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Abstract: The first case of coronavirus disease 2019 (COVID-19) in Saudi Arabia was reported on
2 March 2020. Since then, it has progressed rapidly and the number of cases has grown exponentially,
reaching 788,294 cases on 22 June 2022. Accurately analyzing and predicting the spread of new
COVID-19 cases is critical to develop a framework for universal pandemic preparedness as well as
mitigating the disease’s spread. To this end, the main aim of this paper is first to analyze the historical
data of the disease gathered from 2 March 2020 to 20 June 2022 and second to use the collected data
for forecasting the trajectory of COVID-19 in order to construct robust and accurate models. To
the best of our knowledge, this study is the first that analyzes the outbreak of COVID-19 in Saudi
Arabia for a long period (more than two years). To achieve this study aim, two techniques from
the data analytics field, namely the auto-regressive integrated moving average (ARIMA) statistical
technique and Prophet Facebook machine learning technique were investigated for predicting daily
new infections, recoveries and deaths. Based on forecasting performance metrics, both models were
found to be accurate and robust in forecasting the time series of COVID-19 in Saudi Arabia for the
considered period (the coefficient of determination for example was in all cases more than 0.96) with
a small superiority of the ARIMA model in terms of the forecasting ability and of Prophet in terms of
simplicity and a few hyper-parameters. The findings of this study have yielded a realistic picture
of the disease direction and provide useful insights for decision makers so as to be prepared for
the future evolution of the pandemic. In addition, the results of this study have shown positive
healthcare implications of the Saudi experience in fighting the disease and the relative efficiency of
the taken measures.

Keywords: COVID-19; data analytics; Times series; ARIMA; Prophet; baseline; modeling; prediction

1. Introduction

The COVID-19 pandemic is the most significant global crisis since the second world
war. The disease is currently spreading across the globe at a surprisingly faster rate,
affecting more than 213 countries, infecting more than 545,900,772 people and leading to
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6,343,950 deaths worldwide as of 22 June 2022 according to the World Health Organization
(WHO) [1].

COVID-19 is an infectious disease caused by the emergence of the new coronavirus
in Wuhan, China, in December 2019. Four to five days after a person contracts the virus,
symptoms typically appear. However, in some cases, the onset of symptoms can take up
to two weeks. Some individuals never even exhibit any symptoms. The most common
symptoms of COVID-19 are fever, cough, shortness of breath, fatigue, shaking chills,
muscle pains, headaches, sore throats, runny or stuffy noses, and issues with taste or
smell (Figure 1). If a patient has some of the symptoms presented in Figure 1, they are
asked to test immediately. Saudi Arabia adopted the two tests approved by the American
Food and Drug Administration (FDA) for diagnosing COVID-19, namely the Reverse
Transcription Polymerase Chain Reaction (RT-PCR) and Antigen tests. RT-PCR is also
called a molecular test. It detects the genetic material of the virus using a lab technique
called reverse transcription polymerase chain reaction. A medical expert will take a fluid
sample from the back of a patient’s nose by inserting a nasal swab into his nostril. When
properly conducted by a medical specialist, RT-PCR tests are quite accurate; however, the
quick test may miss some cases. If the patient is infected with a virus at the time of the test,
results will reveal its presence. Even when the patient is no longer sick, the test may still be
able to find remnants of the virus. The Antigen test detects certain proteins in the virus.
This test is fast but it is less accurate than PCR. There is a higher likelihood of false-negative
results, which means it is possible to have the viral infection but have a negative result.
Depending on the circumstances, the medical professional might advise performing an
RT-PCR test to confirm a negative antigen test result.

Figure 1. COVID-19 Symptoms.

