuvant 
therapy has been developed and several trials have sug-
gested the beneficial effects of it for pancreatic cancer [4]. 
Besides, targeted therapies and immune therapeutic have 
become the newer trends in the treatment of pancre-
atic cancer. Some highly mutated genes have been used 
as targets in the treatment of pancreatic cancer [5], and 
some targeted-drug have been approved to be used in 
clinical treatment, including Erlotinib (EGFR inhibitor) 
[6], Larotrectinib (NTRK inhibitor), and olaparib (PARP 
inhibitor) [7]. However, immune checkpoint blockade 
has limited efficacy in pancreatic cancer, which may be 
partly attributable to the unique immunosuppressive 
tumor microenvironment of pancreatic cancer [8–10]. 
Therefore, researchers are focusing more on combination 
therapy [11]. However, lack of effective risk stratification 
is a challenge for personalized therapy.

Tumor mutation murden (TMB) has become an 
independent biomarker for predicting the response to 
immune checkpoint inhibitors (ICIs) [12, 13]. Patients 
with high TMB are more sensitive to immunotherapy 
than those with low TMB. Several studies have demon-
strated that TMB played crucial role in immune micro-
environment of pancreatic cancer and could be the 
potential biomarker for immunotherapy in pancreatic 
cancer [14–16]. Long non-coding RNA (lncRNA) is a 
module of RNA that has no or limited capacity of pro-
tein coding and its length is longer than 200nt. Although 
lncRNA has been considered as the junk in the genome, 
many biological functions of lncRNA have been disclosed 
[17]. lncRNA plays important role in the regulation of 
many biological processes in health cells, thus, the role of 
lncRNA in tumor cells arouse the interest of researchers 
[18]. In pancreatic cancer, numerous lncRNA has been 
reported to participate in the regulation of tumorigen-
esis [19–22], apoptosis [23, 24], metastasis [25–27], and 
chemoresistance [28, 29]. To the best of our knowledge, 
the role of TMB-related lncRNA in the prognosis of 
pancreatic cancer has not been investigated yet. In this 
study, we established a prognostic model in pancreatic 
cancer based on the TMB-related lncRNA. And then, 
we compared our model with other published models 
to test the predictive efficiency of our model. Finally, the 

relationship between our model and immune infiltra-
tion in pancreatic cancer was discussed. This study was 
looking forward to provide new thought for biomarker 
searching and precision treatment in pancreatic cancer.

Methods
Data collection
The transcriptome profiles, somatic mutation data, and 
complete clinical information of 176 patients with pan-
creatic adenocarcinoma (PAAD) were downloaded from 
The Cancer Genome Atlas (TCGA) database. As valida-
tion, PACA-AU cohort with 90 PAAD patients was also 
enrolled in this study. The transcriptome profiles and 
survival data of the PACA-AU cohort were downloaded 
from the International Cancer Genome Consortium 
(ICGC) database.

Identification of prognostic TMB-related lncRNAs
TMB is a measure of the total number of mutations 
per megabyte of tumor tissue. The TMB score of each 
patient in the TCGA-PAAD cohort was calculated by 
the “maftools” R package. According to the median 
value of TMB score, patients in the TCGA-PAAD cohort 
were divided into high-TMB and low-TMB two groups. 
DESeq2 [30] was used to perform the differentially 
expressed genes analysis between high-TMB and low-
TMB groups, and the lncRNAs that satisfied the follow-
ing criteria: Fold Change (FC) > 1.5 and p-value < 0.05 
were selected as differentially expressed lncRNA (DEln-
cRNA). Univariate analysis was used to evaluate the 
prognostic significance of DElncRNAs in the TCGA-
PAAD cohort.

