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SUMMARY

To understand heart aging at the single-cell level, we employed single-cell dual omics (scRNA-seq and scA-
TAC-seq) in profiling non-myocytes (non-CMs) from young, middle-aged, and elderly mice. Non-CMs, vital in
heart development, physiology, and pathology, are understudied compared to cardiomyocytes. Our analysis
revealed aging response heterogeneity and its dynamics over time. Immune cells, notably macrophages and
neutrophils, showed significant aging alterations, while endothelial cells displayed moderate changes. We
identified distinct aging signatures within the cell type, including differential gene expression, transcription
factor activity, and motif variation. Sub-cluster analysis revealed intra-cell type heterogeneity, characterized
by diverse aging patterns. The senescence-associated secretory phenotype emerged as a key aging-related
phenotype. Moreover, aging significantly influenced cell-cell communication, especially impacting a fibro-
blast sub-cluster with high expression of ERBB4. This study elucidates the complex cellular and molecular
landscape of cardiac aging and offers guidance for potential therapeutic avenues to treat aging-related heart
diseases.

INTRODUCTION

Aging stands at the forefront as a critical risk factor for a myriad

of cardiovascular diseases (CVDs), including coronary heart dis-

ease, hypertension, ischemic disease, and heart failure, with

substantial evidence highlighting its profound impact on cardiac

pathophysiology and the heightened vulnerability to heart failure

it incurs.1 Particularly, the ventricle of the heart, pivotal in pump-

ing oxygenated blood throughout the body, undergoes signifi-

cant morphological and molecular alterations during aging,

such as hypertrophic growth and increased susceptibility to

stress. This underscores the imperative need to delve into the

regulatory mechanisms governing cardiac aging to enhance

our comprehension of cardiac aging processes and uncover po-

tential therapeutic avenues. The ventricular complexity, arising

from a mixture of cell types such as cardiomyocytes and non-

cardiomyocytes (non-CMs), including fibroblasts, endothelial

cells, and immune cells, demands a detailed examination of

the age-related cellular and molecular alterations. While cardio-

myocyte aging has been extensively studied, non-CMs, integral

to heart development, physiology, and pathology, warrant

deeper investigation for their roles in the aging heart. Cellular

senescence is one of the most fundamental mechanisms of ag-

ing.2 Senescence-associated secretory phenotype (SASP), a

hallmark of cellular senescence and inflammation, contributes

to the development of cardiovascular diseases: atherosclerosis,

coronary heart disease, and myocardial infarction.3 It is charac-

terized by the increased secretion of pro-inflammatory cyto-

kines, chemokines, and proteases, emerges as a pivotal player

in the progression of age-related cardiac diseases.

Advances in single-cell technologies, such as single-cell RNA

sequencing (scRNA-seq) and single-cell Assay for Transposase-

Accessible Chromatin using sequencing (scATAC-seq), have

revolutionized our understanding of the transcriptional and

epigenetic landscapes at an unprecedented level. These meth-

odologies have enabled detailed examinations of the heart cell

transcriptome and epigenome across various species and bio-

logical processes. For instance, scRNA-seq has shed light on

the dynamics of adult zebrafish heart regeneration in non-cardi-

omyocytes,4 the transformation of mouse fibroblasts into

induced cardiomyocytes,5 and the mechanisms underlying hu-

man cardiac reprogramming.6 Similarly, scATAC-seq has been

instrumental in delineating epigenomic changes and heteroge-

neity, revealing networks of transcription factors involved in

chromatin accessibility shifts during cardiac reprogramming.7

Moreover, integrated analyses of scATAC-seq and scRNA-seq

datasets have facilitated the identification of key active TFs

and the global rewiring of cis-regulatory interactions, during

the direct reprogramming of fibroblasts to induced cardiomyo-

cytes.7 Single-cell dual omics study8 has unveiled the transcrip-

tomic and epigenomic diversity in adult murine cardiac non-car-

diomyocytes, offering insights that complement traditional
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techniques such as immunohistochemistry, real-time qPCR, and

in situ hybridization.

Herein, we performed single-cell dual-omics to delineate the

heterogeneity and functional states of adult mice non-cardio-

myocyte (non-CM) at three life stages: young adult (3 months),

middle age (12 months), and elderly (24 months By character-

izing the regulatory landscapes and functional states of major

non-CM cell types, including fibroblasts, endothelial cells, and

immune cells, we observed that aging impacts these cells in

several distinct ways. Aging leads to shifts in cell composition

within tissues, notably with a decrease in the Fib.6, a subcluster

of fibroblasts, which contributes to cell cohesion. Transcriptional

regulation changes manifest as altered gene expression pat-

terns, where there is an increase in SASP, inflammation, and

fibrosis genes. Cell communication is disrupted, evident from

reduced overall signaling number and increased SASP, inflam-

mation for intercellular interactions. Additionally, chromatin in

non-CMs becomes less accessible with age, leading to

decreased accessibility and lower overall gene expression,

affecting crucial functions such as cell proliferation and repair.

These changes elucidate the complex molecular and cellular dy-

namics influenced by aging in non-CMs provide new insights into

how aging affects non-CMs and offer valuable resources for

future follow-up studies and target validation that would be help-

ful for developing therapeutic strategies targeting age-associ-

ated cardiovascular diseases.

RESULTS

Single-cell dual omics profiling of non-CMs during
cardiac aging
To elucidate the heterogeneous cellular changes and biological

events occurring in non-cardiomyocytes (non-CMs) during aging,

we harvested and sorted single live non-CMs from the left

ventricle of mouse hearts. These cells were then subjected to

both scRNA-seq and scATAC-seq (See Figure 1A). After applying

filtering and quality control steps (outlined in Figures S1A and S1E

for scRNA-seq; Figures S1B and S1F for scATAC-seq), we suc-

cessfully obtained biological duplicate samples for each time

point. Specifically, this resulted in a total of 24,062 high-quality

non-CMs from the scRNA-seq data across three time points (3,

12, and 24 months), with two samples per time point (as shown

in FigureS1C). In parallel, weprocessed 22,309 high-quality single

nuclei non-CMs for scATAC-seq analysis, also across three time

points with two replicates per time point (as visualized in

Figures S1D and S1F). Both UMAP visualizations for scRNA-seq

(Figure S1C) and scATAC-seq (Figure S1D) show no evidence of

batch effects or the emergence of distinct clusters across time

points or samples.