The disease symptoms encountered in Saudi Arabia were found to be common and
similar to those encountered worldwide. As illustrated in Figure 1, such symptoms subside
in a few days to weeks. However, a small percentage of infected persons develop severe
illnesses and lose the ability to breathe on their own. In extreme circumstances, their
organs fail, which can be fatal. The disease effect depends on the age and health of the
infected individual. In fact, people who have cardiac illness, chronic obstructive pulmonary
disease, asthma, high blood pressure, or weakened immune systems may experience severe
problems. In some cases, the COVID-19 virus can cause death. In addition to the previous
health consequences, the spread of the disease has also led to severe effects on social and
economic systems [2–4]. In fact, due to stopping many economic activities, several persons
have lost their jobs and many companies have closed. The disease’s spread dynamics can
be explained by several factors including the demographic distribution of the population,
the efficiency of the public healthcare system, the mitigation countermeasures taken by
local health authorities and the availability of vaccines, among other factors. The COVID-19
pandemic’s evolution, like that of earlier pandemics, is not entirely random. The path of
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the disease looks like a life cycle, with the outbreak followed by an acceleration phase, an
inflection point, a deceleration phase, and finally a stop or termination. The occurrence
of novel variants of the virus such as Omicron or Delta, as well as other factors such
as the organization of vaccination campaigns, may be all linked to the disease spread.
Due to preventative measures, such as lockdowns and social distancing, the disease life
cycle may differ from one country to another, and various countries may be in different
phases at a given moment. In the same country, the disease might sometimes present
several features depending on the region, most likely as a result of sociological and climatic
factors. Research is currently being undertaken using various mathematical models to
forecast the progression of the pandemic and to characterize its dynamics in order to aid
in understanding its trajectory through time. The Susceptible-Infectious-Removed (SIR)
class of compartmental modelling techniques, developed by Kermack and McKendrick [5]
almost a century ago, is one of those popular models. SIR has played a key role in
treating infectious diseases and continues to do so. The “Susceptible”, “Infectious”, and
“Removed” percentages of a given population are divided into compartments. These
compartments are related by dynamic interactions that are represented by non-linear
ordinary differentials (ODEs). Authors in [6–8] used SIR models to forecast the COVID-19
outbreak, respectively, in India, Algeria and Saudi Arabia. The simulation results showed
the necessity of interventions in flattening the disease propagation curve, delaying the
peak, and lowering the fatality rate.

In order to predict the spread of COVID-19, it was discovered that the “econometric
models” family of models was effective. The time series Auto-Regressive-Integrated-
Moving-Average (ARIMA) model is the most well-known member of this family. The
prevalence and incidence of COVID-19 were predicted by the authors in [9] using the
ARIMA model and the Johns Hopkins epidemiological data. Authors in [10–14] performed
forecasting of the spread of the COVID-19 pandemic using the ARIMA prediction model
under current public health interventions, respectively, in Saudi Arabia, Kuwait, Egypt,
Korea and Morocco. The prediction accuracy of the ARIMA model was found to be
acceptable and adequate. Authors in [15] came to the conclusion that the ARIMA model,
when compared to the AR (Auto Regression) model, provides the best match for predicting
new cases in India. The authors of [16] sought to create the best models to anticipate new
daily instances. The daily new cases in India and the US were fitted using ARIMA and
a hybrid ARIMA model. In India, the ARIMA model’s predictive values were the most
accurate; however, in the US, the hybrid ARIMA model performed better.

As an alternative to epidemiological and time series models, machine learning models
showed potential in predicting COVID-19, as they did for modeling other outbreaks.
References [17–20] included an overview of research using mathematical, machine learning
and Deep Learning models to detect, diagnose, or forecast COVID-19. Authors in [21–24]
used Support Vector Machine, variants of Recurrent neural network (RNN) and variants
of long-short term memory (LSTM) for predicting COVID-19. It was found that these
algorithms were effective due to the non-linear nature of how they handle the datasets.

References [25–27] trained the Facebook Prophet model in order to examine and
predict the number of COVID-19 cases and fatalities based on the previously available data.

From the above literature review, a plethora of techniques from the field of statistics,
data science, machine learning and artificial intelligence [28] have been used for COVID-19
prediction. To the best of the authors’ knowledge, the accuracy of the time-series and
machine learning models are sensitive to the case study as well as to the time window
covered by the utilized datasets. Saudi Arabia is a country of rapid economic growth,
visited annually by millions of Muslim people for performing Hajj and Umrah and hosting
immigrants from different countries, cultures and religions. Saudi Arabia also has a
large surface territory exhibiting various climatic conditions. Therefore, Saudi Arabia
includes several patterns making it a suitable case study that can represent Arabic, Muslim,
developing and Oil-Producer countries. In addition, Saudi Arabia has had a relatively
successful experience in mitigating the disease.
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For the reasons cited above, this study’s main aim is to investigate statistical and
machine learning-inspired time series approaches for modeling/analyzing the spread of
COVID-19 in Saudi Arabia in terms of numbers of confirmed, recovered and death cases.
More specifically, ARIMA and Facebook’s Prophet approaches were developed and then
compared. In addition, healthcare implications regarding the Saudi experience in facing
the disease will be analyzed according to the time-line evolution and more particularly
regarding the events related to the countermeasures taken. Saudi Arabia announced on
Monday 13 June 2022, that it is relaxing the restrictions on the use of face masks in enclosed
spaces with the exception of the Grand Mosque in Mecca and the Prophet’s Mosque in
Medina, as well as medical facilities, public gatherings, sporting events, flights, and public
transportation. This study aims to evaluate the future short-term impacts of such a decision.