Model construction
176 patients in the TCGA-PAAD cohort were divided 
into two sets (the training set and the testing set) ran-
domly and equally and the clinical information of the 
training set, the testing set and the TCGA-PAAD cohort 
was shown in Supplementary Table  1. Least absolute 
shrinkage and selection operator (LASSO) Cox regres-
sion was used to construct a model based on the prog-
nostic TMB-related lncRNAs in the training set by using 
“glmnet” R package. The risk score of each patient was 
calculated by a unified formula as following:

	
∑n

i
coefi ∗ expri

In the formula, “coefi” represents the coefficient of the 
selected prognostic TMB-related lncRNA, and “expri” 
represents the expression level of the selected prognostic 
TMB-related lncRNA.
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Model evaluation and validation
The training set was used as the evaluation set while the 
testing set and the entire TCGA-PAAD cohort were used 
as the internal validation sets. Besides, the PACA-AU 
cohort was used as the external validation set. Each set 
was separated into high-risk and low-risk groups based 
on the median value of the risk score. To test the prognos-
tic value of the model, Kaplan-Meier survival analysis was 
used to draw the survival curve and log-rank was used to 
evaluate the significant difference of prognosis between 
high-risk and low-risk groups. To test the accuracy of the 
model, receiver operating characteristic (ROC) curve of 
1-year, 3-year and 5-year survival was performed and the 
value of Area Under Curve (AUC) was used to measure 
the accuracy of the model in each set. Univariate analy-
sis and multivariate analysis were performed to test the 
independence of the model in the TCGA-PAAD cohort. 
Several clinical characteristics were enrolled in the analy-
sis, including age, gender, tumor stage, TMN stage, grade, 
family history of cancer, history of chronic pancreatitis, 
history of diabetes, history of alcohol exposure, and his-
tory of radiation therapy.

Model comparison
Many clinicopathological features have been used as 
the indexes in risk stratification clinically. Therefore, we 
first compared the predictability of our model and some 
clinical features including age, gender, tumor stage, TMN 
stage, grade, and history of radiation therapy by using 
ROC analysis. In recent years, many novel molecular 
models have been developed. We also compared the pre-
dictive efficiency of our model and other three published 
models by using ROC analysis and concordance index 
(C-index).

Functional enrichment analysis
To further demonstrate the potential mechanism of our 
model, comparison of the differentially expressed genes 
between high-risk and low-risk groups in the TCGA-
PAAD cohort was performed by using DESeq2 [30] with 
the criteria of FC > 1.5 and p-value < 0.05. Differentially 
expressed genes (DEGs) were used to perform the func-
tional enrichment analysis by using Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analysis [31]. 
“clusterProfiler” R package [32] was used to perform the 
KEGG analysis.

Immune status analysis
We obtained the gene sets of 28 immune cell types [33]. 
The ssGSEA was performed to explore the different infil-
tration degrees of immune cell types between high-risk 
and low-risk groups in the TCGA-PAAD cohort by using 
“GSVA” R package [34, 35].

Statistical analysis
All the statistical analysis and visualization were per-
formed with the R version 4.0.2 (Institute for Statistics 
and Mathematics, Vienna, Austria 4). Two-tailed p 0.05 
was used to determine statistical significance. All meth-
ods were carried out in accordance with relevant guide-
lines and regulations.

Results
Identification of prognostic TMB-related lncRNAs and 
model construction
As shown in Fig. 1, Patients in the TCGA-PAAD cohort 
were divided into high-TMB and low-TMB groups based 
on the median value of the TMB score. 352 down-regu-
lated lncRNAs and 133 up-regulated lncRNAs were iden-
tified as TMB-related lncRNAs (Fig. 2A) and the details 
were shown in Supplementary Table   2. And then, uni-
variate analysis showed that 43 TMB-related lncRNAs 
were selected as candidates for model construction 
(Supplementary Table  3) and the expression pattern of 
43 prognostic TMB-related lncRNAs between high-TMB 
and low-TMB groups was shown in Fig.  2B. Finally, a 
14-lncRNA prognostic model was constructed by LASSO 
Cox method (Fig.  2C-2D) in the training set, includ-
ing TRPM2-AS, MIR600HG, MIR3142HG, LINC01940, 
LINC01518, HOXA-AS2, FIRRE, ELFN1-AS1, C8orf31, 
AL139246.4, AC114947.2, AC103853.1, AC092756.1, and 
AC010175.1 (Supplementary Table  4). In addition, mul-
tivariate analysis was performed and the result indicated 
that these 14 lncRNAs were independent factor on the 
prognosis in the TCGA-PAAD cohort (p < 0.05), seven of 
which (TRPM2-AS, MIR600HG, MIR3142HG, HOXA-
AS2, AL139246.4, AC114947.2, and AC010175.1) were 
protective factors with hazard ratios (HR) < 1 and the rest 
of which were poor factors with HR > 1 (Fig. 2E).

