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Abstract: As a viscohyperelastic material, filled rubber is widely used as a damping element in
mechanical engineering and vehicle engineering. Academic and industrial researchers commonly
need to evaluate the fatigue life of these rubber components under cyclic load, quickly and efficiently.
The currently used method for fatigue life evaluation is based on the S–N curve, which requires
very long and costly fatigue tests. In this paper, fatigue-to-failure experiments were conducted
using an hourglass rubber specimen; during testing, the surface temperature of the specimen was
measured with a thermal imaging camera. Due to the hysteresis loss during cyclic deformation, the
temperature of the material was found to first rise and then level off to a steady state temperature,
and then it rose sharply again as failure approached. The S–N curve in the traditional sense was
experimentally determined using the maximum principal strain as the fatigue parameter, and a
relationship between the steady state temperature increase and the maximum principal strain was
then established. Consequently, the steady state temperature increase was connected with the fatigue
life. A couple of thousand cycles was sufficient for the temperature to reach its steady state value
during fatigue testing, which was less than one tenth of the fatigue life, so the fatigue life of the rubber
component could be efficiently assessed by the steady state temperature increase.

Keywords: fatigue life; filled rubber; hysteresis loss; temperature increase; S–N curve

1. Introduction

Because of their hyperelasticity and the energy damping behavior of elastomeric materials, rubber
damping elements, such as V-springs, tapered springs, air springs, track dampers, engine mounting
pads, joint bushings, etc., are widely used in mechanical engineering, aerospace engineering and
vehicle engineering [1]. Due to the diversity of their structural forms, complex viscohyperelasticity of
the rubber material and significant physical and geometric nonlinear behaviors under external forces,
it is very difficult to predict the fatigue life of these rubber dampers.

Currently, for practical evaluation, fatigue failure tests are carried out on structurally similar
prototypes or real structures by applying the designated load spectrum to obtain the S–N curve,
which relates the fatigue life with a certain mechanical quantity. The mechanical quantities concerned
are usually based on stress (e.g., the maximum stress or stress amplitude) [2,3]; strain (e.g., the
maximum strain or strain amplitude) [4,5]; or energy (e.g., the strain energy release rate and the
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cracking energy density, etc.) [6–8]. For testing convenience, the S–N curve is usually established by
mechanical parameters based on stress or strain. Obviously, the fatigue life data are only valid for
the specific structures tested and are not applicable to other structures. As a consequence, testing
requires a considerable time and number of specimens. To reduce this cost, it is necessary to find
alternative fatigue control parameters rather than stress- or strain-based quantities. In recent years,
rapid estimation methods for mean fatigue limits of metallic materials have been developed based on
temperature measurements [9]. Some recent publications [10–13] proved that the characterization of
the fatigue properties of fiber-reinforced thermoplastics can be very much accelerated by the use of
the “heat build-up” approach. Le Saux and Marco, et al. [14] tried to use this method for rubber-like
materials. They linked the temperature rise to the principal maximum strain, and discussed the
relationship between the thermal measurements and the fatigue properties of 15 industrial materials.
However, there are few models that bridge the heat build-up with the fatigue life of rubber materials.

The stress–strain curve of rubber materials under cyclic loading shows a hysteresis loop due to
viscoelasticity, and the area of the loop represents the energy loss per unit volume in a deformation
cycle. The loss of energy eventually dissipates into heat. When the heat is not allowed to flow out to the
environment in time, the temperature of the material rises [15–18], showing a sharp increase as failure
approaches. Such a sudden rise in temperature can be regarded as the precursor to fatigue failure.
Therefore, the objective of this paper is to correlate the fatigue life with the self-heating temperature
increase, and to develop an efficient method for evaluating the fatigue life of rubber structures.

2. Experiments

2.1. Materials and Specimens

The rubber material used for the tests was provided by Zhuzhou Times New Material Technology
Co., Ltd. in Zhuzhou, China. The formulation of the rubber compounds was as follows: 100
phr Thailand RSS3 natural rubber, 20 phr N550 carbon black, 10 phr zinc oxide, 5 phr antioxidant,
2.5 phr sulfur, 2 phr stearic acid, 2 phr wax, 2 phr solid coumarone resin, 1.4 phr vulcanization activator.
Hourglass rubber specimens, 24 mm long and with a minimum diameter of 14.6 mm, were used in the
fatigue failure tests.

