
1Scientific RepoRts | 5:10504 | DOi: 10.1038/srep10504

www.nature.com/scientificreports

Cell Size Modulates Oscillation, 
Positioning and Length of Mitotic 
Spindles
Hongyuan Jiang

Mitotic spindle is the main subcellular structure that accomplishes the chromosome segregation 
between daughter cells during cell division. However, how mitotic spindles sense and control their 
size, position and movement inside the cell still remains unclear. In this paper, we focus on the 
size effects of mitotic spindles, i.e., how cell size controls various interesting phenomena in the 
metaphase, such as oscillation, positioning and size limit of mitotic spindles. We systematically 
studied the frequency doubling phenomenon during chromosome oscillation and found that cell size 
can regulate the period and amplitude of chromosome oscillation. We found that the relaxation time 
of the positioning process increases exponentially with cell size. We also showed that the stabler 
microtubule-kinetochore attachments alone can directly lead to an upper limit of spindle size. Our 
work not only explains the existing experimental observations, but also provides some interesting 
predictions that can be verified or rejected by further experiments.

Mitotic spindle, a bipolar assembly of dynamic microtubules and various proteins, is the main subcellu-
lar structure that accomplishes the chromosome segregation between daughter cells during cell division. 
For a long period of time, the spindle size was expected to be proportional to the cell size since the cell 
size is the main control parameter determining the size of subcellular structures1–3. However, recent 
experiments found that the size of the mitotic spindle scales with the cell size only in small cells, but 
approaches an upper limit (about 60 μm) in large cells during the early embryogenesis of Xenopus laevi 
eggs4. Similar phenomena can be recapitulated by in vitro experiments5,6, where spindles containing 
kinetochores and centrosomes are assembled in Xenopus egg extracts. Although it has been shown that 
the spindle size can be tuned by certain factors, such as the number of building blocks5,6, the morphogen 
gradient7, or the growth velocity of microtubules8, how mitotic spindles sense the cell size and accord-
ingly regulate their own size still remains unclear.

Cell size is also expected to be an important control parameter for some interesting phenomena, such 
as the positioning and oscillation of spindle and chromosome. Correct and accurate positioning of the 
mitotic spindle plays an important role in chromosome segregation and selection of the cell division 
plane9,10. Either the pushing forces generated by the polymerization of microtubules11–14 or the pulling 
forces generated by the walking of molecular motors15–17 can position microtubule organizing centers 
(MTOC) or spindles to the geometry center of the cell. The combination of pulling and pushing forces 
provides a more robust mechanism for the spindle positioning18–20. Chromosomes positioned near the 
metaphase plate can undergo directional instability, i.e., sustained chromosome oscillations between the 
two spindle poles during the metaphase of cell division21. Positioning the spindle inside the cell and driv-
ing the sustained chromosome oscillation require the sensing and control on the position and movement 
of chromosome through length-dependent or position-dependent forces1. Therefore, cell size should be a 
key control parameter for these processes. Although various models22–29 have been developed, how cell 
size regulates the positioning and oscillation of spindle and chromosome is still unknown.
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Furthermore, although the previous models22–29 can reproduce the chromosome oscillation and posi-
tioning phenomenon qualitatively, they cannot explain the fine behaviors of the mitotic spindle discov-
ered by some recent experiments. For example, recently it has been shown that the transitions from the 
poleward (P) to the away-from-the-pole (AP) movement of the chromosomes, i.e., P-to-AP reversals, 
always occur 6 seconds before AP-to-P reversals30 and chromosomes oscillate at a period twice that of 
the oscillation of inter-kinetochore distance30–32. Previous studies usually treat the oscillation and posi-
tioning of mitotic spindles as isolated problems and investigate them separately. For example, in most 
models about chromosome oscillation22–29, astral microtubules and cell boundary are neglected so that 
the positions of the spindle poles and the spindle size are fixed. Therefore, these models cannot be used 
to investigate the positioning of the whole spindle structure and how cell size regulates the oscillation and 
positioning. In contrast, in the previous models about the positioning process12,14,18–20, the whole complex 
spindle structure is usually represented by a single point, i.e., one MTOC. Therefore, these simplified 
models cannot be used to study the chromosome oscillation and how the spindle size is determined by 
the cell size. Therefore, in order to study all these interesting phenomena in a single model and find the 
most essential factors regulating these phenomena, a minimal but general model with as few parameters 
as possible should be developed.

