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A B S T R A C T   

Due to the importance of control actions in spreading coronavirus disease, this paper is devoted to first modeling 
and then proposing an appropriate controller for this model. In the modeling procedure, we used a nonlinear 
mathematical model for the covid-19 outbreak to form a T-S fuzzy model. Then, for proposing the suitable 
controller, multiple optimization techniques including Linear Quadratic Regulator (LQR) and mixed H2 − H∞ are 
taken into account. The mentioned controller is chosen because the model of corona-virus spread is not only full 
of disturbances like a sudden increase in infected people, but also noises such as unavailability of the exact 
number of each compartment. The controller is simulated accordingly to validate the results of mathematical 
calculations, and a comparative analysis is presented to investigate the different situations of the problem. 
Comparing the results of controlled and uncontrolled situations, it can be observed that we can tackle the 
devastating hazards of the covid-19 outbreak effectively if the suggested approaches and policies of controlling 
interventions are executed, appropriately.   

1. Introduction 

These days, almost all countries worldwide are struggling with 
coronavirus and the challenges it creates. Each country’s government 
should take suitable actions in two aspects. First, the decision-makers 
should specify an organized policy for measures like restriction, lock-
down, social distancing, and vaccination to prevent the spread of 
coronavirus and secure the population [1]. Second, the resources for 
pharmaceutical and non-pharmaceutical measures like face masks, 
ventilators, hospital beds, medicines, and vaccines should be provided. 

The virus named SARS-coV-2 was discovered in the province of 
Wuhan in China on December 31, 2019 [2]. The disease was highly like 
influenza and entangled the body’s respiratory system. The primary way 
of transmission of the virus is the aerosols. So, the direct method to 
prevent the virus from spreading and making the people infected is to 
use face masks [2]. Besides, the data of the countries that started 
vaccination months ago and vaccinated a considerable proportion of 
their people show us that vaccination is an excellent and practical way of 
dealing with the disease [3,4]. 

The studies and the statistics declared that vaccinated individuals are 
much more secure than unvaccinated ones from getting hospitalized and 

dying due to the covid-19 [5]. Nevertheless, based on prior knowledge 
of epidemiology, we know that almost 70 to 80 percent of the population 
should be immune to the disease by getting vaccinated or being infected 
and then recovered, leading to herd immunity [6]. The exact number of 
people who need to be immune to the disease to reach herd immunity 
depends on many factors like age groups and the disease’s contagious-
ness. The disease symptoms remain latent for about 2–14 days during 
the incubation period, and after that, there would be some severe or 
mild symptoms like sneezing, headache, tiredness, and coughing [7]. 
There might be a possibility that the infected person does not show any 
symptoms, so they can transmit the virus to others even without 
knowing that they were infected. There are more than 549 million total 
infected cases and more than 6 million deceased cases of covid-19 
globally, which makes it one of the world’s most significant epidemic 
diseases [8]. The number of infected patients might even be more than 
this, because based on World Health Organization (WHO) reports, the 
number of covid-19 tests is enough to show a high proportion of infected 
individuals if the positive tests were not be more than 10% out of all 
taken tests [9]. 

A factor shows the contagiousness of the disease known as repro-
duction number or R 0 [10]. A mathematical procedure can obtain this 
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term on the model of the disease. One of its importance is that the 
policymaker could relax or tighten the restrictions and lockdowns in 
society based on this term. They can ease the restrictions if the repro-
duction number value is less than one. However, the situation should be 
stricter if the term’s value is more than one. 

The process of recognizing different diseases and disorders is done by 
using detection methods, where one of the most impactful methods is 
computer-aided diagnosis algorithms [11,12]. After recognizing the 
illness, the process of controlling covid-19 spread is started. For this 
purpose, a proper mathematical model is needed to include both general 
and specific aspects of the patients [13]. The basic model for the 
epidemic disease is Susceptible-Infected-Recovered (SIR) compart-
mental model [14]. The more detailed the model is, the more one learns 
about the system’s behavior [1,14–21]. Several models have been 
developed for the covid-19 epidemic recently. A Susceptible-Probable- 
Infected-Recovered (SPIR) model was developed to study and forecast 
the behavior of covid-19 in the West Java province of Indonesia and 
Michigan in the USA [22]. Then, the time-varying reproduction number 
was estimated based on EKF (extended Kalman filter). It was shown that 
the value of the reproduction number might be higher considering the 
probable cases. In [23], a Susceptible-Infected-Recovered-Virus density 
(SIRV) model was used to show the effects of the virus on susceptible 
persons. A comparison between the actual data of India and the pro-
posed model declared the efficacy of the model. The effectiveness of 
restrictive measures in society has been studied through the model de-
tails. In [16], a data-driven Susceptible-Infected-Recovered- Deceased 
(SIRD) model is proposed and tested by actual data. Moreover, a 
nonlinear model predictive control is taken into account so that a decent 
strategy could be made to lower the catastrophic effects of the corona-
virus. In this model, the parameters are time-varying and are updated 
every week. So, the decision-makers can reappraise the controlling 
measures every week. It shows that the number of dead people could be 
lowered to 30 percent using the suggested controller design. In [24], a 
Susceptible-Infected-Recovered (SIR) and a Susceptible-Infected- 
Recovered-Quarantined (SIRQ) model are proposed, and the variation 
of the parameters are studied to understand the effects of different fac-
tors on the virus spread better such as virus mutation, lockdown and 
holding events. A Susceptible-Exposed-Quarantined-Infected-Recovered 
(SEQIR) model has been used, reducing the spread of the virus and its 
harmful effects on the economy [18]. Then, a policy for restriction is 
made by combining the U-model controller and extended state observer. 
Two examples compare the controller performance with linear active 
disturbance rejection control. The study results state that the first 
controller (U-model controller) has a more feasible response for the 
control problem. A Susceptible-Exposed-Quarantined-Infected- 
Hospitalized-Recovered (SEQIHR) model is developed to help govern-
ments find the best strategy to cope with covid-19 challenges [15]. 
Accordingly, the nonlinear least square method estimates the value of 
the nonlinear model parameters. 