Evaluation and validation of the 14-lncRNA prognostic 
model
The risk scores of each patient were calculated and 
the training set was divided into high-risk and low-risk 
groups based on the median value of risk scores (Fig. 3A). 
The status of each patient and the expression pattern of 
14 lncRNAs of each patient were shown in Fig.  3B-3C 
respectively. Comparison of survival curve between high-
risk and low-risk groups suggested that patients with 
high risk score had significantly shorter overall survival 
(OS) than those with low risk score (Fig. 3G, p < 0.0001). 
Besides, the AUC of 1-year, 3-year, and 5-year OS was 
0.795, 0.878, and 0.876, respectively (Fig. 3I). As valida-
tion, the same process was performed in the testing set 
(Fig.  3D-3F), the entire TCGA-PAAD cohort (Fig.  4A-
4C), and the PACA-AU cohort (Fig.  4D-4F). Similarly, 
the high-risk group was associated with worse prog-
nosis compared to the low-risk group in the testing set 
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(Fig.  3H, p = 3e-04), the entire TCGA-PAAD cohort 
(Fig. 4G, p < 0.0001), and the PACA-AU cohort (Fig. 4H, 
p = 0.0017). Additionally, we also evaluated the AUC of 
1-year, 3-year, and 5-year OS in the testing set (Fig. 3J), 
the entire TCGA-PAAD cohort (Fig. 4I), and the PACA-
AU cohort (Fig.  4J). It is also well-known that 90% of 
PAAD were classified as pancreatic ductal adenocarci-
noma (PDAC). Thus, we further evaluate the prognostic 
value of our signature only in the PDAC patients of the 
PACA-AU cohort. The result showed that patients with 
high risk score had inferior outcomes compared to those 
with low risk score, but the difference was not significant 
(Supplementary Fig. 1). The possible reason for this result 
is the small sample size of PDAC (n = 40).

Association of the 14-lncRNA prognostic model and 
clinicopathological characteristics
We compared the clinicopathological characteristics of 
high-risk and low-risk groups in the TCGA-PAAD cohort. 
As shown in Fig. 5A, the T stage was significantly associ-
ated with the risk score: high risk group had more patients 
with T3-T4 while patients with T1-T2 were more clustered 
in low risk group. No significant difference was found in 
other clinicopathological characteristics between high-risk 
and low-risk groups. And then, the differences of TMB, 
microsatellite instability (MSI), fraction genome altered 

(FGA), homologous recombination deficiency (HRD)-
score, and immune score between high-risk and low-risk 
groups were also compared. Notably, the risk score was 
positively correlated with the TMB (Fig.  5B, p < 0.001), 
MSI (Fig. 5C, p < 0.05), FGA (Fig. 5D, p < 0.0001) and HRD-
score (Fig. 5E, p < 0.001).

To further investigate whether the prognostic value of 
the 14-lncRNA prognostic model can be impacted by the 
clinicopathological characteristics, patients in the TCGA-
PAAD cohort were grouped by the clinicopathological 
characteristics including age (≤ 60 years and > 60 years), 
gender (male and female), family history of cancer (yes 
and no), history of diabetes (yes and no), history of alco-
hol exposure (yes and no), history of chronic pancreatitis 
(yes and no), M stage (M0 and M1), N stage (N0 and N1), 
T stage (T1 + T2 and T3 + T4), grade (grade 1–2 and grade 
3–4), tumor stage (stage I-II and stage III-IV), history of 
radiation therapy (yes and no). Each subgroup was fur-
ther divided into high-risk and low-risk groups based on 
the median value of risk score. Except for patients with M1 
and patients with history of chronic pancreatitis, high-risk 
group was associated with inferior prognosis compared to 
low-risk group in every subgroup (Fig. 6). The possible rea-
son for this result was the small number of patients in the 
subgroup of patients with M1 (n = 4) and patients with his-
tory of chronic pancreatitis (n = 13). 