The rest of this paper is structured as follows. In Section 2, a data description and the
proposed methods are introduced. Detailed experiments are outlined in Section 3.

2. Materials and Methods
2.1. Data Description

The datasets used in this study were collected from the official website of Saudi
Ministry of Health [29] and from the dashboard (/www.https://covid19.moh.gov.sa/,
accessed on 1 August 2022). It contains the daily number of confirmed, recovered and
death cases from 2 March 2020 to 22 June 2022.

Table 1 shows data samples and Figures 2–4 depict the daily confirmed (blue), recover-
ies (green) and deaths (red) cases of COVID-19 in Saudi Arabia from 2 March 2020 to 22
June 2022.

Table 1. COVID-19 Data in Saudi Arabia: Confirmed, Recovered, and Deaths.

Date Confirmed Recovered Deaths

3 February 2020 1 0 0
... ... ... ...

4 July 2020 1247 1429 58
... ... ... ...

13 July 2020 2692 7718 40
... ... ... ...
... ... ... ...

18 January 2022 5928 4981 2
... ... ... ...

22 June 2022 1002 1059 1

Figure 2. COVID-19 Confirmed Cases in Saudi Arabia from 2 March 2020 to 22 June 2022.

/www.https://covid19.moh.gov.sa/
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Figure 2 shows that the first confirmed case was reported on 2 March 2020. The
number of confirmed cases reached 1002 cases on 22 June 2022. The highest daily number
of confirmed cases is 5928 cases, and it was reported on 18 January 2022.

Figure 3. COVID-19 Recovered Cases in Saudi Arabia from 2 March 2020 to 22 June 2022.

Figure 3 shows that the highest daily number of recovered cases is 7718 cases, and
it was reported on July 13, 2020. The number of recovered cases reached 1059 cases on
22 June 2022.

Figure 4. COVID-19 Deaths in Saudi Arabia from 2 March 2020 to 22 June 2022.

Figure 4 shows that the highest daily number of deaths is 58, and it was reported
on 4 July 2020. The number of deaths reached 1 case on 22 June 2022. If we analyze the
spread of COVID-19 in Saudi Arabia, as it is shown in Figures 2–4, we can clearly detect
that there was a fluctuating behavior which may reveal dynamics that are difficult to model.
Overall, there have been 789,296 confirmed cases, 770,077 recovered and 9195 deaths in
Saudi Arabia, up to the date of writing this manuscript (23 June 2022). In Table 2, the major
events that marked the pandemic in Saudi Arabia are shown. The majority of these events
were highly related to the mitigating actions taken by the Saudi authorities. In addition, the
evolution of the numbers of new infections and deaths occurring after those events may
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show that the measures taken exhibited positive effects on the disease spread. Moreover,
other actions’ effects appeared after a few days or even weeks.

Table 2. Major events in Saudi Arabia during the COVID19 Pandemic.

Event Date

First case of COVID19 2 March 2020
Umrah suspension 3 March 2020
Test for COVID19 available for anyone with symptoms 5 March 2020
School closures 9 March 2020
Mosque closures 15 March 2020
Flights suspended to number of countries 9 March 2020
Gov/private suspension 14 March 2020
Domestic flights suspension 20 March 2020
Riyadh, Makkah and Madinah lockdown-curfew (6 am–3 pm) 23 March 2020
Jeddah areas lockdown-24 h curfew 24 March 2020
Makkah lockdown 25 March 2020
Emergence of the omicron variant 17 June 2020
COVID-19 Vaccines 15 December 2020
Reopening of schools and universities 28 August 2021
Saudi Arabia ended its COVID-19 restrictions (including the requirement
to wear face masks in closed places, proof of vaccination on the Ministry of
Health-approved Tawakkalna app is no longer required to enter establish-
ments, events, activities, airplanes and public transport)

13 June 2022

2.2. Models

COVID-19 time series (TS) data, like other TS, is simply a collection of data recorded
over a period of time usually regularly spaced (daily, weekly, monthly, . . .). TS are often
analyzed to understand the past, in order to predict the future (forecast). TS are mainly
employed for helping managers and policy makers to make well-informed and sound
decisions. TS can be univariate when its values are taken by a single variable at a periodic
time instance over a period, and multivariate when its values represent multiple variables
at the same periodic time instances over a period. TS data are different to cross-sectional
data which record individuals, companies or others at a single point in time.