This paper applies a nonlinear SIRQ model of covid-19 to extract the 
Takagi-Sugeno (T-S) fuzzy model. The reproduction number is calcu-
lated using the next-generation matrix approach. Then, the stability of 
the proposed model is guaranteed using a feedback controller design. 
The controller is designed based on an optimization problem to mini-
mize a unified optimization problem, resulting in robust optimal stabi-
lizing control with proper performance. The stability problem is solved 
by turning the stability and performance condition into some Linear 
Matrix Inequalities (LMIs). It will be seen that the proposed controller is 
robust against the uncertainties and the external disturbances. The 
simulation results will suggest strategies such as rate of vaccination and 
hospitalization and a lockdown policy to control the covid-19 outbreak. 
The proposed method acts better than the robust Linear Parameter 
Varying (LPV) controller proposed in [25] since it seeks the optimum 
result of dealing with the covid-19 model with minimum control effort 
and mathematical calculation. As the natural system consists of both 
uncertainties and nonlinearities, working on this method helps us 

consider and get more realistic results from our simulation. 
This paper is organized as follows: the nonlinear model of covid-19 is 

presented in Section 2. In Section 3, the T-S fuzzy model is formed, and 
the controller design procedure and stability conditions are presented. 
Section 4 shows the simulation results of applying the robust controller 
to the model. The final section, Section 5, makes some conclusions about 
the study, and some future works are suggested. Choosing the best 
strategy to face the covid-19 issue is discussed, too. 

2. Dynamic model of covid-19 

2.1. Nonlinear model of covid-19 

In this work, a SIRQ covid-19 model is considered [24,26]. The 
model is also modified to have a more realistic sense. It can be noted that 
any other model which meets the necessary mathematical conditions 
can be used alternatively without any problems, and we just used this 
model to verify the efficiency of the proposed approach. As shown in 
Fig. 1, this model consists of four state variables showing susceptible, 
infected, recovered (or immunized), and quarantined individuals, 
respectively. There are three control inputs for the proposed model, 
which are u1 (social distancing and lockdown), u2 (treatments), and u3 
(vaccination). The mathematical model of SIRQ is given in (1). 

ẋ = f (x(t)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = − β
S(t)I(t)

N
(1 − u1(t) ) + ζR(t) − u3(t)S(t)

İ(t) = β
S(t)I(t)

N
(1 − u1(t) ) − γI(t) − δI(t) − u2(t)I(t)

Ṙ( t) = γI(t) − ζR(t) + κQ(t) + u3(t)S(t) + u2(t)I(t)

Q̇( t) = δI(t) − κQ(t)

(1) 

where x(t) = [ S(t) I(t) R(t) Q(t) ]T are the states of the model. 
Model (1) is built based on the following propositions:  

• People leave susceptible compartment to infected compartment at 
rate β, while control input u1 shows the contact rate decrement of 
susceptible and infected individuals. Larger u1 values will result in a 
lower transmission rate from the susceptible to the infected 

Fig. 1. The schematic of covid-19 nonlinear model with four states as S(sus-
ceptible), I (infected), R (recovered), and Q (quarantined) parts and three 
control inputs as u1 (social distancing and lockdown), u2 (treatments), and u3 

(vaccination). 
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compartment. Susceptible individuals could also be immune to the 
disease by getting vaccinated with the u3 rate. The parameter ζ also 
considers the possibility of immunized compartment reinfection.  

• Infected people move to quarantined part with a rate of δ. The input 
control u2 is the rate of medical care and treatment, which secure 
infected people. The infected people also go to the immunized 
compartment at the rate of γ.  

• The people in quarantined section can move to immunized 
compartment at the rate of κ.  

• N = S+I+R+Q where N shows the population of the society.  
• We also added the deceased cases to our analysis as an output D = σI 

for the T-S fuzzy system. Based on the coronavirus statistics [8], the 
parameter σ is estimated to be equal to be σ = 0.0112.

This model can show the behavior of the coronavirus epidemic to 
some good point. It can be noted that the control input for this system 
should be in the bound [0,1], because a normalized controller values in 
the simulation, gives the reader a better sense of the subject. However, in 
the real world, there are even more restrictions on control input values 
than this. As it is impossible to use the maximum capacity of the control 
measures, the values of control inputs should be as small as possible, and 
we tried to implement this factor in this paper. The system’s initial 
condition has to be non-negative because the system is inherently 
positive. 

2.2. Reproduction number 

We are going to calculate the reproduction number based on the 
next-generation method [27]. The disease-free equilibrium (DFE) point 
for this model is given by x0(S*, I*,R*,Q*) = (S0, 0,0, 0). Next, we define 
F from the transmission terms of the model and V from the infected 
compartments I,Q of the model as: 

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− β
SI
N

β
SI
N
0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,V =

⎡

⎢
⎢
⎣

− ζR
γI + δI

− γI + ζR − κQ
− δI + κQ

⎤

⎥
⎥
⎦ (2) 

Then, we partitioned the model into two parts where the infected 
states are placed in V matrix as (I,Q)= (x1, x2), and the other states 
(S,R)= (x1, x2) are set to be in F matrix and can be specified as: 

F =
∂F i

∂xi
(x0),V =

∂V i

∂xi
(x0); (i = 1, 2)

F ≅

[
β 0
0 0

]

,V =

[
γ + δ 0
− δ κ

]

(3) 

The inverse of V is given by. 