2.2. Fatigue Tests and Temperature Measurements

The fatigue-to-failure experiments were conducted on the hourglass specimens using an
electromagnetic dynamic testing machine (CARE M-3000, CARE Measurement & Control Co. Ltd.,
Tianjin, China) in force control mode at room temperature. The sinusoidally varying loads were
applied to the specimens at a frequency of 5 Hz and with a load ratio of 0; that is, the minimum load
was fixed to be 0N and the maximum load varied from 250 N to 400 N in the four independent fatigue
tests. The cycles to failure were recorded for each specimen. Duplicate tests were conducted for each
loading case. In order to quantify the hysteresis dissipation, the surface temperature of the specimen
was measured with a FLIR ThermaCAM SC3000 thermal imaging camera (FLIR Systems Inc., Orlando,
FL, USA) during the testing. The test setup is shown in Figure 1.

The maximum temperature values on the surface of the hourglass specimens were recorded
during the fatigue-to-failure experiments by the thermal imaging camera. The discrepancies between
duplicate measurements were small in all cases. Figure 2 shows the measured temperature evolution
curves for four loading cases. It is obvious that the self-heating temperature increase was dependent
on the loading conditions. The surface temperature rose rapidly during the first 3000–4000 cycles,
and subsequently leveled off at a steady state temperature T∞, until it rose again sharply as failure
approached. Fatigue failure of rubber material often occurs via crack propagation. At the moment of
material fatigue failure, the crack growth rate in the material suddenly increases to infinity, that is to
say, in a very short period of time, a large amount of energy is released due to the crack growth, which
results in a sharp increase in the material temperature. Thus, the sharp increase in temperature can be
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regarded as a precursor to fatigue failure. It is also clear that the steady state temperature increases θ∞
(=T∞ − T0, where T0 is the initial temperature of the specimen) are different under various loading
conditions, therefore θ∞ reflects the fatigue life in another manner, and can be considered a promising
and alternative fatigue parameter.Polymers 2020, 12, x FOR PEER REVIEW 3 of 22 
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Figure 2. Surface temperature evolution of the specimen. 
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Figure 2. Surface temperature evolution of the specimen. Figure 2. Surface temperature evolution of the specimen.

3. Modeling and Discussions

3.1. Fatigue Damage Parameter Determination

The maximum principal strain εmax was selected to be the fatigue parameter for constructing the
S–N curve, as done in most studies in the literature [4,5,19]. To obtain the εmax of the hourglass specimen
under different force control fatigue loadings, a finite element simulation was employed, in which the
material constitutive model was essential. As the material constitutive model determined from a single
deformation mode experiment may not describe the mechanical response in other deformation modes,



Polymers 2020, 12, 846 4 of 10

tests under three basic deformation modes are usually required in order to accurately establish the
true constitutive model of rubber materials: simple tension (ST), equal-biaxial tension (ET) and planar
tension (PT). Due to the incompressibility of the material, the ET of a rubber specimen creates a state of
strain equivalent to pure compression, which can be accomplished by stretching the circumference of
a circular specimen in 16 directions in a plane [20]. The PT test provides a state of pure shear in the
specimen at a 45◦ angle to the stretching direction because of the perfectly lateral constrain, which can
be easily performed on a universal tensile testing machine using a special fixture.

The stress–stretch data of the filled rubber material in ST, ET and PT tests at 23 ◦C are shown in
Figure 3. Such behavior is often modeled via hyperelastic idealization. By fitting a hyperelastic model
to the test data, the constitutive model of the material can be determined. Many hyperelastic models
have been developed. The relatively simple neo-Hookean and Mooney–Rivlin solids were the first
hyperelastic models developed [21]; currently, the Arruda–Boyce model [22] and the Ogden model [23]
are widely used to describe the strain state-dependent hyperelastic behavior, as depicted in Figure 3.
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Figure 3. Stress–stretch curves for simple tension (ST), planar tension (PT) and equal-biaxial tension
(ET) tests of rubber and their Ogden model fits.

The Ogden strain density function [23], defined as

WOgden =
N∑

n=1

µn

αn

(
λαn

1 + λαn
2 + λαn

3 − 3
)

(1)

where λi are the principal stretches,µi and αi are experimentally determined material constants,
and N is the number of terms in the function, is considered one of the most successful functions
in describing the hyperelasticity of rubber-like materials. The three-term model (N = 3) is used
in this work to fit the experimental data, and the model parameters are identified as µ1 = 1.9042;
µ2 = −1.924× 10−10;µ3 = 3.1850× 10−4;α1 = 1.0625;α2 = −17.7;α3 = 12.3795. The model fits are also
shown by lines in Figure 3, indicating a satisfactory agreement with the tests.

A finite element model of the hourglass specimen used to calculate the εmax is shown in Figure 4.
The rubber part of the model was constructed by using four-node axisymmetric quadrilateral hybrid
elements (CAX4H). The metal parts for clamping and loading at the top and bottom of the specimen
used four-node axisymmetric quadrilateral elements (CAX4). In order to verify the three-term Ogden
model described above, the uniaxial tensile behavior of the hourglass rubber specimen when stretched
up to about 800N was numerically analyzed using the finite element model. The obtained force versus
displacement relation of the specimen was compared with the lab test data, as shown in Figure 5.
The good agreement between the numerical results and the experiment further indicates that the
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three-term Ogden model is an appropriate constitutive model for describing the hyperelastic behavior
of the filled rubber material investigated in this study.
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Figure 5. Tensile force-displacement curves of the hourglass specimen obtained from numerical analysis
and lab tests.