Unsupervised clustering identified 21 distinct cell clusters

within the non-CM population, representing the major non-

CM cell types such as fibroblasts, endothelial cells, macro-

phages, smooth muscle cells, and immune cells (neutrophils,

T cells, and B cells). Similar clustering results were obtained

with CelliD, confirming the identification of 21 distinct cell clus-

ters. As illustrated on the UMAP plot (See Figure 1B), major

non-cardiomyocyte cell types include 6 fibroblasts sub-clus-

ters, Fib.1 (IL-6 secreted/inflammation related fibroblast9),

Fib.2 (activated myofibroblast with DPP4 marker genes10),

Fib.3 (activated fibroblast with CILP, MEOX1 marker genes11),

Fib.4 (basal state of fibroblasts with ADGRL3 marker genes12),

Fib.5 (adventitial fibroblast with C313, APOE, LNMT, CCL1911),

Fib.6 (TGF-beta responsive fibroblast with ERBB4 marker

genes14); 7 endothelial sub-clusters, Endo.1 (pro-angiogenic

endothelial cell15), Endo.2 (endothelial cells activated by

vascular endothelial growth factor16), Endo.3 (sarcopenic endo-

thelial cells17), Endo.4 (high-myofibroblast-like endothelial cells

with marker genes TNNT218), Endo.5 (stress responsive endo-

thelial cells19), Endo.6 (artery endothelial cells20,21), Endo.7

(vein and lymphatics endothelial cells22); and 4 macrophages

sub-clusters, MC.1 (resident macrophages23), MC.2 (dendritic

cells24), MC.3 (proinflammatory macrophages25), MC/B-cell

(mixed gene markers of macrophages and B-cells) and smooth

muscle cells and Neutrophil/T/B cells. The marker gene lists are

provided (see Table S1).

Although we did not observe the emergence of any new cell

cluster, there are obvious changes in cellular composition across

the three time-points. By comparing the proportion of each cell

type and their sub-clusters, we observed that fibroblasts (FBs),

endothelial cells (ECs), and macrophages (MCs) constitute the

major non-CM cell population in the heart (See Figure 1C). For

macrophages, the subtype marked by MC.1 dominated the

macrophage population, while FBs and ECs exhibit a relatively

even distribution of subtypes (See Figure 1C). Additionally,

both the number and percentage of macrophages among non-

CMs consistently decreased starting from 3 months (See

Figures 1E and 1F). Neutrophils showed a marked increase at

12 months, while B cells and T cells remained relatively stable

between 3 and 12 months but exhibited a larger increase be-

tween 12 and 24 months, highlighting the differential impact of

aging on various immune cell types. Using Propeller26 for differ-

ential composition analysis, we identified significant changes in

specific sub-clusters (See Figures S3A and S3B), including a

consistent decrease in fibroblast sub-cluster Fib.6 (p = 0.027),

and an increase in B-cells (p = 0.007). These results indicate

the heterogeneous response during aging, across cell types,

and within the cell type, as shown in the difference of the sub-

clusters.

To explore the epigenetic landscape of non-CMs, we

analyzed our scATAC-seq data and performed integrative anal-

ysis with scRNA-seq. To annotate cellular identities, we inte-

grated scRNA-seq and scATAC-seq data by first estimating

gene transcriptional activity using ATAC-seq counts. We then

performed canonical correlation analysis combining these

scores with scRNA-seq expression data from highly variable

genes. After identifying anchors between datasets, we trans-

ferred scRNA-seq annotations to scATAC-seq cells, generating

a matrix of predictions and confidence scores for each cell (See

Figure 1D). We identified 21 cell clusters for the major non-CM

cell types, based on consistent gene activity scores for canon-

ical markers of chromatin accessibility in each cell population

with the expression levels in scRNA-seq. Our integrative anal-

ysis of scRNA-seq and scATAC-seq data has begun to eluci-

date the transcriptional and epigenetic landscape in non-CM

cells, setting the stage for further investigation into age-related

changes in these cell types.
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Cell type specific dynamics of non-CMs during cardiac
aging
To quantify the impact of aging at the molecular level, we em-

ployed the Augur algorithm, which allows us to determine cell

type-specific responsiveness to aging.27 Among the four non-

myocyte populations, macrophage’s transcriptome showed

the highest responsiveness to aging as evident by the highest

Area Under Curve (AUC) scores (See Figure 1G). On the other

side, endothelial cells’ transcriptome showed a relatively mini-

mal change in response to aging. Applying augur on the sub-

cluster level, we discovered that not only the macrophage

sub-clusters (MC.1 and MC.2) exhibited the most significant

transcriptional alterations associated with aging, but also a

fibroblast sub-cluster (Fib.1) behaved similarly (See Figure 1G).

To investigate the dynamics of cell type-specific responsive-

ness at different stages of aging, we performed a permuta-

tion-based test using Augur (See Figure 1H). Our objective

was to determine whether the rate and magnitude of transcrip-

tional changes differ between early (3–12 months) and late (12–

24 months) stages of aging for each cell type. We hypothesized

that certain cell types might exhibit accelerated transcriptional

changes at specific aging phases. In this analysis, we calcu-

lated the AUC scores for each cell type by comparing cells

from the different age groups. We then permuted the age labels

within each cell type 1,000 times to generate a null distribution

of AUC differences (DAUCs). By comparing the observed

Figure 1. Integrated single-cell transcrip-

tomic and epigenomic analysis of non-car-

diac (non-CM) cells during aging

(A) Schematic flowchart illustrating the workflow

from cardiac cell isolation to live/dead sorting, fol-

lowed by single-cell RNA sequencing (scRNA-seq)

and single-cell ATAC sequencing (scATAC-seq) to

assess transcriptomic and epigenomic changes in

non-cardiomyocytes.

(B) UMAP (Uniform Manifold Approximation and

Projection) visualization of the 24,062 non-car-

diomyocytes identified across six adult mouse

hearts. Cells were subclustered into 21 distinct non-

CM subtypes, including fibroblasts, endothelial

cells, macrophages, neutrophils, and others, shown

here with different colors.

(C) River plot shows the total number of major cell

types and their respective subtypes.

(D) UMAP visualization of 22,309 non-CM cells

captured via scATAC-seq, showing cell types

based on chromatin accessibility, highlighting the

distribution of major cell populations.

(E) Bar plot showing the number of cells in each

main cell type (e.g., fibroblast, endothelial, macro-

phage, and so forth) across three aging time points

(3 months, 12 months, and 24 months).

(F) Bar plot representing the proportion of sub-cell

types at each time point, visualizing how the distri-

bution of subtypes changes over time during aging.

(G) UMAP plot shows the score of aging effect in

main and sub-cell types of the mouse non-CM cells

by Augur. Left panel is colored by the AUC score,

which represents the degree to which each cell type

is impacted by aging. Darker orange colors indicate

higher AUC values, meaning a stronger response to

aging, while lighter colors represent lower AUC

values, suggesting a weaker aging effect. Macro-

phages and fibroblasts show higher AUC scores,

indicating that these cell types are more impacted

by the aging process. Right panel is colored by rank

percentages based on the cell-type-specific AUC

scores. The rank determines how each cell ranks in

terms of its responsiveness to aging, with darker

shades indicating higher rank percentages (closer

to 100%). The fibroblast sub-cluster Fib.1 and

macrophage sub-cluster MC.1 rank higher, sug-

gesting that within these populations, specific cells

are more responsive to aging.