V − 1 =
1

κ(γ + δ)

[
κ 0
δ γ + δ

]

F*V − 1 =
1

κ(γ + δ)

[
βκ 0
0 0

] (4) 

Where F*V− 1 is the so-called next-generation matrix. The basic 
reproduction number is achieved by [27]: 

R 0 = ρ
(
F*V − 1) =

β
(γ + δ)

(5) 

where ρ is the spectral radius of the next-generation matrix, called 
the greatest matrix eigenvalue. 

The basic reproduction number’s sensitivity analysis could be done 
using the following formulas [15]: 

SR 0
β =

∂R 0

∂β
β

R 0
= 1 , SR 0

δ =
∂R 0

∂δ
δ

R 0
=

− δ
γ + δ  

SR 0
γ =

∂R 0

∂γ
γ

R 0
=

− 1
γ + δ

(6) 

Each sensitivity index represents how and at what rate the parameter 
variation affects the value of a varying quantity which is R 0, here. 

There is another index called effective reproduction number R t that 
indicates the average number of secondary cases caused by every in-
fectious case when we consider both susceptible and insusceptible cases 
in the population. The effective reproduction number also can be ach-
ieved as: 

R t = xR 0 (7) 

where x is the proportion of the host population that are susceptible. 

3. T-S Fuzzy modelling and controller design 

3.1. T-S Fuzzy model 

In this section, the T-S fuzzy model is obtained using (1). We assume 
that (1) could be written as ẋ = f(x(t) ) to start this procedure. Then, 
converting the nonlinear system into T-S fuzzy form [28,29] with affined 
parameters will lead to: 

ẋ = f (x(t) ) =
∑N1

i=1
ρi(θ)Aix(t) +

∑N1

i=1
ρi(θ)Biu(t); x = [S I R Q]

T (8) 

where N1 is the number of T-S fuzzy model vertices in its uncertain 
space. 

Assuming uncertainties in the parameters, the T-S fuzzy model could 
also be represented as follows: 

ẋ =
∑N1

i=1
ρi(θ)(Ãi + ΔÃi)x(t) +

∑N1

j=1
ρi(θ)(B̃i + ΔB̃i)u(t) (9) 

In (9), the time-varying parameters, nonlinearities, and uncertainties 
of A,B, and C matrices are divided into two parts. The varying param-
eters are assigned to Ãi, B̃i, C̃i matrices and the uncertain parameters are 
assigned to ΔÃi,ΔB̃i,ΔC̃i matrices. The decision of which parameters 
will be chosen in any parts of the T-S fuzzy model depends on our prior 
knowledge of the system and the behavior under different circum-
stances. This process allows us to solve the problem with less compu-
tational burden by reducing the number of vertices of the T-S fuzzy 
model. For instance, we know that the parameter β or transmission rate 
in the covid-19 model is one of the varying parameters that may vary 
during the time of covid-19 spread. So, this parameter should be one of 
the choices for the Ãi matrix. We decided to consider all the non-
linearities of the covid-19 model in Ãi, B̃i, C̃i matrices to understand the 
system’s behavior better. On the other hand, the uncertain parameters 
are considered in ΔÃi,ΔB̃i,ΔC̃i matrices and are supposed to be bounded 
in a pre-specified bound. 

For model (1), the T-S fuzzy model matrices (8) could be rewritten as: 

Ã =

⎡

⎢
⎢
⎣

− l1 − l2 ζ 0
l1 l2 − δ 0 0
0 0 − ζ κ
0 δ 0 − κ

⎤

⎥
⎥
⎦, B̃ =

⎡

⎢
⎢
⎣

l3 0 0
− l3 0 0
0 0 0
0 0 0

⎤

⎥
⎥
⎦

ΔÃ =

⎡

⎢
⎢
⎣

0 0 0 0
0 − γ 0 0
0 γ 0 0
0 0 0 0

⎤

⎥
⎥
⎦,ΔB̃ =

⎡

⎢
⎢
⎣

0 0 − S
0 − I 0
0 I S
0 0 0

⎤

⎥
⎥
⎦ (10) 
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where l1 = β I(t)
2N, l2 = β S(t)

2N , l3 = β S(t)I(t)
N . In the A matrix,γ, δ, l1, l2 are 

chosen as the varying parameters, and γ is chosen as uncertainty. Also, 
for B matrix, l3 is chosen to be the varying parameter, while the effects of 
S and I parameters can be seen in the l1 and l2 parameters. The above 
matrices have many zero entries making them ill-conditioned and may 
result in an infeasible solution for the problem. So, we change the no-
tation of our problem as every parameter in ΔÃi,ΔB̃i matrices in (10) be 
written such as γ = γ̂ +Δγ where γ̂ is the parameter’s nominal value. 
Therefore, (10) is rephrased as: 