In this paper, we will focus on the size effects of mitotic spindles, i.e., how cell size regulates the oscil-
lation, positioning and size limit of mitotic spindles. Here we will show that the oscillation, positioning 
and size limit of mitotic spindles can be studied in a general model by considering the properties that 
are intrinsic to the spindle, such as the growth dynamics of microtubules, the pulling forces generated 
by molecular motors, the pushing forces limited by the buckling force or stall force of microtubules, and 
the difference between microtubule-kinetochore attachments and microtubule-cortex attachments. We 
will show that cell size can regulate the period and amplitude of chromosome oscillation. We’ll also show 
that the relaxation time of the positioning process increases exponentially with cell size. Finally, we will 
demonstrate that the stabler attachments between microtubule and kinetochore can directly lead to an 
upper limit of spindle size.

Results
A minimal model to study the oscillation, positioning and size limit of mitotic spindles. As 
shown in Fig. 1a, the mitotic spindle has two poles and each pair of sister chromatids has two attach-
ment sites, named kinetochores. Microtubules are nucleated from the spindle poles and undergo rapid 
stochastic switching between growth and shrink states (dynamic instability of microtubules) to search for 
kinetochores33,34. Once both kinetochores of the sister chromatids are caught by microtubules, tension 
are built up and stabilize the whole structure. In the meanwhile, the sister chromatids are still mechan-
ically connected by cohesin protein complexes until anaphase. Therefore, the duplicated chromosomes 
are aligned near the spindle equator to form the metaphase plate during the metaphase.

In this paper, we consider a one-dimensional (1D) cell with size L (Fig. 1b). Inside the cell, there are 
two poles at r1 and r 4, and one pair of sister chromatids at r 2 and r3. The spindle size can be characterized 
by the distance between the two spindle poles, i.e., −r r4 1. The position of the spindle, i.e., the center of 
the spindle, is given by ( + )/r r 21 4 . Microtubules can grow from the two poles and catch chromatids or 
reach the cell periphery. = / +l L r21 1 and = / −l L r24 4 represent the length of astral microtubules 
(aMTs), while = −l r r2 2 1 and = −l r r3 4 3 indicate the length of kinetochore-associated microtubules 
(kMTs). Notice that the spatial and temporal regulation of microtubules and associated proteins inside 
the spindle is quite complex and motors are almost everywhere inside the spindle. To reduce this com-
plexity, we follow the previous models about spindle structure and chromosome oscillation to assume 

Figure 1. (a) Schematic showing a mitotic spindle inside a cell. (b) A simplified 1D force balance model. 
Two poles (r1 and r4) and one pair of sister chromatids (r2 and r3) are connected by aMTs and kMTs 
with length l1, l2, l3 and l4. The position and the size of the spindle are given by (r1 +  r4)/2 and r4 −  r1, 
respectively. The two sister chromatids is simply connected by a linear spring with rest length Δ  and spring 
constant α.
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that microtubules are directly connected to kinetochores22–25,28. The mechanical connection between the 
two sister chromatids is simplified to be a linear spring with rest length ∆ and spring constant α. 
Following Ref. [14, 19, 20], we consider two populations of microtubules in the i-th microtubule segment 
( = , ,i 1 2 3 or 4): pushing microtubules with number +ni  and pulling microtubules with number −ni , 
where +  and − indicate the pushing and pulling, respectively. The force balance equations on the poles 
are

ξ− + + − − = ( )
− + − +

F F F F r 0 1p1 1 2 2 1

ξ− + + − − = ( )
− + − +

F F F F r 0 2p3 3 4 4 4

and the force balance equations on the chromatids are

α ξ− + + ( − − ∆) − = ( )− +
F F r r r 0 3c2 2 3 2 2

α ξ− − ( − − ∆) − = ( )− +
F F r r r 0 4c3 3 3 2 3

where ξp and ξc are the viscous drag coefficients of spindle poles and chromatids, respectively. +Fi  and 
−Fi  are the pushing and pulling forces in the i-th microtubule segment with length li (Fig. 1b). Here we 

have neglected inertial forces since Reynolds number is very low in this system. We also neglected the 
viscous forces on the microtubules because they are negligible compared to other forces considered 
here35.