(H) Scatterplot comparing AUC scores for each cell type between early aging (3 vs. 12 months) and late aging (12 vs. 24 months). The DAUC score shows which

cell types exhibit more pronounced transcriptional responses during different stages of aging.

iScience 27, 111469, December 20, 2024 3

iScience
Article

ll
OPEN ACCESS



DAUCs to this null distribution, we assessed the differences in

responsiveness between aging stages for each cell type. Our

results indicated that macrophage transcriptomes are more

sensitive to aging at the later stages (12–24 months), showing

greater transcriptional changes in older mice. In opposite,

smooth muscle and neutrophil showed a more drastic change

in transcriptome at earlier stages (3–12 months). Interestingly,

although the fibroblast’s transcriptome showed high respon-

siveness to aging (See Figure 1G), the rate of transcriptional

change remained relatively consistent between the early and

late stages. To further explore the impact of parameter tuning

on these findings (See Figure S6A) and to compare early and

late stages of aging with the entire aging process (3–24 months)

(See Figure S6B), we adjusted Augur’s parameters. While this

led to slight changes in AUC scores, the overall rank of the

cell types remained consistent. In summary, our data indicate

that the dynamics of the aging-related transcriptome is not a

uniform process across cell types. Different cell types in the

heart respond to aging at varying degrees and rates, high-

lighting the complexity of the aging process at the cellular level.

Both cellular senescence and chronic inflammation are

recognized hallmarks of aging.28 Although many studies have

examined the cellular senescence and inflammation in the

heart, the expression of the aging hallmarks in the non-CM cells

and their sub-cell types as well as their aging associated alter-

nations remain largely uncharacterized. Thus, we sought to

identify gene signatures linked to key aging cellular features

or processes. To this end, we performed AUCell analysis,

which calculates the Area Under the recovery Curve, inte-

grating the expression ranks across all genes in a regulon, to

score the activity of each regulon in each cell.29 Our analysis

revealed an enrichment in cellular senescence markers, partic-

ularly the SASP panel genes. The SASP scores displayed bi-

modal distributions (See Figure 2A) across all examined time

points, with notable elevations in FBs, MCs, and neutrophils,

while the ECs have relatively low expression (See Figure 2B).

The SASP phenotype showed a significant increase from

3 months to 12 months while remaining at a similar level during

the later stage (See Figure 2C). Fibroblast sub-clusters ex-

hibited different trends in their SASP phenotype (See Figure 2D).

The Fib.6 sub-cluster demonstrated a significant increase in

aging later stage. In contrast, Fib.1 showed a significant in-

crease earlier on. Moreover, we found upregulated gene ex-

pressions associated with cardiac fibrosis (See Figures 2E

and S2A), heart failure (See Figures 2F and S2B), and inflam-

mation (See Figures 2G and S2C) using the same method as

described above. Almost all fibroblast sub-clusters (except

Fib.5) (See Figure S2A) showed increases in cardiac fibrosis

at least at one time point. For heart failure, only Fib.6 did not

exhibit significant increases compared with other fibroblast

clusters. The inflammation score was upregulated in most cells,

including neutrophils, which displayed a marked increase in the

early stages of aging. Interestingly, most endothelial subclus-

ters demonstrated elevated inflammation scores during the

early stage (3–12 months) but showed stability in later stages

(12–24 months). These results indicate distinct temporal and

subtype-specific pro-senescence, pro-fibrotic, and pro-inflam-

matory signatures in aging non-CMs.

Altered gene expression and cellular communications of
non-CMs during cardiac aging
Next, we explored the differential expressed genes (DEGs) in

each cell type and their uniquely enriched GO terms (See

Figures 3A, 3B, S3C, and S3D). To identify distinct aging-associ-

ated changes while minimizing the impact of common cellular

molecular signatures, we performed DEG analysis across three

aging time points (3, 12, and 24 months). A detailed investigation

of cell-type-specific gene expression profiles in endothelial cells,

fibroblasts, and macrophages revealed minimal overlap in ag-

ing-related DEGs among these cell types (See Figure 3C). Mac-

rophages exhibited the highest number of DEGs, whereas endo-

thelial cells showed fewer DEGs, suggesting fewer changes in

endothelial cells during aging, which is consistent with our Augur

analysis findings.

To further analyze the gene expression trends over time, we

conducted hierarchical clustering of DEGs within each cell

type. By using gene expression at 3 months as a reference, we

compared the patterns at 12 and 24 months (See Figures 3D

and S3E). This clustering revealed distinct expression trajec-

tories, which followed up with GO enrichment analysis for clus-

ters that showed consistent upregulation or downregulation dur-

ing aging (See Figures 3E and S3F). The GO terms indicate that

during cardiac aging, upregulated gene clusters (EC8, FB7,

MC8) were predominantly enriched in immune-related functions,

whereas downregulated gene clusters (EC4, FB3, MC3) were

primarily associated with processes such as cell migration and

transcriptional regulation. Specifically, the genes that consis-

tently upregulated in aging endothelial cells (EC8), primarily

involved in nitric-oxide synthase activity, detoxification, cellular

senescence, and monooxygenase activity, suggest an adaptive

enhancement of structural integrity, detoxification processes,

and defensive capabilities. Conversely, the deregulated genes

(EC4) associated with endothelial cell migration, response to

vascular endothelial growth factor stimulus, smooth muscle

cell differentiation, and angiogenesis imply a potential decline

in angiogenic capacity and responsiveness to angiogenic

signals in aging endothelial cells.30 Similarly, macrophages

(MC8) showed a notable upregulation in genes involved in

actin polymerization, cell morphogenesis, substrate adhesion,

and immune responses, implying enhanced structural integrity,

mobility, and immune defense, likely as a compensatory

response to the aging-associated decline in cellular function

and increased risk of infection. Conversely, the downregulation

of genes in MC3 related to T cell activation, immune response

coordination, and reactive oxygen species (ROS) metabolism

suggests a potential decline in immune function and energy effi-

ciency with aging. In aging fibroblasts, upregulated genes (FB7)

were enriched in pathways involving viral process regulation, an-

tigen processing and presentation, intrinsic apoptotic signaling,

and immune responses. This suggests a shift toward enhanced

immune defense and a higher propensity for apoptosis, poten-

tially as an adaptive response to increased cellular stress

during aging. Downregulated genes in fibroblasts (FB3)

suggest decreased stress response, and alterations in circadian

rhythms.31,32 Smooth muscle cells (SMC1, SMC2) displayed up-

regulated oxidative stress-related functions in both early and

later stages, indicating an ongoing stress response to the
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Figure 2. Gene signatures profiling of aging-susceptible of cardiac non-myocyte changes
(A) Bi-modal distribution of senescence-associated secretory phenotype (SASP) gene set score (AUCell) of cardiac non-myocytes.

(B) UMAP plot of the SASP gene set score, showing the highest AUC scores are mainly in Macrophage and Fibroblast cells.

(C) AUC score of the SASP gene set is differentially distributed in three time points. Bar plots show significant changes from 3months to 12months (mean ±SEM).

Statistical significance is indicated by asterisks (*** p < 0.001, ** p < 0.01, * p < 0.05, based on one-way ANOVA with post-hoc Tukey’s test).

(D) AUC score of the SASP gene set has diverse trends in sub cell types, Fib.1.Cxcl1 has continually increased significantly, Fib.6 has a significant increase from 12 to

24 months, while MX.Cd209a decreased and then increased, and neutrophil had a dramatic increase from 3 to 12 months but decreased from 12 to 24 months.

(E) AUC score of the cardiac fibrosis gene set differentially distributed in three time points. Bar plots show significant changes from 3 months to 12 months

(mean ± SEM), while no significant changes between 12 and 24 months in all clusters.