Fig. 1  Research roadmap of this study
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Fig. 2  Identification of prognostic TMB-related lncRNAs and model construction. (A) Volcano plot of differentially expressed lncRNAs between high-TMB 
and low-TMB groups. Red dot represents up-regulated lncRNA and blue dot represents down-regulated lncRNA. (B) heatmap of the expression of 43 
prognostic TMB-related lncRNAs in high-TMB and low-TMB groups. (C) The LASSO coefficient profile of 43 prognostic TMB-related lncRNAs and perpen-
dicular imaginary lines were drawn at the value chosen by 10-fold cross-validation. (D) The tuning parameters (log l) of OS-related proteins were selected 
to cross-verify the error curve. According to the minimal criterion and 1-se criterion, perpendicular imaginary lines were drawn at the optimal value. (E) 
Multivariate analysis of fourteen selected genes in the TCGA-PAAD cohort

 



Page 6 of 13Wang et al. BMC Gastroenterology          (2022) 22:495 

Fig. 3  Prognosis analysis of the 14-lncRNAs prognostic model in the training set and the testing set. Distribution of risk score based on the sixteen-gene 
model in the training set (A) and the testing set (D). Patterns of survival status and survival time of each patient in the training set (B) and the testing set 
(E). Expression pattern of sixteen genes of each patient in the training set (C) and the testing set (F). Kaplan-Meier survival curves of the OS of patients 
in the high- and low-risk groups in the training set (G) and the testing set (H). ROC curve of 1-year, 3-year, and 5-year overall survival in the training set (I) 
and the testing set (J)
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Fig. 4  Prognosis analysis of the 14-lncRNAs prognostic model in the TCGA-PAAD cohort and PACA-AU cohort. Distribution of risk score based on the 
sixteen-gene model in the TCGA-PAAD cohort (A) and the PACA-AU cohort (D). Patterns of survival status and survival time of each patient in the TCGA-
PAAD cohort (B) and the PACA-AU cohort (E). Expression pattern of sixteen genes of each patient in the TCGA-PAAD cohort (C) and the PACA-AU cohort 
(F). Kaplan-Meier survival curves of the OS of patients in the high- and low-risk groups in the TCGA-PAAD cohort (G) and the PACA-AU cohort (H). ROC 
curve of 1-year, 3-year, and 5-year overall survival in the TCGA-PAAD cohort (I) and the PACA-AU cohort (J)
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Besides, all the clinicopathological characteristics were 
enrolled in the univariate analysis, and the result showed 
that the risk score was also the poor prognostic factor in 
the TCGA-PAAD cohort (Fig.  7A, p < 0.0001) besides T 
stage (Fig. 7A, p = 0.028) and N stage (Fig. 7A, p = 0.005). 
And then, we enrolled these three prognostic factors in 
the multivariate analysis. Interestingly, the risk score was 
also the only independent factor on the prognosis in the 
TCGA-PAAD cohort (Fig. 7A, p < 0.0001).

Models comparison
Firstly, we compared the value of AUC between our 
model and some clinicopathological features including 
age, gender, tumor stage, grade, TMN stage and history 
of radiation therapy. Unsurprisingly, the AUC of our 
model was always the largest comparing with other fea-
tures (Fig. 7B). And then, comparison of our model and 
three recently published models was performed, includ-
ing the m6A-related lncRNA prognostic model reported 
by Yuan et al. [36], the TMB-related genes prognostic 
model reported by Tang et al. [16], and the autophagy-
related lncRNA prognostic model reported by Deng et 
al. [37]. As shown in Fig.  7C, our 14-lncRNA prognos-
tic model had the best predictive efficiency of 3-year 
OS in the TCGA-PAAD cohort compared with other 

three published models. Besides, our model had the big-
gest value of C-index compared to other three published 
models (Fig. 7D), which further indicated that our model 
had excellent performance in the prediction of prognosis 
in PAAD.