When the plus end of a microtubule growing from a spindle pole makes contact with some object, it 
will apply a pushing force on the object. If the pushing force exceeds a critical value, the growing micro-
tubule will be buckled due to its own compression. Experiments have shown that high percentage of free 
microtubules will buckle when they reach the cell cortex or barrier20,36,37. Therefore, we assume that the 
pushing force +Fi  is limited by this critical force14,19,20, which is given by Euler buckling formula fc =  π2κ/l2. 
Here κ and l denote the bending rigidity and the length of microtubules, respectively. By solving the 
post-buckling shape of the microtubule, one can show that the pushing force increases very slowly with 
the growth of microtubule after it exceeds the Euler buckling force. Therefore, given that the catastrophe 
rate is high, the deflection of the buckled microtubule will be small and we can assume the pushing force 
is approximately equal to the Euler buckling force14,19,20. Notice that when microtubules are very short, 
the Euler buckling force fc will exceed the stall force of microtubule Fs. So the pushing force generated 
by the polymerization of microtubules can be given as

π κ π κ

π κ
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The lateral reinforcement by the surrounding elastic cytoskeleton could greatly increase the critical 
force38. In this case, the critical force is fc =  8π2κ/b2, where b is the buckling wavelength instead of the 
microtubule length. Considering this effect only changes our results quantitatively. Notice that the push-
ing force given in equation (5) is naturally position-dependent without any other assumptions. Therefore, 
buckled microtubules are not only force generators, but also the simplest rulers to sense the position 
inside the cell.

Some molecular motors, such as dyneins, can walk to microtubule minus ends while bound to the 
cell cortex or kinetochore so that they can generate pulling forces. In contrast, kinesins usually walk to 
microtubule plus ends and therefore generate a pushing force. The force generated by motors is 

( )= −− −
, ,F n N f N fi i d d i k k i

, where Nd and Nk are the number of dyneins and kinesins on each microtu-
bule, respectively. fd,i and fk,i are the force generated by each dynein and kinesin. The velocity of dyneins 
and kinesins has been shown to be strongly influenced by the load39–42. The velocity and force of dyneins 
can be modeled as vd,i =  vd,0(1 −  fd,i/fd,s), where fd,s and vd,0 are the stall force and unloaded velocity of the 
dynein, fd,i is the pulling force on the dynein. Similarly, the velocity and force of kinesins can be written 
as vk,i =  vk,0(1 −  fk,i/fk,s). Therefore, by introducing λ =  Nd/(Nd +  Nk) and N =  Nd +  Nk, the force generated 
by motors can be given as
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If λ =  1, only dyneins apply forces on the microtubule. In contrast, if λ =  0, only kinesins generate 
forces. In most cases, dyneins dominate the force generation so that the resultant force generated by 
motors is a pulling force25. The walking velocities of motors relative to microtubules are related to the 
motion of spindle poles and chromatids by = − = − −, , v v r vd k f1 1 1 , = − = − −, ,  v v r r vd k f2 2 1 2 , 
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= − = − −, ,  v v r r vd k f3 3 3 4  and = − = −, , v v r vd k f4 4 4 , where vf is the poleward flux of microtu-
bules.