(F) AUC score of the heart failure gene set differentially distributes in three time points. Bar plots show a significantly increase from 3months to 12months, while a

significant decrease between 12 and 24 months in all clusters (mean ± SEM).

(G) AUC score of inflammation gene set differentially distributed in three time points. Bar plots show a significant increase from 3 months to 12 months (mean ±

SEM).
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accumulation of cellular damage (See Figures S3E and S3F). In

the early aging stages (3–12 months), there is a pronounced up-

regulation of genes related to protein folding, stabilization, and

response to oxidative stress, suggesting an enhanced ability to

manage protein misfolding and oxidative damage. At the same

time, genes (SMC3) involved in heat response and cellular heat

acclimation are downregulated, potentially reflecting reduced

resilience to thermal stress. In the later stages of aging, the

downregulation of genes (SMC4) related to cardiac muscle

contraction and actin filament-based movement signals a

gradual decline in contractile function and structural integrity.

However, the upregulation of genes tied to stress responses,

along with antigen processing and presentation, points to an

adaptive increase in defense mechanisms, likely compensating

for ongoing cellular damage and the diminished functionality

Figure 3. Differentially expressed genes and

cluster analysis during aging

(A) Heatmap showing the relative expression levels

of representative marker genes across the 21

identified clusters from single-cell RNA-sequencing

data.

(B) Unique gene ontology (GO) terms enriched from

the differentially expressed genes (DEGs) in the 21

clusters.

(C) Venn diagrams showing the limited overlap of

DEGs in three main cell types (endothelial, fibro-

blast, andmacrophage) between the 3 to 12months

and 12 to 24 months comparisons. Number in the

Venn plot shows the number and proportion of

DEGs for each cell type.

(D) Heatmap of DEGs hierarchically clustered within

endothelial, fibroblast, and macrophage cells, using

gene expression at 3months as a reference point for

comparison with 12 and 24 months. Numbers along

the y axis indicate cluster identifiers, with corre-

sponding DEG numbers on the side of each heat-

map. Clusters that show constant changes in

expression patterns over time are highlighted.

(E) Top enriched GO terms for clusters that show

consistent upregulation (EC8, FB7, MC8 in red) or

downregulation (EC4, FB3, MC3 in blue) across

aging time points. GO terms related to processes

such as nitric oxide synthase activity, endothelial

cell migration, cellular detoxification, and antigen

processing are featured for specific clusters. The

bar plots indicate the degree of enrichment

(�log10(p-value Adjust)) for these GO terms.

characteristic of advanced aging. These

shifts in gene expression could reflect

cells’ adaptive strategies to aging chal-

lenges but may also contribute to the over-

all decline in cardiovascular health and tis-

sue function observed in older mice.

Aging is also recognized to influence

the intercellular communication.33 We

conducted CellChat analysis to analyze

the changes of cell-cell communication,

focusing on those attributable to aging.

As age progressed, we observed a

notable decrease in both the intensity and frequency of cellular

interactions (See Figure 4A). While there is an increase in com-

munications of macrophage and neutrophils with other cell

types from 3 to 12 months of age (See Figure 4B), the transition

from mid-age (12 months) to elder age (24 months) showed a

decrease in the frequency of cellular interactions, with the

exception of T-cells and smooth muscle cells, which exhibited

increased communications (See Figure 4B). In the context of

overall cellular interactions, we found specific sub-cluster

changes. The Endo.7 sub-cluster, for instance, demonstrated

augmented interaction strength in receiving signals from fibro-

blasts during the early aging stage (See Figure 4B). This shift in

intensity and frequency of cellular communications suggests a

role of endothelial cells in vascular regulation and barrier func-

tion, and the influence of fibroblast signaling in extracellular
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Figure 4. Cell-cell communication during aging

(A) Bar plots represent the changes in both the total number of cell interactions (left) and the overall interaction strength (right) across different time points (3, 12,

and 24 months). Both metrics show a general decline during aging.

(legend continued on next page)
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matrix production and tissue repair, become increasingly inter-

twined in the aging heart.32,34 The Fib.6 sub-cluster (See

Figure 4C), however, showed a distinct intercellular communi-

cation profile. Initially, it had suppressed interactions, followed

by a maintenance of interaction numbers but with reduced

strength, signifying a profound impact of aging on its function-

ality. Moreover, our analysis suggests the prominence of

senescence (e.g., IGF, TGFb) (See Figure 4D) and inflammation

(e.g., CCL, MHC-I) pathways (See Figure 4E), with an

upsurge during aging. The unique pathway activation in the

Fib.6 sub-cluster, involving MK, PTN, VCAM, and ICAM, (See

Figure 4F), highlights its distinct functional contributions amidst

aging.

Single cell regulatory network of non-CMs during
cardiac aging
To unravel transcription mediators that might regulate non-CM

aging, we deployed the Single-Cell Regulatory Network Infer-

ence and Clustering (SCENIC) analysis to infer core transcription

factors (TFs) functioning in the non-CM cell types. Based on the

activity of the regulons, we observed that cells of the same type

were re-clustered together, indicating shared TFs and activity,

yet distinct activities within the sub-clusters. (See Figure 5A).

We can find the clustering of main cell types such as endothelial,

immune cells (Macrophages, Neutrophils, T/B cells), and fibro-

blasts, aligning with our initial clustering findings in spite of the

different clustering approaches.

We next sought to determine change in the regulatory

network. We, therefore, performed linear mixed models

(LMMs), a method that facilitates the identification of TFs

with significant shifts in average activity during the aging pro-

cess, both for overall (See Figures 5B, S4A–S4C, and S5A)

and certain cell types (See Figures 5C and 5D; Figure S5B) fol-

lowed by the GO enrichment. The activity is calculated based

on the expression of each TF’s target genes in individual cells.

For the overall trend, TFs involved in rhythmic and circadian

regulation, HLF, TEF, and DBP, demonstrated a marked

decrease in activity from early adulthood (3 months) to mid-

life (12 months), followed by a slight increase in later stages

(See Figure S4A). Conversely, TFs implicated in immune

response regulation, IRF7, IRF9, and STAT1, displayed a

consistent increase in activity through aging (See Figure S4B;

Figures 5B and 5C). A close examination of specific cell types

revealed that the FBs exhibited an increase in immune-related

TF activity, while the activities of the catabolism and transcrip-

tion-related TFs, such as ATF4 and YY1, decreased over time

with age (See Figure 5C). A similar trend was observed for

endothelial cells (See Figure 5D). Macrophages, however,

did not exhibit significant changes in TF activity as assessed

by LMMs. As an alternative approach, we employed a linear

model to identify the top differentially regulated TFs and their

associated GO terms (See Figure S5B). The enriched TFs were

similar to FBs and ECs, including upregulated IRF7, STAT1,

STAT2, and downregulated BACH1, DBP, and JUND. In

sum, fibroblasts have the most differentially changed TFs de-

tected. Macrophages surprisingly do not have many signifi-

cantly changed regulons, which implies it may not employ

new TF regulatory networks during aging and deserve further

exploration.