A natural temporal ordering exists in TS data. The observations made in the past,
often known as lag times or lags, are frequently of interest to data scientists. Observations
that are close in time tend to be correlated, which is a characteristic of most time series that
sets them apart from cross-sectional data. The aim is often to estimate how TS will evolve in
the future, with time serving as the independent variable. In general, TS data can be found
in any area of applied science and engineering that uses temporal observations, including
social sciences, finance, economics, epidemiology, and more. There are a few factors such
as trend, stationarity, seasonality and correlation that are relevant when dealing with time
series. When there is a long-term rise or fall in the data, the situation is referred to as a
trend. Stationarity is another crucial property of time series. If a time series’ statistical
characteristics remain constant across time, it is said to be stationary. Its mean and variance
are constant, and its covariance is time-independent [30]. Seasonality is the existence of
recurring fluctuations that occur at predetermined regular periods of less than a year. The
term “autocorrelation” describes the similarity of data as a function of their distance in time.

A time series analysis is the process of examining time series data to extract useful
statistics and other aspects of the data, and time series forecasting is the process of using
a model to project future values based on observed values. The “No-Free-Lunch Theo-
rem” [31] states that no forecasting technique is optimal for every time series. Instead, the
data analysis expert must choose a forecasting methodology from one of the three families
of forecasting techniques listed below: (1) machine learning, (2) statistical models, and
(3) hybrid methods [32].
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In this paper, for forecasting the COVID-19 time series, we developed and compared
three approaches based on ARIMA, Facebook’s Prophet and baseline models known to be
relatively simple and possessing good performance. Details of these models are provided
in the following sections.

2.2.1. ARIMA Model

The ARIMA model is the acronym of the Autoregressive Integrated Moving Aver-
age model. It is also known as the Box–Jenkins model. The ARIMA model is the most
widely used approach to univariate time series forecasting. It is composed of three key
components [33].

• AR (Autoregression): This component of ARIMA expresses the dependent relationship
between the current observation and a number of lagged observations.

yt = C + α1yt−1 + α2yt−2 + · · ·+ αpyt−p (1)

where C is a constant; yt−1, yt−2, yt−p are the lags (past values); and α1, α2, αp are lag
coefficients which are estimated by the model.

• I (Integrated): This term refers to the use of a differencing operator of raw observations
(e.g., subtracting an observation from an observation at the previous time step) in
order to make the time series stationary.

• MA (Moving Average): This part of the ARIMA model describes the dependency
between the current observation and a residual error from a moving average model
applied to lagged observations.

yt = εt + β1εt−1 + β2εt−2 + · · ·+ βqεt−q (2)

where εt, εt−1, εt−q are white noise terms for the respective lags, i.e,. yt−1, yt−2, yt−q;
β1, β2, βq are the parameters of the model.

The ARIMA model is characterized by the order of each of these components. Following
the notation ARIMA (p, d, q), the model parameters are described as follows [34]:

• p is the number of autoregressive lags included in the model;
• d is the order of differencing used to make the data stationary;
• q is the number of moving average lags included in the model.

There are many heuristics for choosing the parameters of an ARIMA model. One popu-
lar method is the Box–Jenkins method, which is an iterative multistep process (Figure 5). In
order to determine p and q, the autocorrelation function (ACF) and partial autocorrelation
function (PACF) provide guidance for the autoregressive and moving average orders that
are appropriate for the considered model. In this paper, a grid search of hyperparameters
is used to tune the ARIMA model.

Figure 5. The general procedure to fit an ARIMA model.
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For further details about ARIMA models and time series, the interested reader can
refer to the following books: [35–37].