It should be noted that the effects of polar ejection forces have been carefully considered in this 
model. Polar ejection forces can be generated by the pushing of polymerizing microtubule plus ends 
against the chromosomes or by chromokinesin motors1. The polar ejection force due to the polymeriza-
tion of microtubules has been given by +F2  and +F3 . And the polar ejection force generated by kinesins 
has been included in equation (6). Notice that polar ejection forces were proposed to decrease with the 
distance from the spindle pole23 and the assumption has been verified experimentally43. This is consistent 
with the formula of +F2  and +F3 . It should also be noted that although the inhibition of chromokinesin 
motors reduces chromosome-to-pole distance in monopoles1, kinetochores are on average under ten-
sion44. This indicates that pulling force applied by dyneins is bigger than the pushing force generated by 
kinesins in equation (6) so that −Fi  should be a pulling force. Therefore, without loss of generality, we 
can assume λ =  1 in our simulation, i.e., only dyneins contribute to the force generation in equation (6). 
In this case, equation (6) is reduced to
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Finally, we assume that the pushing forces are exerted on the chromosome arms, while the pulling 
forces are exerted on the kinetochore. In another word, we assume that kMTs only provide pulling forces 
in our model and we don’t have to consider the buckling of kMTs. When we simplify the model to 1D 
case, the chromosome arm and kinetochore are reduced to a single point (r2 or r3) as shown in Fig. 1b. 
Therefore, by using the 1D approximation, we cannot distinguish the different locations of the chromo-
some arms and kientochores. This is one major limitation of this 1D model. If we extend this model to 
2D and 3D cells to study the orientation of the spindle, we must consider the population evolution of 
microtubules connected to the chromosome arms and kinetochores separately.

The two populations of microtubules +ni  and −ni  are mainly determined by the binding and unbind-
ing rate of motors, the catastrophe rate of microtubules, and the number of microtubules reaching the 
cell cortex or chromosome per unit time14, 19. Therefore, the time evolution of the two populations of 
microtubules can be described by the following equations

ρ= − − ( )

+

,
+

,
+dn

dt
k n k n 8

i
i c i i b i i

= − ( )

−

,
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−dn
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where ρi is the number of microtubules reaching the cell cortex or chromosome per unit time, kc,i is the 
catastrophe rate of pushing microtubules, kb,i is binding rate of motors to pulling microtubules, and ku,i 
is unbinding rate of motors from pulling microtubules. The unbinding rate ku,i increases exponentially 
with the applied load as =, ,

/k k eu i u i
f f0 i i

0
 Ref. [22,25], where ,ku i

0  is the unloaded unbinding rate, f i
0 is 

characteristic force indicating the sensitivity of the unbinding rate to the applied load. It should be noted 
that following the previous models about chromosome oscillation22–25,28, we assume that microtubules 
are directly connected to kinetochores and only motors binding to or unbinding from the two ends of 
microtubule contribute to evolution of the two populations of microtubules. Notice that the dynamic 
instability of microtubules can affect the value of ρi and in general ρi should be the function of the dis-
tance between the spindle pole and the destination. How the dynamic instability of microtubules influ-
ences the formula of ρi will be discussed in the last section.

Frequency doubling and regulation of chromosome oscillation by cell size. By solving 12 
coupled equations, i.e., equation (1)-(4),(8) and (9), we can obtain 12 unknowns. Therefore, we can 
study the size and position of the spindle (r4 −  r1 and (r1 +  r4)/2), and the inter-kinetochore distance 
(r3 −  r2). If the fixed point of the above nonlinear equations is stable, chromosomes and spindle poles 
will approach a steady position. In contrast, if it’s unstable, both chromosomes and spindle poles will 
undergo sustained periodic oscillations (Fig.  2a) and the oscillation period is about several minutes 
as observed in experiments30,31,45. Interestingly, chromosomes oscillate at a period twice that of the 
oscillation of inter-kinetochore distance (Fig. 2a,b), which is consistent with the accurate experimental 
measurement of the positions of the sister kinetochores30–32. The asymmetry between the poleward (P) 
and away-from-the-pole (AP) moving speed leads to frequency doubling of inter-kinetochore distance 
(Fig.  2c,d) as proposed in Ref. [31]. We found the P-to-AP reversals occur 6 seconds before AP-to-P 
reversals in Fig.  2c which is quantitatively consistent with the PtK2 oscillation in vivo30. Interestingly, 
spindle poles also oscillate and lag behind the chromosome oscillation by about 180 degrees (Fig. 1a). 
Notice that we only consider one pair of chromosomes, and therefore we predict the same oscillations 
period for chromosome and spindle poles. However, their oscillation period and amplitude could be 
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very different due to the coupling dynamics of multiple chromosomes and spindle poles. Also notice 
that the chromosome oscillation is faster than the oscillation of the whole spindle (the period is about 
30 minutes)46 since the drag coefficient of the whole spindle structure is much larger than that of a single 
chromosome.