Potential regulators invovled in cardiac aging
We then explored the scATAC-seq dataset to pinpoint regions of

differential chromatin accessibility (DAC) and performed motif

enrichment on these DACs. These are locations in the genome

where the accessibility of the chromatin structure varies, which

can influence gene expression (See Figure 6A). Our analysis re-

vealed a lack of peaks that are commonly accessible across

three primary cell types. Interestingly, endothelial cells (ECs)

showed the least variation in these differentially accessible

peaks. This suggests a relatively stable chromatin landscape in

ECs during the aging process (See Figure 6B). This observation

is further supported by motif analysis; our motif analysis identi-

fied a consistent set of transcription factor binding motifs in

ECs across the time points, indicating a stable regulatory land-

scape. In contrast, FBs andmacrophages displayed a greater di-

versity of motif accessibility, suggesting a more dynamic regula-

tory response to aging. This observation highlights the distinct

regulatory patterns across cell types during aging, with ECs

maintaining a relatively stable regulatory architecture compared

to the more flexible responses observed in FBs and macro-

phages (See Figure 6D).

Moreover, our scATAC-seq data provided direct evidence for

the chromatin open regions and binding motifs, supporting our

findings of consensus sequence identification from scRNA-seq.

We observed age-related decreases in accessibility for motifs

such as YY135 and ATF4,36 which play roles in cellular catabo-

lism and transcription regulation (See Figures 6C and 6D). In

contrast, the motifs for IRF7 and STAT1, known for their role

(B) Circle plots visualizing changes in communication patterns between different cell types across aging time points. Line colors indicate the direction of

communication changes: red lines represent increased communication at the later time point, while blue lines represent decreased communication. Line

thickness reflects the magnitude of interaction changes, with thicker lines indicating more substantial changes. From 3 to 12 months, macrophages (MC) and

neutrophils (in red) exhibit increased communication with other cell types, whereas the Fib.6 sub-cluster shows reduced interactions. Between 12 and 24months,

there is a general decline in cell communication, except for T cells, smooth muscle cells, and certain endothelial subtypes, which show increased interactions.

(C) Heatmaps compare the strength of cell-cell communication at different aging stages (3 vs. 12 months and 12 vs. 24 months). The x axis represents target

(receiver) cell types, and the y axis represents source (sender) cell types. The color gradient indicates communication strength, with red representing stronger

communication in the later time stage, and blue representing weaker communication in the later time stage.

(D) The senescence phenotype is explored through IGF and TGF-b signaling pathways across different time points (3, 12, and 24 months). Both pathways show

an increase in cell signaling related to aging and cellular senescence.

(E) Inflammation-related communication is demonstrated through the CCL and MHC-I signaling pathways. Both pathways show an increase in inflammation as

the tissue ages.

(F) The specific role of the Fib.6 sub cluster is highlighted in cell communication during aging. PTN and MK signaling pathways both show decreasing during

aging, where Fib.6 is the main sender of the signaling, impacting heart function.
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in cellular senescence and immune responses, demonstrated

increased accessibility, aligning with the increased expression

of their corresponding transcription factors in our scRNA-seq

(See Figures 5C–5E). Despite observing consistent trends, the

complexity of regulatory changes and the mechanisms driving

these alterations during aging warrant further investigation.

However, it is crucial to acknowledge that the relationship be-

tween motif accessibility and transcription factor activity is not

entirely correlated, indicating the need for further studies to

fully elucidate these dynamics.

DISCUSSION

In this study, we leveraged single-cell dual omics to elucidate

the complex landscape of cardiac aging in non-cardiomyo-

cytes (non-CMs). Our comprehensive analysis uncovered

cell-type-specific aging signatures and dynamic changes in

cell-cell communication among non-CMs in the heart. The het-

erogeneous yet moderate changes observed with aging

emphasize the importance of examining each cell type individ-

ually. We demonstrated that fibroblasts and macrophages

exhibit the most pronounced aging responses, highlighting

the significance of these cell types in cardiac aging processes.

In particular, the Fib.6 sub-cluster was notably affected by ag-

ing, suggesting it is a potential target for therapies aimed at

age-associated cardiovascular diseases. Conversely, endo-

thelial cells exhibited remarkable stability, indicating an

inherent resilience to aging processes that warrants further

investigation.

One of the striking findings of our study is the role of the SASP

inmediating the effects of aging on cardiac non-CMs. This opens

up new avenues for therapeutic strategies aimed at mitigating

SASP-induced pathology, potentially altering the trajectory of

cardiac aging. Additionally, the dynamic transcriptional regulato-

ry networks we uncovered, especially the shifts in activity of tran-

scription factors related to immune responses and circadian

regulation, provide deeper insights into the molecular underpin-

nings of cardiac aging.

In conclusion, our research underscores the importance of

non-cardiomyocytes in cardiac aging and lays the groundwork

for future investigations into targeted therapeutic strategies for

aging-related heart diseases. Aswe continue to unravel the com-

plexities of cardiac aging, leveraging novel technologies and

multidisciplinary approacheswill be imperative for developing in-

terventions that can enhance cardiovascular health in the aging

population.

Limitations of the study
It is important to acknowledge the limitations of our study. Firstly,

we focused exclusively on the ventricles of the heart, without

including atrial cells. Given that atrial cells play crucial roles in

cardiac function and may exhibit different aging patterns, future

studies should include both ventricular and atrial cells to provide

a more comprehensive understanding of cardiac aging. Sec-

ondly, our study utilized only male mice, and the impact of sex

differences on cardiac aging was not addressed. Including

both sexes in future research could elucidate potential sex-spe-

cific mechanisms in cardiac aging. Additionally, while we em-

ployed single-cell dual omics techniques, most analyses were

performed separately on scRNA-seq and scATAC-seq data.

Integrating these datasets, such as through joint gene network

inference, could enhance our findings and offer a more compre-

hensive view of the regulatory mechanisms at play. Moreover,

the translational potential of our findings, while promising, re-

quires further validation in preclinical and clinical settings. By

focusing on the responsive cell types and altered communica-

tion pathways we identified, future research can explore tar-

geted therapeutic strategies to address aging-related cardiac

dysfunction.
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able at https://doi.org/10.5281/zenodo.14014681 as of the date of pub-
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Figure 5. Gene regulatory networks during aging by single-cell regulatory network inference and clustering (SCENIC)

(A) Heatmap illustrating the core transcription factors (TFs) with the most active regulon activities across different cell types during aging. Each row represents a

TF, while columns indicate the cell type, showcasing the varied activity of regulatory networks in fibroblasts, endothelial cells, macrophages, and other non-

cardiomyocytes.

(B) Regulon activity for transcription factors significantly changes during aging, across more than three cell types. The heatmap shows how the activity of TF

changes over time in several cell types.

(C) Line plots demonstrating the dynamic changes in fibroblast TF activities over three aging time points (3, 12, and 24 months), based on the linear mixed model

analysis. The associated GO enrichment plots show the functional processes these TFs regulate. TFs such as STAT1, IRF7, and ATF4 are linked to immune

responses and cellular catabolism. Statistical significance is indicated by asterisks (*** p < 0.001, ** p < 0.01, * p < 0.05, based on one-way ANOVA with post-hoc

Tukey’s test).