2.2.2. Facebook’ Prophet

On February 23, 2017, Prophet, a method for predicting time series data, was published
by Facebook and made available for use. Prophet is a robust forecasting technique. It
can be easily used by users without a strong background in time series forecasting. This
tool helps produce accurate forecasts for a wide range of problems. Based on an additive
model, Facebook’s Prophet fits non-linear patterns with weekly and yearly seasonality as
well as considering holidays patterns. The Prophet model includes in general three key
elements [38]:

y(t) = n(t) + p(t) + h(t) + εt (3)

where:

• n(t): is the trend function which models non-periodic changes in the value of the time
series;

• p(t): represents periodic changes (seasonality);
• h(t): represents the effects of holidays
• εt : an error term .

Two potential trend models are implemented by the Prophet library for n(t). The
first type is referred to as nonlinear, saturating growth. It takes the shape of a logistic
growth model.

n(t) =
C

1 + e−k(t−m)
(4)

where,

• C: carry capacity;
• k: growth rate;
• m: offset parameter.

The latter, however, is a straightforward Piece-wise Linear Model with a stable rate
of growth.

n =


β0 + β1x x ≤ c

β0 − β2c + (β1 + β2)x) x > c
(5)

where,

• c: trend change point;
• β: trend parameter (can be tuned as per requirement).

For situations without excessive growth, the latter is the ideal option. Due to weekly
and yearly seasonality, the seasonal component p(t) offers a flexible model of periodic
variations. Fourier series are used in Prophet’s yearly seasonality model.

p(t) =
N

∑
n=1

(
ancos

(
2Πnt

P

)
+ bnsin

(
2Πnt

P

))
(6)

where,

• P: regular period expected for considered time series;
• It was discovered that N = 10 and N = 3, respectively, for yearly and weekly seasonality,

work effectively for the majority of cases. A model selection method such as AIC
could be used to automate the selection of these parameters.

Black Fridays and other predictable exceptional days with irregular schedules are
represented by the component h(t). The data analyst must supply a customized set of
events in order to make use of this feature. The information that was not taken into account
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by the model is represented by the error term which reflects the model robustness εt. A
uniformly distributed noise is typically used to model it [38].

Prophet, a novel time series forecasting model from the machine learning family,
adheres to the streamlined framework shown in Figure 6.

Figure 6. Forecasting using Facebook’s Prophet.

2.3. Metrics for Evaluation

The following three criteria (Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE) and the coefficient of determination (R2)) were applied to each case (confirmed,
recovered and deaths) to compare the goodness-of-fit yielded by the investigated models:

MAE =
1
n

n

∑
t=1
|ŷt − yt| (7)

RMSE =

√
1
n

n

∑
t=1

(ŷt − yt)2 (8)

R2 = 1− ∑n
t=1(ŷt − yt)2

∑n
t=1(ȳ− yt)2 (9)

where yt is the actual value, ŷt is the predicted value and ȳ =
1
n

n

∑
t=1

yt is the mean of yt.

These three measures can be used to assess a model’s performance and depict its accuracy
very well. These three metrics can be computed for each model and compared to each
other to identify the most accurate one. The fit is better when MAPE and MSE have smaller
values and the coefficient of determination has a value close to 1 which represents the
ideal fit.
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3. Results

Table 3 lists the hardware and software specifications involved in the experiments
conducted in this work. Table 3 shows the packages used during the implementation of
ARIMA, Prophet and baseline models.

Table 3. Hardware and Software Specifications.

Details

Processor Intel (R) Core (TM) i7-8750H CPU @ 2.20GHz 2.21 GHz
Storage 512GB SSD
Display Display1: Intel (R) UHD Graphics 630; Display2:NVIDIA GeForce GTX 1050 Ti
Software Python 3.10.5, Anaconda (Jupyter Notebook 6.4.8, Spyder 5.1.5)
libraries pandas, numpy, matplotlib, statsmodels, sklearn.metrics, fbprophet