Ã =

⎡

⎢
⎢
⎣

− l1 − l2 ζ 0
l1 l2 − γ̂ − δ 0 0
0 γ̂ − ζ κ
0 δ 0 − κ

⎤

⎥
⎥
⎦

B̃ =

⎡

⎢
⎢
⎣

l3 0 − Ŝ
− l3 − Î 0
0 Î Ŝ
0 0 0

⎤

⎥
⎥
⎦

ΔÃ =

⎡

⎢
⎢
⎣

0 0 0 0
0 − Δγ 0 0
0 Δγ 0 0
0 0 0 0

⎤

⎥
⎥
⎦,ΔB̃ =

⎡

⎢
⎢
⎣

0 0 − ΔS
0 − ΔI 0
0 ΔI ΔS
0 0 0

⎤

⎥
⎥
⎦ (11) 

The premise variables for every uncertain or varying parameter of 
the T-S fuzzy model in the above matrices are derived in the following 
form by use of the sector nonlinearity approach [25]: 

δ = θ1δ + θ2δ , θ1 + θ2 = 1 , θ1 =
δ − δ(t)

δ − δ
, θ2 =

δ(t) − δ
δ − δ

l1 = θ3l1 + θ4l1 , θ3 + θ4 = 1 , θ3 =
l1 − l1(t)

l1 − l1
, θ4 =

l1(t) − l1

l1 − l1  

l2 = θ5l2 + θ6l2 , θ5 + θ6 = 1 , θ5 =
l2 − l2(t)

l2 − l2
, θ6 =

l2(t) − l2

l2 − l2

l3 = θ7l3 + θ8l3 , θ7 + θ8 = 1 , θ7 =
l3 − l3(t)

l3 − l3
, θ8 =

l3(t) − l3

l3 − l3

(12) 

where δ(t), l1(t), l2(t)and l3(t) are the parameters’ values at time t 
based on their variation profile. 

The normalized weighted membership functions ρi(θ) for (i = 1,..,16) 
satisfy 

∑16
i=1ρi(θ) = 1, and are obtained as: 

Using the fact that ΔÃi,ΔB̃i matrices are bounded uncertainties, they 
can be re-parametrized with: 
⎧
⎪⎨

⎪⎩

ρ1(θ) = θ1*θ3*θ5*θ7

ρ2(θ) = θ1*θ3*θ5*θ8

⋮

ρ16(θ) = θ2*θ4*θ6*θ8

(13)  

{
ΔÃi = EAΔA(t)FA,ΔA

T ΔA < I

ΔB̃i = EBΔB(t)FB,ΔB
T ΔB < I

(14) 

where ΔA(t),ΔB(t) ∈ R
n*n are the bounded uncertain matrices, and n 

is the number of uncertainties in each matrix. EA,EB, FA, FB are constant 
matrices with compatible dimensions. The matrices mentioned above 
for model (11) are calculated as follows: 

EA =

⎡

⎢
⎢
⎣

0
− 1
1
0

⎤

⎥
⎥
⎦,ΔA(t) = Δγ,FA = [ 0 1 0 0 ]

EB =

⎡

⎢
⎢
⎣

− 1 0
0 − 1
1 1
0 0

⎤

⎥
⎥
⎦,ΔB(t) =

[
ΔS 0
0 ΔI

]

,FB =

[
0 0 1
0 1 0

]

(15) 

Having the condition that ΔAT*ΔA ≤ I and ΔBT*ΔB ≤ I, (15) could 
be rewritten as: 

EA = Δγ

⎡

⎢
⎢
⎣

0
− 1
1
0

⎤

⎥
⎥
⎦,ΔA(t) =

1
Δγ

,FA = [ 0 1 0 0 ]

EB = (ΔS+ΔI)

⎡

⎢
⎢
⎣

− 1 0
0 − 1
1 1
0 0

⎤

⎥
⎥
⎦,ΔB(t) =

⎡

⎢
⎢
⎣

1
ΔS

0

0
1

ΔI

⎤

⎥
⎥
⎦,FB =

[
0 0 1
0 1 0

]

(16) 

Knowing that N1 = 24, and concerning (9) and (16), the T-S fuzzy 
model will be finalized, such as: 

ẋ =
∑16

i=1
ρi(θ)

(
Ãi(t) + EAΔA(t)FA

)
x(t) +

∑16

j=1
ρi(θ)

(
B̃i + EBΔB(t)FB

)
u(t)

(17) 

Although, the basic T-S fuzzy model (8) consist of 7 uncertainties or 
varying parameters in A and B matrices, applying (14) to the system 
model in (9), three of the uncertainties are moved to the ΔÃi and ΔB̃i 

part, and since they are considered bounded, they are removed from the 
uncertain space of T-S fuzzy model. Thus, the number of uncertainties in 
the final model in (17) is reduced to four and consequently, the number 
of vertices in uncertain space is 24. Therefore, in the case of designing a 
controller for the T-S fuzzy model, it is much easier to solve the problem 
with the modified T-S fuzzy model instead of its basic model because the 
uncertain space of the model has fewer vertices to check for approving 
its stability in the first case. This approach is advantageous for analyzing 
large-scale systems containing great amounts of uncertainties, varying 
parameters, and nonlinearities for their robust stability and performance 
by reducing their uncertain space vertices. 

3.2. T-S Fuzzy controller design and stability analysis 

In the previous subsection, we derived the T-S fuzzy model (17). 
Now, we are ready to start designing the controller for the system. The 
chosen controller here is the state feedback controller. By applying this 
controller on the T-S fuzzy model, it works as a robust controller that 
guarantees the system’s stability on every vertex of the uncertain space. 
Using the feedback controller law of the parallel distributed control 
(PDC) form u =

∑16
j=1ρj(θ)Kjx, the closed-loop control system is 

described as: 

ẋ =
∑16

i=1

∑16

j=1
ρi(θ)ρj(θ){

(
Ãi + B̃iKj

)
+
(
EAΔA(t)FA + EBΔB(t)FBKj

)}
x(t)

(18) 

The T-S fuzzy model closed-loop schematic with the PDC controller is 
shown in Fig. 2. 