Exploration of potential mechanism of the 14-lncRNA 
prognostic model in PAAD.
To further explore the potential mechanism of our 
model, differentially expressed genes (DEGs) analysis was 
performed between high-risk and low-risk groups in the 
TCGA-PAAD cohort. 1586 down-regulated genes and 
779 up-regulated genes were selected as DEGs (Fig. 8A, 
Supplementary Table  5). And then, functional enrich-
ment analysis was performed based on the DEGs. KEGG 
analysis showed that the DEGs were majorly enriched in 
pancreatic secretion pathway and many immune-related 
signaling pathways including cytokine-cytokine receptor 
interaction, cell adhesion molecules, primary immuno-
deficiency, chemokine signaling pathway, and intestinal 
immune network for IgA production, T cell receptor 
signaling pathway, and Th1 and Th2 cell differentiation 
(Fig. 8B), which suggested that our model might be asso-
ciated with the immunoregulation of PAAD. Therefore, 
we compared the immune score and immune infiltration 

Fig. 5  Association of the 14-lncRNAs prognostic model and clinicopathological features. (A) Comparison of clinical features between high-risk and low-
risk groups in the TCGA-PAAD cohort. (B) Comparison of tumor mutation burden (TMB) between high-risk and low-risk groups in the TCGA-PAAD cohort. 
(C) Comparison of microsatellite instability (MSI) between high-risk and low-risk groups in the TCGA-PAAD cohort. (D) Comparison of fraction genome 
altered (FGA) between high-risk and low-risk groups in the TCGA-PAAD cohort. (E) Comparison of homologous recombination deficiency (HRD)-score 
between high-risk and low-risk groups in the TCGA-PAAD cohort. “*” represents p < 0.05, “***” represents p < 0.001, “****” represents p < 0.0001
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Fig. 6  Prognosis analysis of PAAD patients in different subgroups
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of 28 immune cells between high-risk and low-risk 
groups in the TCGA-PAAD cohort. Notably, patients 
with high risk score had significantly lower immune score 
(Fig.  8C, p < 0.001). Besides, the infiltrations of 19 types 
of immune cells were significantly higher in the low-risk 
groups compared to the high-risk group, including some 
immune cells that played crucial role in tumor immunity 
such as CD8 T cells, CD4 T cells, natural killer cells and 
B cells (Fig. 8D).

Discussion
TMB has been used as the predictor for immune check-
point inhibitors in tumors [12]. Recent studies have 
been illustrated that lncRNAs could be the prognostic 

biomarker for many types of cancer including pancreatic 
cancer [38]. To the best of our knowledge, a prognos-
tic model based on the TMB-related lncRNAs in pan-
creatic cancer has not been reported yet. In this study, 
two datasets: TCGA-PAAD and PACA-AU were col-
lected. The TMB of 176 patients in the TCGA-PAAD 
cohort was calculated and the cohort was divided into 
high-TMB and low-TMB groups based on the median 
value of TMB. And then, 43 lncRNAs were identified as 
prognostic TMB-related lncRNAs by using differentially 
expressed genes analysis and univariate analysis. Subse-
quently, the TCGA-PAAD cohort was randomized into 
the training set and the testing set. LASSO was used to 
construct a 14-lncRNAs prognostic model in the training 

Fig. 7  Multivariate analysis and models comparison. (A) Univariate analysis and multivariate analysis of the risk score based on the 14-lncRNA prognostic 
model and other clinical features. (B) Comparison of AUC value of the 14-lncRNA prognostic model and other clinical features. (C) Comparison of ROC 
curve of 3-year overall survival between the 14-lncRNA prognostic model and other three published models. (D) Comparison of C-index between the 
14-lncRNA prognostic model and other three published models
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set. The training set was used as the evaluation set. The 
testing set and the entire TCGA-PAAD cohort were used 
as the internal validation sets, and the PACA-AU cohort 
was used as the external validation set. The risk scores of 
each patient were calculated and the patients of each set 
were divided into high-risk and low-risk groups based on 
the median value of risk scores respectively. Prognosis 
analysis suggested that patients with high risk score was 
associated with poor prognosis in all four sets (p < 0.01). 
Besides, ROC curve also indicated that the predictabil-
ity of the 14-lncRNA prognostic model was great in the 
1-year, 3-year, and 5-year OS. Additionally, univariate 
analysis and multivariate analysis of the risk score and 
other clinical features were indicated that the risk score 
based on the 14-lncRNA prognostic model was the inde-
pendent protective factor on the prognosis of PAAD. To 
further evaluate the accuracy of the 14-lncRNA prognos-
tic model, we compared the AUC value of the 14-lncRNA 
prognostic model and some clinical factors and the 
result suggested that our model had the best accuracy of 