(D) Line plots and GO enrichment analyses for endothelial cell-specific TFs with significant changes in activity during aging, derived from the linear mixed model.

TFs such as BCL3, IRF2, and DBP demonstrate changes in activities, especially in pathways related to immune regulation and circadian rhythms.
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Figure 6. Integrated single-cell ATAC seq ep-

igenomic analysis of non-CM cells during

aging

(A) Proportional distribution of gene-near differential

accessible peaks (DAPs) across fibroblasts, endo-

thelial cells, and macrophages. Fibroblasts display

the greatest diversity in DAPs, covering a broad

range of genomic regions such as distal intergenic

regions (32.59%) and promoters (17.91% within

1kb), while endothelial cells show more restricted

accessibility, primarily focused on promoter regions

(88.89%).

(B) Venn diagram illustrates the overlap of DAPs

between fibroblasts, endothelial cells, and macro-

phages. The results demonstrate limited common

peaks among the cell types, with fibroblasts and

macrophages sharing a small subset of accessible

regions, highlighting the distinct epigenetic land-

scapes in these non-CMs during aging.

(C) Enriched transcription factor binding motifs

identified through motif analysis of DAPs, including

YY1, IRF7, STAT1, and ATF4, are consistent with

transcription factors (TFs) known to regulate aging-

related processes in non-CM cells. Thesemotifs are

associated with immune response, cellular stress,

and transcription regulation.

(D) Bar plots showing the average motif activity

across fibroblasts, endothelial cells, and macro-

phages at three aging stages (3, 12, and 24months).

Highlighted motifs (e.g., IRF and STAT families)

exhibit consistent trends in activity, corresponding

to changes observed in transcription factor activity,

as indicated by red and blue boxes marking clusters

with pronounced activity changes over time.
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33. López-Otı́n, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G.

(2013). The Hallmarks of Aging. Cell 153, 1194–1217. https://doi.org/10.

1016/j.cell.2013.05.039.

34. Nicin, L., Wagner, J.U.G., Luxán, G., and Dimmeler, S. (2022). Fibroblast-

mediated intercellular crosstalk in the healthy and diseased heart. FEBS

Lett. 596, 638–654. https://doi.org/10.1002/1873-3468.14234.

35. Sucharov, C.C., Mariner, P., Long, C., Bristow, M., and Leinwand,

L. (2003). Yin Yang 1 is increased in human heart failure and re-

presses the activity of the human alpha-myosin heavy chain pro-

moter. J. Biol. Chem. 278, 31233–31239. https://doi.org/10.1074/

jbc.M301917200.

36. Wang, X., Zhang, G., Dasgupta, S., Niewold, E.L., Li, C., Li, Q., Luo, X.,

Tan, L., Ferdous, A., Lorenzi, P.L., et al. (2022). ATF4 Protects the Heart

From Failure by Antagonizing Oxidative Stress. Circ. Res. 131, 91–105.

https://doi.org/10.1161/CIRCRESAHA.122.321050.

37. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A.,

Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated Analysis

of Multimodal Single-Cell Data. Cell 184, 3573–3587.e29. https://doi.org/

10.1016/j.cell.2021.04.048.

38. Germain, P.L., Lun, A., Meixide, C.G., Macnair, W., and Robinson, M.D.

(2022). Doublet Identification in Single-Cell Sequencing Data Using

scDblFinder. f1000research 10, 979. https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC9204188/.

39. McGinnis, C.S., Murrow, L.M., and Gartner, Z.J. (2019). DoubletFinder:

Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial

Nearest Neighbors - ScienceDirect. Cell. Syst. 8, 329–337. https://www.

sciencedirect.com/science/article/pii/S2405471219300730.

40. Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: An R

Package for Comparing Biological Themes Among Gene Clusters.

OMICS A J. Integr. Biol. 16, 284–287. https://doi.org/10.1089/omi.

2011.0118.

41. Carlson, M., and Falcon, S. (2019). Org. Mm. Eg. Db: GenomeWide Anno-

tation for Mouse. R Package Version 3, 10–18129.

42. Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G.V., Clark,

N.R., and Ma’ayan, A. (2013). Enrichr: Interactive and Collaborative

HTML5 Gene List Enrichment Analysis Tool. BMC Bioinf. 14, 128.

https://doi.org/10.1186/1471-2105-14-128.

43. Cortal, A., Martignetti, L., Six, E., and Rausell, A. (2021). Gene Signature

Extraction and Cell Identity Recognition at the Single-Cell Level with

Cell-ID. Nat. Biotechnol. 39, 1095–1102. https://doi.org/10.1038/

s41587-021-00896-6.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mouse model
Animal studies were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of North Caroline at

Chapel Hill and conform to the National Institutes of Health (NIH) Guidelines for the care and use of laboratory animals. Male mice

(C57BL/6J strain) aged at 3 months, 12 months, and 24 months were used for the experiments.

Heart collection and nonmyocytes isolation
Male mouse hearts at 3 months of age, 12 months of age, and 24 months of age were collected for non-cardiomyocyte isolation. In

accordance with UNC-Chapel Hill LARC guidelines, all animals were anesthetized with isoflurane (1%–2%) for scRNA-seq and scA-

TAC-seq experiments. The heart was removed as quickly as possible to ensure that it remained as fresh as possible for Langendorff

perfusion, where hearts were still beating and immediately used for perfusion to avoid vessel clogging, which could occur with CO2

euthanasia. Hearts were perfused with a Langendorff apparatus as describedwith minor modifications.8 Briefly, retrograde perfusion

was performed through an aortic cannulation, and continuous flow of 16–24 drops/min was maintained in a Langendorff apparatus.

Both ventricles were digested with 1 mg/mL collagenase IaI for 10–15 min, and the ventricles were further mechanically dissociated

by pipetting. Then, the cell suspension was collected and filtered through a 100mmcell strainer. CMswere removed by centrifugation

at 50g (200 rpm) for 3 min, and nonCMs were enriched by centrifugation at 450g (2,000 rpm) for 5 min. The pelleted nonCMs were

treated with 1 mL red blood cell lysis buffer (Gibco) at room temperature (RT) and washed twice with wash buffer (4% FBS/PBS).

Single live cells were FACS-sorted by 7-Amino Actinomycin D (7-AAD, R&D Systems), and Pacific Blue-conjugated Annexin V and

SYTOX (Thermo) staining. Following sorting, cell concentration and viability of each sample were counted using automated cell

counter (LUNA system, Logos biosytems) plus Acridine orange (AO)/propidium iodide (PI) dual nuclear staining. Cell concentration

was adjusted to 1x106 cells/ml for subsequent scRNA-seq via 10x Gemonics platform. Cells (50,000 per sample) for scATAC-seq

were subjected to lysis for 3min and counted again with cell counter to determine the viability (lower than 5%) and concentration

again.

Single-cell transcriptome library preparation and sequencing
Single live cells were loaded to 10x Genomics Chromium chip per factory recommendations. Reverse transcription and library prep-

aration were conducted using Chromium Single Cell 30 Library and Gel Bead Kit v.2 and Chromium i7 Multiplex kit. Sequencing was

performed on Illumina NextSeq 500 with a high output kit.