Lemma 1. ([30]) Consider some arbitrary X, Y and Z matrices with some 
compatible dimensions and positive scalar ε, the following LMI is satisfied: 

XYZ +ZT YT XT ≤
1
ε XXT + εZZT (19)  
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Theorem 1. The control system (18) is stable in the whole uncertain space 
if there exists a positive definite matrix X, and positive constants εA and εB 
such that the following LMI holds: 

Gij =

⎡

⎢
⎢
⎣

Π XFA
T Yj

T FB
T

* − εAI 0

* * − εBI

⎤

⎥
⎥
⎦<0

Π = XÃi
T
+ ÃiX + Yj

T B̃i
T
+ B̃iYj + εAEAEA

T + εBEBEB
T

(20) 

where i, j are the number of the T-S fuzzy uncertain space, and the 

number of PDC controller gains. 
Proof. Define the candidate Lyapunov function V = xTPx with pos-

itive semi-definite matrix P to derive the stability conditions of the 
control system. Then, exploiting the T-S fuzzy closed-loop system (18), 
we have: 

V̇ = ẋT Px+ xT Pẋ < 0⇒  

V̇ = xT
∑16

i=1

∑16

j=1
ρj(θ)ρi(θ)

{(
Ãi + B̃iKj

)
+ (EAΔA(t)FA + EBΔB(t)FBKj

)}T
Px   

Obviously, (21) holds if the following inequality holds: 

∑16

i=1

∑16

j=1
ρj(θ)ρi(θ)

{(
Ãi + B̃iKj

)
+ (EAΔA(t)FA + EBΔB(t)FBKj

)}T
P  

+P
∑16

i=1

∑16

j=1
ρj(θ)ρi(θ)

{
(

Ãi + B̃iKj

)
+
(
EAΔA(t)FA + EBΔB(t)FBKj

)
}

< 0

(22) 

One knows that ρi(θ) > 0 and ρj(θ) > 0 for (i = 1,…,16) and (j =
1,..,16). Therefore, we have: 
{
∑16

i=1

∑16

j=1

{(
Ãi + B̃iKj

)
+ (EAΔA(t)FA + EBΔB(t)FBKj

)}T
P + P

∑16

i=1

×
∑16

j=1

(
{

Ãi + B̃iKj)+(EAΔA(t)FA + EBΔB(t)FBKj

)}
}

<0⇒  

∑16

i=1

∑16

j=1

(
Ãi + B̃iKj

)T
P+P

(
Ãi + B̃iKj

)
+(EAΔA(t)FA )

T P+P(EAΔA(t)FA
)
+

(
EBΔB(t)FBKj

)T P+P
(
EBΔB(t)FBKj

)
< 0

(23) 

Then, apply Lemma 1 to (23), and the following inequality will be 
achieved: 

∑16

i=1

∑16

j=1

(
Ãi + B̃iKj

)T
P + P

(
Ãi + B̃iKj

)
+ εAPEAEA

T P + εA
− 1FA

T FA+

εBPEBEB
T P + εB

− 1KT
j FB

T FBKj

< 0

(24) 

Using the change of variable trick, and defining X = P− 1 and Yj =

KjP, we have:    

We can turn (25) into LMI form by using the Schur complement trick 
twice. Hence, the LMIs formulation will be the same as (20), and the 
Theorem 1 is proved. ■. 

In the following, Lemma 2 is borrowed from [31] where the Tuan 
relaxation method is used to lower the conservatism of an LMI condition. 
In this paper, the Tuan relaxation method will be implemented on the 
final unified LMI condition. 

Lemma 2. ([31]) Suppose we have the stability condition of a T-S fuzzy 
model with PDC controller as LMI condition Gij. Then, Reducing the 
conservativeness of Gij, the following sufficient conditions are proposed as: 

⎧
⎨

⎩

Gii < 0; i = 1,⋯, r = 2r

1
r − 1

Gii +
1
2
(Gij + Gji) < 0; i, j = 1,⋯, r = 2r ; i ∕= j

(26)  

3.3. Optimal T-S fuzzy controller design 

Theorem 2. The following LQR cost function in (27a) will be optimized for 
the T-S fuzzy model (18) if the LMI in (27b) holds. 

min
∫ 250

0
xT Qf x+ uT Rf u (27a)  

S.t

⎡

⎢
⎢
⎢
⎢
⎣

ψ XFA
T Yj

T FB
T Yj

T X
* − εAI 0 0 0
* * − εBI 0 0
* * * − Rf

− 1 0
* * * * − Qf

− 1

⎤

⎥
⎥
⎥
⎥
⎦
<0 (27b) 

where 

ψ = XÃi
T
+ÃiX+Yj

TB̃i
T
+B̃iYj +εAEAEA

T -
+εBEBEB

T , (i = 1, ..,16; j = 1,⋯,16) X,Qf and Rf are positive-semi- 

+xT P
∑16

i=1

∑16

j=1
ρj(θ)ρi(θ)

{(
Ãi + B̃iKj)+(EAΔA(t)FA + EBΔB(t)FBKj

)}
x < 0⇒

V̇ = xT

{
∑16

i=1

∑16

j=1
ρj(θ)ρi(θ)