Remarkably, both the period and amplitude of the oscillation of chromosome and inter-kinetochore 
distance increase with cell size in small cells, but saturate in large cells (Fig. 3). This has not been reported 
and still need further experimental verification. Without loss of generality, we can assume that ξc =  ξp ≡ ξ 
in our calculation and discuss the phase diagram of chromosome movement (Fig. 4). Apparently, if the 

Figure 2. Frequency doubling during directional instability. (a) The oscillation of chromosomes (r2 and r3) 
and spindle poles (r1 and r4). (b) The oscillation of inter-kinetochore distance r3 −  r2. (c) and (d) show the 
details of (a) and (b). Red and blue lines indicate P and AP movement, respectively. Parameters used in the 
simulation are summarized in the Table 1.

Figure 3. The oscillation period (a) and amplitude (b) of chromosomes (blue) and inter-kinetochore 
distance (red) as the function of cell size.
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viscous friction is too strong, i.e., the dimensionless viscous drag ξv0/Nfs is big, the system is overdamped 
and chromosomes cannot oscillate. For given viscous drag, chromosomes cannot oscillate too if the 
binding rate kb,i is too small or the unbinding rate ,ku i

0  is too big (Fig. 4).

Cell size affects the positioning of mitotic spindles in cortical pulling mechanism. We found 
that the spindle can be positioned to the cell center no matter whether the chromosome oscillates or 
not. For example, Fig. 5a shows when there is no chromosome oscillation, the spindle returns to the cell 
center after it is displaced from the center by Δ x0 and the time needed for the positioning process is 
roughly the same for various Δ x0 in a certain cell. If we use characteristic time T1/2 (the time at which 
the displacement of spindle Δ x decreases to Δ x0/2) to represent the relaxation time of the spindle, the 
relaxation time increases exponentially with cell size (Fig.  5b). This indicates that the spindle can be 
positioned to the cell center quickly in small cells, but in a cell bigger than a critical size Lc, this cortical 
pulling and pushing mechanism can not center the spindle effectively since the relaxation time is even 
larger than the duration of metaphase Tc. In very large cells, the astral microtubules do not reach the 
cortex, but the mitotic spindle can still be centered47,48. In this case, cells may use an alternative way, 
cytoplasmic pulling mechanism, to center the spindle9,47,48.

The upper limit of spindle size. This model can also be used to study how spindle size is regulated 
by cell size. We found that the spindle size is always proportional to the cell size and there is no upper 
bound for the spindle size if we assume all the parameters are the same for i =  1,2,3 or 4 (black curve in 
Fig.  6). Notice that the microtubule-kinetochore attachments can be directly stabilized by tension49 or 
indirectly stabilized by suppressing the destabilizing activity of Aurora B50. Therefore, we assume that the 
microtubule-kinetochore attachments are stabler than the microtubule-cortex attachments. There are 
three ways to achieve this in the model: (1) ,ku 2

0  and ,ku 3
0  are smaller than ,ku 1

0  and ,ku 4
0 ; (2) f 2

0 and f3
0 are 

smaller than f1
0 and f 4

0; (3) both (1) and (2) are true. For all the above possibilities, we found that the 
size of mitotic spindles increases approximately linear with the cell size in small cells, but approaches an 
upper limit in large cells, which perfectly agrees with the experimental data during the early embryogen-
esis of Xenopus laevi eggs4. For example, we can fit the experimental results accurately if we only assume 
= = ., ,

−k k s0 07u u2
0

3
0 1 and = = ., ,

−k k s0 1u u1
0

4
0 1 and other parameters are the same (red curve in Fig. 6). 