prognosis prediction compared to other clinical features. 
Besides, we also compared the AUC of 3-year OS and the 
value of C-index of the 14-lncRNA prognostic model and 
other three published models. Unsurprisingly, our model 
also had the best predictive efficiency compared to other 
published models.

To further investigate the relationship of the 
14-lncRNA prognostic model and some hallmark of 
tumorigenesis including TMB, MSI, FGA, and HRD-
score, we indicated that high risk score was associated 
with high TMB, MSI, FGA and HRD-score. TMB rep-
resents the number of mutations per megabase (Mut/
Mb) of DNA that were sequenced in a specific cancer. 
Nowadays, numerous studies have illuminated that can-
cer patients with high TMB could benefit from immuno-
therapy [12, 39]. Besides, MSI and FGA are hallmarks of 
genomic instability which has been recognized as one of 
the drivers of carcinogenesis [40, 41]. Many researchers 
have demonstrated that high genomic instability could 
be the basis for a tumor’s sensitivity to DNA-damaging 

Fig. 8  Exploration of potential mechanism of the 14-lncRNA prognostic model. (A) Volcano plot of differentially expressed genes between high-risk and 
low-risk groups in the TCGA-PAAD cohort. Red dot represents up-regulated genes, blue dot represents down-regulated genes, and grey dot represents 
not differentially expressed genes. (B) KEGG pathway enrichment analysis of differentially expressed genes. (C) Comparison of immune score between 
high-risk and low-risk groups in the TCGA-PAAD cohort. (D) Immune status analysis of 28 types of immune cells between high-risk and low-risk groups 
in the TCGA-PAAD cohort
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therapies [42]. Our findings suggested that the 14 TMB-
related lncRNAs prognostic model had the potential to 
be the indicator for immunotherapy and DNA-damaging 
therapies response, which provided new thought for pre-
cision treatment in PAAD.

To further explore the potential mechanism the 
14-lncRNA prognostic model in PAAD, differentially 
expressed genes analysis was performed to identify the 
DEGs between high-risk and low-risk groups in the 
TCGA-PAAD cohort. And then, KEGG pathway analysis 
indicated that the 14-lncRNA prognostic model might par-
ticipate in many immune-related pathways. In addition, we 
compared the immune score and the immune infiltration 
of 28 types of immune cells between high-risk and low-
risk groups in TCGA-PAAD cohort. The results showed 
that patients with high risk score had significantly lower 
immune score and less immune infiltration of 19 types of 
immune cells. Our findings indicated that high risk score 
might be associated with inactivation of immune-related 
pathways and the inefficient infiltration of immune cells, 
which resulted to poor prognosis in PAAD.

In conclusion, our findings provided new strategy for 
risk stratification in PAAD and offered new thought for 
prognostic biomarker and precision therapy in PAAD. 
However, there are some limitations in this study. For 
example, our study was more suitable for retrospective 
analysis and the established model was still not clini-
cal actionable. This study tentative explored that the 
14-TMB-related lncRNA prognostic model might par-
ticipate in the immunoregulation of PAAD. However, 
external experiments would be advantaged for further 
investigation. In the future, we will attempt to overcome 
these shortcomings.

Conclusion
A prognostic model based on fourteen TMB-related 
lncRNAs was established. Patients with high risk score 
were associated with worse prognosis in both the train-
ing set and all the validation sets. Besides, our model had 
the best predictive efficiency compared to other clini-
cal factors and published models. We also discussed the 
potential mechanism of our model which provided new 
thought for precision treatment and biomarkers search-
ing in pancreatic cancer.
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