{(
Ãi + B̃iKj

)
+ (EAΔA(t)FA + EBΔB(t)FBKj

)}T
P + P

∑16

i=1

∑16

j=1
ρj(θ)ρi(θ)

{(
Ãi + B̃iKj

)
+ (EAΔA(t)FA + EBΔB(t)FBKj

)}
}

x < 0

(21)   

XÃi
T
+ ÃiX + Yj

T B̃i
T
+ B̃iYj + εBEBEB

T + εAEAEA
T + εA

− 1XFA
T FAX + εB

− 1YT
j FB

T FBYj ≤ 0 (25)   
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definite matrices. 
Proof. The LMI condition of LQR minimization can be concluded 

from [25] as: 
⎡

⎢
⎣

XÃi
T
+ ÃiX + Yj

T B̃i
T
+ B̃iYj Yj

T XT

Yj − Rf
− 1 0

X 0 − Qf
− 1

⎤

⎥
⎦<0 (28) 

Now, LMIs (20) and (28) can be rewritten in a compact form to 
assure stability and optimized LQR cost function, simultaneously. The 
(1, 1) entry of (28) is the general condition of a system stabilization. 
Therefore, extending the T-S fuzzy system stabilization condition to the 
mentioned LQR optimization (28), the (1, 1) entry of (28) will be 
replaced with LMI in (20). Using the wide form of (28) for the mixed LMI 
condition of stabilizing the T-S fuzzy system added to the LQR optimi-
zation, we have: 
⎡

⎣
ψ XFA

T Yj
T FB

T

* − εAI 0
* * − εBI

⎤

⎦+ Yj
T Rf

− 1Yj +XT Qf
− 1X < 0 (29) 

Using the Schur complement lemma, the completed version of the 
LMI (27b) is concluded. ■. 

Remark 1. The controller gain calculated by employing Theorem 1 is 
entirely applicable and reasonable in terms of mathematical calculations. 
However, the result might not be that suitable for the existing system. 

Therefore, we utilized Theorem 2 to make the simulations more compatible 
with the existing system. Optimizing (29) will result in desired value of the 
control input signals (prioritizing the control signals). 

3.4. Robust T-S fuzzy controller design 

The system of covid-19 spread is usually full of disturbances. For 
instance, there are some kinds of gatherings and ceremonies that make a 
part of the population sick. Also, noise affects the model because the 
number of infected individuals is not exact due to lack of enough testing. 
Therefore, designing a controller which copes with such problems seems 
necessary. This is the reason why Theorem 3 is utilized in the following. 

Assume (18) is affected by noise and disturbance inputs. Considering 
a single performance channel y and the two external inputs as the noise 
and the disturbance, the T-S fuzzy system will be formed as (30). 

ẋ =

[
∑16

i=1

∑16

j=1
ρj(θ)ρi(θ){(Ãi + B̃iKj)}x(t)

]

+Bww+Bnn (30) 

where Bw = [0; 1;0; 0] and Bn = [0; 1;0; 0]. 
The following theorem aims to establish robust stability and at the 

same time, disturbance and noise attenuation. Please note that distur-
bance w is assumed to be bounded in this paper, where ‖w(t)‖2 ≤ ŵ. 

Theorem 3. The problem of the mixed H2 − H∞ norm minimization for a 
performance channel y could be optimized for the T-S fuzzy model stability 

Fig. 2. T-S fuzzy model and PDC controller design process for closed-loop interconnection added by disturbance and noise graph as an online process.  
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added to LQR optimization in (27b), if one can acquire a feasible solution for 
the following LMI-based optimization problem: 

min
X1 ,X2 ,γ1 ,γ2

γ1 + γ2 (31a)  

S.t.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψ XFA
T Yj

T FB
T X Yj

T Bw X1CT X2Bn
* − εAI 0 0 0 0 0 0
* * − εBI 0 0 0 0 0
* * * − Qf

− 1 0 0 0 0
* * * * − Rf

− 1 0 0 0
* * * * * − γ1

2I 0 0
* * * * * * − I 0
* * * * * * * − I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

<0 (31b)  

[
X2 X2CT

CX2 γ2
2I

]

>0 (31c)  

ψ = XÃi
T
+ ÃiX +Yj

T B̃i
T
+ B̃iYj + εAEAEA

T + εBEBEB
T 

Proof. The LMI conditions of H2 − H∞ norm minimization for linear 
systems has been previously proved [32–38] and presented as: 

min
X1 ,X2 ,γ1 ,γ2

γ1 + γ2 (32a)  

S.t.

⎡

⎢
⎣

X1Ãi
T
+ ÃiX1 + Yj

T B̃i
T
+ B̃iYj Bw X1CT

Bw
T − γ1

2I 0
CX1

T 0 − I

⎤

⎥
⎦<0 (32b)  

[

X2Ãi
T
+ ÃiX2 + Yj

T B̃i
T
+ B̃iYj X2Bn

Bn
T X2 − I

]

<0 (32c)  

[
X2 X2CT

CX2 γ2
2I

]

>0 (32d) 

If the above LMIs are satisfied, the mixed H2 − H∞ norm minimization 
is guaranteed. Here, the extension of these LMIs to TS fuzzy models is 
done where the (32b) and (32c) LMIs will be mixed with the one we 
already have in (27b). Extending theorem 3 to the T-S fuzzy model, as 
we mentioned in the proof of theorem 2, in the (32b) and (32c) LMIs the 
(1, 1) entry will be replaced with the LMI in (27b). Similar as the proof of 
theorem 2, and using the wide form of (32b) and (32c) mixed together, 
one has: 

Γ+ γ1
2BT

wBw +X1CT CX1 +X2BnBn
T X2 < 0 (33) 

where Γ is the LMI in (27b). 
The final unified LMI condition (31b) for the proposed multi- 

objective controller can be achieved utilizing the Schur complement to 
(32). Consequently, the overall multi-objective problem is to solve (31a) 
minimization subject to (32b) and (32c) LMIs which conclude both 
stability and performance. ■. 