The stabler attachment between microtubules and kinetochores breaks the symmetry between kMTs and 
aMTs. The asymmetry is more obvious in large cells since the pushing force is position-dependent or 
length-dependent according to equation (5) in our model. Therefore, the spindle size does not scale with 

Figure 4. Phase diagram of chromosome movement characterized by dimensionless parameter ξv0/Nfs and 
(a) the binding rate kb,i or (b) the unbinding rate ,ku i

0  ( ,ku i
0  are the same for all i in this calculation).

Figure 5. Cell size influences the positioning of spindles. (a) The positioning of spindle to the cell center for 
various perturbation Δ x0. (b) The relaxation time increases exponentially with cell size. ξ =  8 is used so that 
there is no chromosome oscillation.
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cell size any more. Although the spindle size can be tuned by factors, such as the number of building 
blocks5,6, the morphogen gradient7, or the growth velocity of microtubules8, our result indicates the 
intrinsic property of the spindle that the microtubule-kinetochore attachments are stabler than the 
microtubule-cortex attachments49,50 can directly lead to an upper limit of spindle size.

The influence of the dynamic instability of microtubules. In our model, ρi denotes the number 
of microtubules reaching the destination (cell cortex or chromosome) per unit time. Apparently, the 
growth and the dynamic instability of microtubules should play an important role on the value of ρi. 
Experiments and theories have showed that there is an average growth rate which controls the transition 
between bounded growth and unbounded growth of microtubules51,52. The average behavior of microtu-
bules in the two states is quite different. In the unbounded growth, microtubules switch between growing 
and shrinking states, but on average they have a constant growth velocity ui. The length distribution 
propagates linearly with time and its shape evolves towards a Gaussian distribution51. If there is a wall at 
distance l away from the nucleation cite, it will take an average time /l ui for microtubules to reach the 
wall. After that, the transition state is over, the peak of the microtubule length distribution will stop 
before l, and the length distribution reaches a steady state due to the existence of the wall. Therefore, in 
this case, we may simply assume ρi is a constant. In the bounded growth, microtubules switch between 
growing and shrinking states, but each microtubule will eventually shrink to the nucleating site at some 
time. Their average length saturates at some constant value due to the constant re-nucleation, and the 
length distribution at the steady state is a simple exponential distribution51. Apparently, the bigger dis-
tance the microtubule has to reach, the more unlikely microtubules will reach the destination (cell cortex 
or chromosome) since the length distribution at the steady state is an exponential distribution. Therefore, 
ρi should be the function of the distance li between the spindle pole and the destination. In our simula-
tion, we found if we assume ρi =  Ai/li where Ai is a constant, the populations of pushing and pulling aMTs 
( +n1 , −n1 , +n4  and −n4 ) tends to vanish as cells become larger(see Fig. 7a,d,e,h). But kMTs still remain finite 
values. This is consistent with the experimental observations that aMTs are too short to reach the cortex 
in extremely large cells47,48. Notice that ρi also becomes a length-dependent parameter if we assume 
ρi =  Ai/li. However, we found even we assume ρi is a constant, the upper limit of mitotic spindles still 
exists as long as the microtubule-kinetochore attachments is stabler. Therefore, ρi is not a dominant 
parameter regulating the spindle size. Except for the difference of microtubule population, we found a 
length-dependent ρi only changes our results quantitatively.

Discussion
In this paper, we use a minimal model to identify the most essential factors that govern the oscillation, 
positioning and size limit of mitotic spindles. We show that mechanical force could be an effective tool 
to sense and regulate the size of subcellular structures, as has already been demonstrated in the growth 
and morphology of bacterial cells53–55. We found simple analysis, such as position-dependent forces gen-
erated by buckled microtubules and the intrinsic property that microtubule-kinetochore attachments are 
stabler than microtubule-cortex attachments, can explain the exiting data and provide some insightful 
predictions. Our model is based on a 1D cell, but it¡¯s possible to generalize it to two and three dimen-
sions to study the position and orientation of the spindle for various cell shapes or when external forces 
are applied.