Single-cell ATAC library preparation and sequencing
The single nuclei were processed for library preparation (Chromium Single Cell ATAC v1.0) following manufactural instructions from

10x Chromium. Sequencing was performed on Illumina NOVAseq-S1 platform.

METHOD DETAILS

Single-cell RNA-seq data analysis
Raw sequencing reads were processed with Cell Ranger56 v7.2.0 pipeline. For each sample, the raw FASTQ files were aligned to the

mouse reference genome (refdata-gex-mm10-2020-A) using the cellranger count pipeline with default parameters. This step gener-

ated gene expression matrices for each sample individually.

Quality control and preprocessing
Quality control was performed using Seurat (version 4.0.1).37 Cells were filtered based on gene expression metrics to remove low-

quality cells and potential doublets. Specifically, cells with fewer than 1,500 detected genes or more than 7,500 detected genes were

excluded from further analysis. Cells with mitochondrial gene content greater than 10% were also filtered out, as high mitochondrial

content can indicate stressed or dying cells. Gene expression data were log-normalized using the NormalizeData function with a

Continued
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scale factor of 10,000. The data were then scaled and centered using the ScaleData function. Doublets were identified and removed

using scDblFinder (version 1.18.0)38 and DoubletFinder (version 2.0).39 Cells with high doublet scores as determined by these

methodswere excluded. An overview of the scRNA preprocessing workflow, including the filtering criteria and steps taken to process

the data, is summarized in Figure S1A. The characteristics of the scRNA-seq data after preprocessing are presented in Figure S1E.

Dimensionality reduction and clustering
After preprocessing, samples were merged without integration using Seurat’s merge function, as there were no significant batch ef-

fects observed between samples collected at different time points (See Figure S1C). Highly variable features (genes) were identified

using the FindVariableFeatures function with the ‘vst’ method, selecting the top 2,000 genes for downstream analyses. Principal

component analysis (PCA) was performed using the RunPCA function on the scaled data. The top 20 principal components were

selected based on the elbow plot and the percentage of variance explained for further analysis. Uniform Manifold Approximation

and Projection (UMAP) was employed for visualization of the data in two-dimensional space using the RunUMAP function with

the selected principal components.

Cell clustering was performed using Seurat’s FindNeighbors and FindClusters functions. The FindNeighbors function was run us-

ing the top 20 principal components to construct a shared nearest neighbor (SNN) graph. Clustering was conducted with the

FindClusters function using a resolution parameter of 0.8, resulting in 21 distinct clusters.

Differentially expressed gene (DEG) analysis
After preprocessing and clustering, differential expression analysis was performed to identify marker genes for each cluster using

Seurat (version 4.0.1).37 The FindAllMarkers function was employed with the following parameters: minimum fraction (min.pct) of

0.5, log fold change threshold (logfc.threshold) of 1, and using the non-parametric Wilcoxon rank-sum test. p-values were adjusted

for multiple comparisons using the Bonferroni correction. Genes were considered significantly differentially expressed if they met the

criteria of adjusted p-value <0.05 and absolute average log fold change (|avg_log2FC|) >1.

Gene ontology (GO) over-representation analysis
To gain insights into the biological functions of the marker genes, GO over-representation analysis was conducted using the clus-

terProfiler package (version 4.0.5).40 For each cluster, the list of marker genes was converted to Entrez IDs using the bitr function

from the org.Mm.e.g.,.db package (version 3.13.0).41 The enrichGO function was used with default parameters and GO terms

with adjusted p-values less than 0.05 were considered significantly enriched. Adjusted p-values were calculated using the

Benjamini-Hochberg method to control the false discovery rate.

Cell type annotation and validation
Cell identities were assigned based on the expression of knownmarker genes. Marker genes for each cluster (listed in Table S1) were

analyzed using Enrichr42 and curated from relevant literature. Based on this analysis, 21 clusters weremanually annotated as follows:

Fibroblasts (Fib.1 to Fib.6), Endothelial Cells (Endo.1 to Endo.7), Macrophages (MC.1 to MC.3 and MC/B-cells), B Cells, T Cells,

Smooth Muscle Cells, and Neutrophils. To validate the clustering results, we employed CelliD (version 1.12.0),43 an unbiased cell

identity recognition tool. CelliD calculates cell identities based on SingleR methodology and a built-in reference of mouse cell types.

The results from CelliD were consistent with our manual annotations, confirming the accuracy of our clustering and cell type

assignments.

Identification of cell types affected by aging perturbations
To identify cell types affected by aging, we employed Augur (version 1.0.3),27 a computational method that prioritizes cell types based

on their molecular response to a biological perturbation. In this study, we focused on aging as the perturbation, comparing cells from

three different age groups: 3, 12, and 24 months. Augur quantifies the separability of cells from different time points within each cell

type usingmachine learning classifiers. For each cell type, we applied the calculate_auc function with default parameters to generate

an Area Under the Curve (AUC) score. This score reflects the classifier’s ability to distinguish cells from different age groups, with an

AUC score of 0.5 indicating random separability and 1.0 indicating perfect separability. To further investigate the differential changes

between time points, we used a permutation-based test as described in the Augur paper.27 This test was applied to compare the

magnitude of changes in cell type separability between different aging periods (e.g., 3 months vs. 12 months and 12 months vs.

24 months). The permutation test generates a null distribution of AUC differences by randomly permuting the labels for the experi-

mental time points and recalculating the AUC differences across permutations. We then compared the observed AUC differences to

the null distribution to identify cell types with significant age-related changes in their transcriptomic profiles. In addition to the default

analysis, we explored the effects of parameter tuning on our results. We adjusted the number of trees in the random forest classifier

(from 100 to 500), varied the number of features to consider at each split (mtry from 2 to 5), and changed the minimum number of

samples required to split a node (min_n, set to both 0 and 10). These parameter configurations were applied to evaluate whether

the AUC scores and the rank of cell types changed. While these adjustments resulted in slight differences in AUC values, the overall

rank and biological interpretation remained consistent, indicating that our conclusions about cell-type-specific aging responseswere

robust across parameter settings (See Figure S6).
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Using this combined approach of default and parameter-tuned analyses, we not only quantified the impact of agingwithin each cell

type but also confirmed the consistency of the results across different classifier settings. This enabled us to assess the robustness of

our findings regarding the dynamics of aging across early and late stages.

Gene set enrichment and pathway analysis
Gene set enrichment analysis was performed using AUCell (version 1.20.2) to score pathway activity in individual cells. Based on the

normalized expression matrix by Seurat, the AUCell_buildRankings function ranked gene expression for each cell, and the

AUCell_calcAUC function calculated the area under the curve (AUC) values for predefined gene sets. Myocardial fibrosis, heart fail-

ure, inflammation gene sets were obtained from theDisGeNET44 database. The senescence-associated secretory phenotype (SASP)

gene sets were sourced from the SenMayo gene set.2

Hierarchical clustering analysis
We performed hierarchical clustering on the log-fold change matrix of the DEGs using the Ward.D2 method. Distances between

genes were calculated using Euclidean distance, and the resulting dendrogram was used to identify distinct clusters of DEGs that

exhibited similar expression patterns across aging. To determine the optimal number of clusters, we used the elbow method using

the fviz_nbclust function in factoextra.45 The elbow point was used to select the number of clusters (k). Gene expression heatmaps

were generated using the ComplexHeatmap46 package. The rows of the heatmap represent the DEGs, and columns correspond to

the time points. Heatmaps were annotated with the number of genes in each cluster, and color gradients were used to indicate log2

fold changes. For each identified gene cluster, we performed Gene Ontology (GO) enrichment analysis using the enrichGO function

from the clusterProfiler (version 4.0.5).40 GO terms with an adjusted p-value <0.05 were considered significantly enriched, and the

results were visualized in bar plots.