To get the maximum principal strain corresponding to the four loading cases in fatigue-to-failure
experiments, finite element analyses with the three-term Ogden hyperelastic constitutive model were
conducted. The bottom surface of the specimen was fixed, and four constant tensile forces (250 N,
300 N, 350 N, and 400 N) were applied to the top surface, respectively. Figure 6 shows the maximum
principal strain contour plots of the specimen under the four designated tensile loads. The calculated
maximum principal strains are listed in Table 1.

Table 1. The maximum principal strains of the hourglass specimen loaded with different
maximum forces.

Fmax/N 250 300 350 400

εmax 0.4133 0.5487 0.7136 0.9072
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3.2. Fatigue Life Assessment

In the fatigue-to-failure experiments, the fatigue lives for each loading case were recorded as seen
in Figure 2. The maximum principal strains were obtained via finite element analysis, as described in
the previous subsection. Considering maximum principal strain as the fatigue parameter, S–N curves
can be built, as shown in Figure 7.
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Numerous studies demonstrate that the power law is an excellent model for relating the fatigue
life and the maximum strain [4,5,19]. As depicted in Figure 7, the power law model describes the
experimental S–N curve very well with Equation (2).

Nf = kεn
max = 2.7075× 104ε−3.5548

max (2)
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As mentioned in Section 2, the steady state temperature increase θ∞ can be considered as a
promising and alternative fatigue parameter. We plotted the observed θ∞ with the corresponding
maximum principal strain obtained by finite element simulation in Figure 8. Le Saux et al. [14] conducted
similar heat build-up tests on several industrial rubber materials and discussed the correlation between
the temperature rise and the principal maximum strain. In Figure 9, we redrew the θ∞ vs. εmax data
within the strain range from 0.3 to 1.5, approximately the same range as used in Figure 8, for carbon
black filled natural rubber with different carbon black contents (22 phr, 39 phr and 43 phr). It is clear
from Figures 8 and 9 that the steady state temperature increase is approximately linearly proportional
to the maximum strain in the considered range; therefore, the fatigue life would also be related to the
steady temperature increase by a power law. We suggest a power law relation in the form of

Nf = A
(
θ∞
T0

)n

(3)

where T0 is the initial temperature at the beginning of the fatigue test. Fitting the data in Figure 10 to
the above equation with T0 = 20 ◦C yields the model parameters A and n in Equation (3); A = 1.06 ×
106, and n = −4.46. Equation (3) provides a promising criterion for the fatigue life prediction. As long
as the steady state temperature increase at the point of the maximum strain is determined, the fatigue
life of the structure can be predicted by the model.
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Equation (3) bridges the fatigue life with the steady state temperature increase in the rubber
material, rather than the maximum strain as expressed in Equation (2). The advantage is that the steady
state temperature increase can be measured by thermal imaging in a few thousand cycles in fatigue
tests, much fewer than the number of cycles to fatigue failure. Thus, the time cost for fatigue testing
can be reduced and the characterization of the fatigue properties can be considerably accelerated by
the method provided in this work.

Based on the fatigue criterion suggested by Equation (3), thermomechanical coupling finite
element simulation is expected to be the most promising method for fatigue life assessment. In such
simulations, the loss energy density due to hysteresis in the dynamic viscoelasticity is considered as the
heat resource in the deformed body. The steady temperature increase can be obtained by solving the
heat equation with given initial boundary conditions [24], and the fatigue life of the rubber component
can be subsequently determined.

4. Conclusions

Fatigue tests and infrared thermal imaging measurements were carried out to correlate the fatigue
life with the temperature increase induced by the hysteresis loss. Experiments show that the surface
temperature of the specimen keeps its steady value for a prolonged period, which accounts for the
majority of the fatigue life, and then sharply increases until the specimen ruptures. The sharp rise in
temperature can be regarded as a precursor to fatigue failure. Moreover, the steady state temperature
increase is linearly proportional to the maximum principal strain. By replacing the maximum principal
strain, which is used as the fatigue life predictor in classic fatigue models, with the steady state
temperature increase, a promising method for quickly evaluating the fatigue life of rubber structures is
developed based on the power law model. Since only a couple of thousand cycles are required for
the temperature to reach its steady state value during fatigue testing, which is less than one tenth of
the fatigue life, the fatigue life of rubber components can be efficiently assessed by the steady state
temperature increase.
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