Figure 6. The property that the microtubule-kinetochore attachments are stabler than the microtubule-
cortex attachments directly leads to an upper limit of spindle size. Our model can fit the experimental 
results4 perfectly if we assume = = ., ,

−k k s0 07u u2
0

3
0 1 and = = ., ,

−k k s0 1u u1
0

4
0 1 (red curve). In contrast, there 

is no upper limit for mitotic spindles if = .,
−k s0 1u i

0 1 for i =  1,2,3 or 4 (black curve).
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Methods
The 12 coupled equations, i.e., equation (1)–(4),(8) and (9), were solved by using MATLAB ordinary 
differential equation initial value problem solver ode15s. The initial values were taken to be approxi-
mately equal to the mean values of each unknown variable. The parameter values used in the simulation 
and the range of the parameter values tested in the simulation are given in Table 1. We can define three 

Figure 7. The populations of aMTs and kMTs during the chromosome oscillation when we assume ρi =  Ai/li, 
where Ai =  300 μm/s. The populations of pushing and pulling astral microtubules ( +n1 , −n1 , +n4  and −n4 ) tends 
to vanish as cells become larger. Blue and reed curves indicate different cell size (L =  100 μm and 
L =  1000 μm).

Parameter Description
Value used in 

figures
Value tested in 

model Reference

κ Bending rigidity of 
microtubules 21 pN ⋅  μm2 21 pN ⋅  μm2 [56]

Δ Rest length of the 
cohesin bonds 1 μm 0.5 ∼  2 μm [44]

α Spring constant of 
cohesin bonds 70 pN/μm 1 ∼  100 

pN/μm [23, 25]

fd,s Stall force of dyneins 7 pN 7 pN [39, 40, 57]

vd,0
Unloaded velocity of 

dyneins 0.2 μm/s 0.02 ∼  2 μm/s [39, 40, 57]

Fs
Stall force of 
microtubules 4.2 pN 1 ∼  10 pN [58]

fi
0 Characteristic force in 

the unbinding rate fs/3 fs/10∼ 3fs [57]

ξc
Viscous drag coefficient 

of chromatids 2.1 nN ⋅  s/μm 0.1 ∼  10 nN ⋅  
s/μm estimate

ξp
Viscous drag coefficient 

of spindle poles ξc
0.1 ∼  10 nN ⋅  

s/μm estimate

N Number of motors on 
each microtubule 10 5 ∼  15 [25]

ρi
Number of MTs 

nucleated per unit time 15 s−1 0.5 ∼  50 s−1 estimate

kc,i
Catastrophe rate of 

pushing microtubules 0.1 s−1 0.005 ∼  0.2 s−1 [23, 25]

,ku i
0 Unloaded unbinding 

rate of motors 0.07 or 0.1 s−1 0.005 ∼  0.2 s−1 [19, 20, 57]

kb,i Binding rate of motors 0.015 s−1 0.005 ∼  0.2 s−1 [19, 20, 23, 57]

Table 1.  Summary of the parameters used in the model.
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dimensionless parameters as κ κ= / ∆N f s
2, α α= ∆/N f s and ξ ξ= /v N f s0 . Based on the parameters 

listed in Table 1, we use the following values κ =  0.3, α =  1 and ξ =  6 unless otherwise stated. The pole-
ward flux is about 0.04 μm/s59,60. In our simulation, we found the value of this poleward flux has little 
influence on the size effects of the mitotic spindles. Therefore, without loss of generality, we assume vf =  0 
in the simulation. The cohesin complex connecting the two sister chromatids is simplified to be a linear 
spring. In the simulation, however, the force acting on the cohesin complex could be compressive and 
the two sister chromatids could switch their positions (r3 <  r2) if the compressive force is too big. To 
avoid this situation, we use α =  α0(1 +  δ/(r3 −  r2)2m+1), where m is an integer, α0 is a constant, and δ « 1. 
Therefore, α ≈ α0 when r3 −  r2 is big, and α becomes very large when r3 −  r2 is very small.
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