Cell–cell communication analysis
Cell–cell communication between cell types was assessed using CellChat (version 1.6.1),47 which infers and analyzes intercellular

communication networks based on known ligand-receptor interactions. The normalized expression data and cell type annotations

were input into CellChat. Significant interactions were identified using default parameters, with interactions reaching p % 0.05

considered significant. The communication networks were visualized using the netVisual_circle function, displaying the number

and strength of interactions between cell types.

Transcriptional regulatory network analysis
To analyze transcriptional regulatory networks during non-cardiomyocyte (non-CM) aging, we employed the SCENIC workflow

(version 1.3.1).29 SCENIC integrates single-cell gene expression data to infer regulons—transcription factors (TFs) and their target

genes. First, the co-expression network was inferred using GRNBoost2,57 identifying genes co-expressed with TFs and separating

targets into positively and negatively correlated groups. Next, RCisTarget (version 1.10.0) performed cis-regulatory motif analysis

using the cisTarget databases (mm10 refseq_r80 v9 database) to select significantly enriched motifs among the co-expression mod-

ules. The TF-gene modules and target gene predictions were integrated to construct regulons. AUCell (version 1.20.2)29 was then

used to score regulon activity in each cell by calculating the AUC based on gene expression rankings. Regulons with TFs showing

significant changes in expression (log fold change) during aging were identified to depict the impact of aging on transcriptional reg-

ulatory networks.

To investigate changes in transcriptional regulatory networks during aging, we employed linear mixed models (LMMs) to identify

transcription factors (TFs) with significant shifts in average activity. LMMs account for both fixed effects (aging) and random effects

(variability within and between cell types), thus handling the hierarchical structure of the data. We used the lme449 package (version

1.1–35.5) to fit the LMMs. The activity scores of TF regulons, calculated by AUCell in the SCENIC workflow, served as the response

variable. Themodels included age as a fixed effect and random intercepts for cell type and individual sample to account for cell-type-

specific variability and inter-individual differences.

Single-cell ATAC-seq data analysis
Sequencing reads from scATAC-seq experiments were processed using Cell Ranger ATAC (version 2.1.0).58 The cellranger-atac

count pipeline was used with default parameters to align reads to the mouse reference genome (mm10, refdata-cellranger-arc-

mm10-2020-A-2.0.0) and generate fragment files for each sample.

Quality control and preprocessing
Analyses were conducted using the Signac package (version 1.12.0).50 Gene annotations were obtained from the EnsDb.Mmuscu-

lus.v7951 database. Quality control metrics were calculated to filter out low-quality cells. Cells were retained if they met the following

criteria: nucleosome signal <4, transcription start site (TSS) enrichment score >3, blacklist ratio <0.05, peak region fragments be-

tween 3,000 and 30,000 and percentage of reads in peaks R15%. An overview of the scATAC preprocessing workflow, including

the filtering criteria and steps taken to process the data, is summarized in Figure S1B. After preprocessing, samples were merged

without integration using Seurat’s merge function, as there were no significant batch effects observed between samples collected
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at different time points (See Figure S1D). The characteristics of the scATAC-seq data after preprocessing are presented in Figure S1F.

Cells not meeting these criteria were excluded from further analysis to ensure data quality and reliability.

Dimensionality reduction and clustering
The preprocessed scATAC data were normalized using term frequency-inverse document frequency (TF-IDF) transformation. We

identified top features (peaks) using the FindTopFeatures function with a minimum cutoff of ‘q0’, which selects all features with

non-zero counts. Singular value decomposition (SVD) was performed on the top features to reduce the dimensionality of the dataset

and compute latent semantic indexing (LSI) components using the RunSVD function. UMAPwas employed for non-linear dimension-

ality reduction using the RunUMAP function on the significant components from SVD. Clustering was performed using the Louvain

algorithm via the FindNeighbors and FindClusters functions with a resolution parameter of 1.2. This clustering approach mirrored the

procedure used in the scRNA-seq analysis.

Cell type annotation via label transfer
Cell types in the scATAC-seq data were annotated by transferring labels from the scRNA-seq dataset using Seurat’s

FindTransferAnchors and TransferData functions. This method identifies correspondences between the two datasets based on

shared features, enabling the recognition of the 21 cell clusters corresponding to major non-cardiomyocyte (non-CM) cell types.

Our downstream analysis focused on major subpopulations of fibroblasts (FBs), endothelial cells (ECs), and macrophages (MCs).

Differential accessibility analysis
Peak calling was performed using MACS2 (version 2.2.9.1)52 for clusters with more than 100 cells. Differentially accessible

regions (DARs) among cell types and subtypes were identified using the FindMarkers function in Signac and Seurat, conducting a

differential accessibility (DA) test with default parameters. Peaks were considered significantly differentially accessible if they had

p-values <0.05 and log fold change >0. For cell types or subtypes with fewer than 2,000 DARs, peaks were ranked based on their

p-values, and the top 2,000 most significant peaks were selected as representative DARs for further analysis.

Motif enrichment and variability analysis
Motif enrichment analysis was performed to identify overrepresented transcription factor binding motifs in the differentially acces-

sible peaks. A hypergeometric test was used to assess the probability of observing each motif at the given frequency by chance.

The JASPAR 2020 non-redundant vertebrate motif database53 was utilized as a reference. We annotated the genomic locations

of DARs using ChIPseeker (version 1.36.0),54 categorizing them into genomic features such as promoters, introns, and exons. Motif

variability among cells was inferred using chromVAR (version 1.22.1),55 which calculates deviations inmotif accessibility across cells.

Differentially active motifs between cell types were identified, providing insights into the regulatory dynamics.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
Statistical analyses were conducted using R software (version 4.3.1). Unless otherwise stated, values are expressed asmean ± stan-

dard error of the mean (SEM) from two biologically independent samples. For differential gene expression analysis, the non-para-

metricWilcoxon rank-sum test was used as implemented in Seurat’s FindAllMarkers function. p-values were adjusted using the Bon-

ferroni correction for multiple testing. Genes with adjusted p-values <0.05 were considered statistically significant. In the cell–cell

communication analysis, interactions with p-values %0.05 were deemed significant. For differential accessibility analysis in

scATAC-seq data, peaks with p-values <0.05 and log fold change >0 were considered significantly differentially accessible.

Statistical significance levels are denoted as follows, p-value <0.05: statistically significant (*), p-value <0.01: highly significant (**),

p-value <0.001: strongly significant (***).
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