Remark 2. It should be noted that what we called H∞ norm and H2 norm 
in this work, could be equivalently be seen as “induced L2 − L2 norm” and 
“generalized H2 norm” or “L2 − L∞ norm” terms in the literature [32–39]. 

Remark 3. We will consider X1 = X2 = X and solve the problem with this 
assumption. The assumption will help us to lower the conservatism of the 
solution. Tuan relaxation will also be applied to Theorem 2 and Theorem 3 
as well as Theorem 1 to relax the conservativeness of each LMIs. 

4. Simulation results 

In this section, the simulation results are proposed. The results are 

shown in the following three scenarios:  

• First scenario: Open-loop and closed-loop response differences  
• Second scenario: The designed controller comparison with some 

conventional controllers  
• Third scenario: Effects of time-delayed vaccination as control input 

The time frame for the simulation to be deployed is 300 days for all 
the scenarios. The initial conditions of the states, the model parameters 
values, and the other needed matrices are defined in Table 1. The 
disturbance input applied to the model is also plotted in Fig. 3. 

4.1. First scenario: Open loop and closed-loop response differences 

In the first scenario, the open and the closed-loop (with controller) 
response results are presented and compared to see how different the 
results would be if there were no control action for the coronavirus 
spread. Fig. 4 shows that with applying the control measures, the 
number of infected cases decrease and the recovered cases increase. The 
other important point which can be concluded from Fig. 4 is that the 
control measures can damp the peak in the number of infected persons 
to some good points. So, as peaking at the number of infected cases is 
disastrous for countries, it will be very crucial for them to take coun-
teractive actions at the right time. The control inputs for the closed-loop 
response can be seen in Fig. 5. Another important factor is that a coef-
ficient of infected cases can be interpreted as number of deceased per-
sons. Therefore, based on Fig. 6 we can find out that utilizing the control 
inputs will end up with a great decrement in the number of deceased 
cases. 

In another study, we decided to show the approach’s performance 
when a model change happens. Therefore, in this part, we considered 
the primary SIRQ covid-19 model in [24] without any modification as 
the reference model. We also simulated the model with a different initial 
condition from the initial values of Table 1 in Fig. 7 and Fig. 8. The 
results of our proposed method on the model with and without modi-
fication (our model in (1) and the model in [24]) are almost similar, and 
the reason is that the proposed method does not depend on the model 
parameters, initialization or structure. 

Based on Theorem 2, we regulated the control inputs to some desired 

Table 1 
List of the unknown parameters and initial conditions of the covid-19 model.  

Parameter (or 
matrices) 

Definition Value 

S0 Susceptible compartment’s initial 
value 

1,000,000 (persons) 

I0 Infected compartment’s initial 
value 

100 (persons) 

R0 Recovered compartment’s initial 
value 

100 (persons) 

Q0 Deceased compartment’s initial 
value 

500 (persons) 

β Transmission rate 0.307 (person per 
days) 

γ Removal rate (from infected 
compartment) 

0.030 (person per 
days) 

δ Quarantine rate 0.073 (person per 
days) 

ζ Reinfection rate 0.00726 (person per 
day) 

κ Removal rate (from quarantined 
compartment) 

0.0033 (person per 
day) 

ŵ 2norm of disturbance 10,000 
C – [0100]
D – [000]
Rf – diag(80,9000, 1)
Qf – I4  
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values because the cost of applying high degrees of social distancing and 
medical treatment on societies is extortionate for the authorities. We 
also translate the control input u1 as a suggested strategy presented in 
Table 2 to clarify the results for reader’s better understanding. The 
control inputs u2, u3 can also be translated as the treatment rate and the 
vaccination rate for the people of society. 

4.2. Second scenario: The designed controller comparison with some 
conventional controllers 

In this scenario, different control approaches are considered to see 
how they affect the system’s closed-loop response. The approaches for 
the comparison are the proposed T-S fuzzy controller, robust LPV 

Fig. 4. States of the covid-19 model for the closed-loop with PDC controller (blue) and the open-loop response (yellow) where the effects of implementing a suitable 
control strategy could be seen obviously. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. The suggested bounded disturbance input on the system.  Fig. 5. Control inputs u1 (social distancing and lockdown), u2 (treatments), and 
u3 (vaccination) for closed-loop PDC controller response as controlling in-
terventions to deal with the corona-virus spread. 
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controller, and state feedback (SF) LPV controller, which can be inter-
preted as a robust controller. From now on, and for simplicity, we will 
mention the robust LPV and state feedback LPV approaches with LPV 
and SF abbreviations, respectively. It should be noted that the robust 
LPV approach for this part is borrowed from our previous work [25], 
which is mixed with two other works [40,41] to improve the desired 
response. Fig. 9 and Fig. 10 show lower amounts of control inputs for the 
SF approach than the other two approaches, and it is because there are 
no LQR constraints in this approach to regulate the control values. There 

will be even more infected individuals, and fewer recovered people for 
the SF approach than the other two approaches. These explanations 
underline the importance of using LQR in this problem. 

We can observe a slight difference in LPV and T-S method responses 
with fewer infected and quarantined cases for the T-S fuzzy method than 
for the LPV method. Also, based on the explanations in section 3, we 
already knew that considering the mathematical computations, the T-S 
fuzzy method that we proposed in this paper could be a better choice 
than the LPV method. A suggested parameter’s variation for β, δ are also 

Fig. 6. The number of deceased persons when with control interventions (blue) and without control interventions (yellow). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. The state of the covid-19 model in [24].  
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depicted in Fig. 11 where they decrease within the considered duration. 
Determining the variation profile of these parameters more precisely 
will conclude more realistic results. It can also be noted that the pa-
rameters’ profile of variation will not affect the stability of the system. 
The effective reproduction number is also plotted in Fig. 12. It shows 
that all the mentioned methods can adequately lower the contagiousness 
of the coronavirus and lead the effective reproduction number to a final 
value of less than one, which is equivalent to controlling covid-9 spread. 
It will cause a further burden on authorities to intensify the restrictions 
lowering higher amounts of effective reproduction number. 

The H2 and H∞ norms of the system in each method are also pointed 
out in Table 3. The number of deceased persons with different ap-
proaches is shown in Fig. 13 revealing that the T-S fuzzy method has the 
lowest number of deceased cases. 

4.3. Third scenario: Effects of time-delayed vaccination as control input 

Dealing with coronavirus spread worldwide has been a hot topic for 
recent two years. Some countries pioneered in applying the control 
measures, especially vaccination. Based on what we have seen in the 
coronavirus statistics in all countries, it can be concluded that 

vaccinating society as fast as possible is very crucial and effective in 
coping with casualties of the coronavirus. In doing so, we compared two 
situations implementing vaccination with and without delays to the T-S 
fuzzy model. This part considers 100 days of delay, and the results are 
presented in Fig. 14. It can be seen that the delay makes trouble in states 
convergence, and it makes the states’ trajectories very sensitive to 
control inputs than the situation in which there is no delay for the third 
control input. Based on Fig. 14, the convergence of the fourth state 
which is quarantined compartment is a bit slower than the other states 
and need more time than the simulation time to fully converge. 

Moreover, one of the other adverse effects of the delay can be seen 
from Fig. 15 where higher amounts of control input are needed in the 
delayed situation. We conclude that the delay makes the states and the 
control input oscillate around their final values. According to Fig. 16, the 
effective reproduction number for delayed cases has a slower conver-
gence. In addition, the covid-19 spread in not fully controlled in delayed 
case because the effective reproduction value is not settled on a value 
lower than one. Thus, this simulation’s scenario showed how dangerous 
the situation could get if the vaccination as a controlling intervention 
did not apply within a suitable time. 

Fig. 8. The control inputs of the covid-19 model in [24].  

Table 2 
The social distancing suggested policy as a practical example.  

Control input u1 (social distancing) Action 

0 ≤ u1 ≤ 0.3 Regular activity for all sectors and sections of the society and wearing face masks 
0.3 ≤ u1 ≤ 0.5 Obligatory use of face masks in public and restrictive activities in less important offices and bureaus 
0.5 ≤ u1 ≤ 0.7 Restriction in every part of society and economy to some extent 
0.7 ≤ u1 ≤ 1 Rigid restriction in all parts  
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Fig. 10. The control inputs for comparing LPV (green), simple state feedback (red), and T-S fuzzy (blue) approaches with the T-S fuzzy approach having the most 
optimum control effort. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. States of the covid-19 model for comparing LPV (green), simple state feedback (red), and T-S fuzzy (blue) approaches with the T-S fuzzy and LPV approaches 
outperforming the state feedback controller. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Fig. 12. Effective reproduction number during the simulation time for different control approaches with T-S fuzzy as lead controller.  

Table 3 
The H2 and H∞ norms of the system in each method.   

H2 norm H∞ norm 

T-S fuzzy method  0.9956  2.0353 
Robust LPV method  1.7373  5.0827 
State feedback method  ≈ 0.0076  ≈ 115.7413  

Fig. 11. Suggested profiles of variations for β and..δ  
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Fig. 14. The states of coronavirus model with 100 days of delay (dark red) and without implementing delay (blue) to the third control inputs showing the disastrous 
consequences of the delay. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. The number of deceased persons for different approaches: T—S fuzzy (blue), robust LPV (green), and state feedback (red). (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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5. Conclusion and future work 

In this article, T-S fuzzy modeling of coronavirus spread is exploited 
considering uncertain and varying parameters. Then, a feedback 
controller law is used to simultaneously solve a multi-objective control 
problem, including model stabilization, mixed H2 − H∞ norm minimiza-
tion, and optimal LQR problem. Note that the T-S fuzzy approach pre-
sented in this paper, can be beneficial dealing with large-scale systems, 
systems with lots of uncertainties, varying parameters, and non-
linearities. Next, the results of controller design are simulated and 
analyzed comparatively in three parts. As a result, it can be concluded 
that dealing with the coronavirus highlights the effects of using suitable 
strategies for controlling interventions. Also, a suggested policy for 
control actions is presented, which can be used in different countries 

accordingly. For future work, we can consider some data-based methods 
or other online model-based control methods like MPC to compare the 
results and the efficiency of different approaches for this specific appli-
cation. Also, another research direction is to provide a model from a real 
dataset, design the appropriate controller with the proposed approach 
and study the effects of the controller on the whole population dataset. 
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