3.1. Results of ARIMA Models

Checking the stationarity data is the initial step in time series forecasting because the
majority of TS models rely on this assumption. Furthermore, compared to non-stationary
data, the stationary TS theory is better established and simpler to put into practice. In time
series analysis and forecasting, visualization is crucial. Line plots of datasets, for instance,
can help to detect patterns, cycles, and seasonality. As a result, this can affect the model
choice. The stationarity can be more easily seen on a line plot. If a time series’ statistical
characteristics do not alter over time, it is classified as stationary. Its mean and variance are
therefore constant, and its covariance is not affected by time [30]. To examine stationarity in
TS data, a variety of statistical methods are available. The Augmented Dickey–Fuller (ADF)
test, also referred to as a unit root test, is one of the most popular types [33]. In this test, we
assume that TS is not stationary, which is the null hypothesis. A Test Statistic and a few
crucial values for various confidence levels are included in the test results. We can reject
the null hypothesis and declare that the series is stationary if the test statistic is less than
the critical value. Equivalently, the null hypothesis can be rejected if the p-value is less than
0.05. For statistical modeling techniques to succeed, the TS must be stationary. If a TS is
non-stationary, differencing (the d parameter of ARIMA (p,d,q)) provides a straightforward
technique to make it stationary. Finding p and q for ARIMA is the next task after TS becomes
stationary. The ARIMA (p,d,q) model can be expressed mathematically as follow [39]:

Φ(L)p∆dyt = ϕ(L)q∆dεt (10)

∆dyt = yd−1
t − yd−1

t−1 (11)

where yt is the time series; p, d, and q are, respectively, the order of AR, order of integration
(number of differences) and MA components of the ARIMA model. ∆d is an operator to
make yt stationary; L is defined as the lag operator; Φ(L)p is the lag polynomials of order p,
q is the number of time lags of the error term to regress on, ϕ is defined analogously to Φ
and εt is a white noise.

Through Auto Correlation (ACF) and Partial Auto Correlation (PACF) graphs, we
can learn some important properties of the TS data since the ACF measures the linear
relationships between observations at different lags and PACF measures the partial correla-
tion between two points at a specific lag of time. Alternatively, a widely used method for
estimating the three parameters required in ARIMA(p,d,q) is the grid search procedure. In
order to discover how to tune the ARIMA model using grid search of hyperparameters,
the reader can refer to [33]. Once p, d and q are carefully chosen and fixed, one has to fit
the data to the ARIMA which has to be finalized so as to make predictions on new data.
The skill and the capability of the forecast model can be evaluated through performance
measures (See Section 2.3).
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3.1.1. Prediction of Confirmed Cases

When referencing Figure 2 of the confirmed cases in Saudi Arabia from 2 March 2020
to 22 June 2022, it can be observed that the TS is stationary. This observation can be proved
by the results of the Augmented Dickey–Fuller test shown in Figure 7. Here, in order to
optionally specify the number of lags considered in the ADF test, the Akaike’s Information
Criterion ‘AIC’ is used through the optional parameter autolag = ‘AIC’ ( in the python
function adfuller()) . Usually, to identify the best balance between variance and bias, the
complexity of the models is penalized using the AIC information criteria.

In Figure 7, the rolling mean of a time series for time point t for a window size w
is simply the mean of the previous w time steps and the rolling standard deviation for
the same example is defined as the standard deviation of the previous w time. If the
rolling statistics do not fluctuate appreciably over time, a time series is said to be “visually
stationary”.

Figure 7. Test of Stationarity of Confirmed Cases data.

From Figure 8, it can also be concluded that the studied time series comprising
confirmed cases in Saudi Arabia from 2 March 2020 to 22 June 2022 is stationary (interpret
the test using the p-value or the critical values returned by the test: test statistic is lower
than the critical value).

Figure 9 shows the predictions of COVID-19 case trends with the ARIMA model. As
is shown in Figure 9, the model fits the confirmed cases in Saudi Arabia very well, with
the values and the curve itself being very close to the actual ones. Table 4 shows the three
metrics of the ARIMA model. MAE and R2 of ARIMA used for confirmed cases are greatly
improved compared to the baseline model with relatively low values. However, the RMSE
of the ARIMA model has slightly worse performance than the baseline model.
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Figure 8. ACF and PACF for Cases data.

Figure 9. Predicted vs. Expected values for confirmed cases.

Table 4. Evaluation of ARIMA used for confirmed cases.

RMSE MAE R2

ARIMA (1, 0, 7) 148.228 74.747 0.983
Baseline 123.215 95.674 0.734

3.1.2. Prediction of Recovered Cases

When observing Figure 3 of recovered cases in Saudi Arabia from 2 March 2020 to
22 June 2022, it can be noted that the studied TS is stationary. This observation can be
proved by the results of the Augmented Dickey-Fuller test shown in Figure 10.

From Figure 10, it can be concluded that the studied time series comprising recovered
cases in Saudi Arabia from 2 March 2020 to 22 June 2022 is stationary (test statistic is lower
than critical value; therefore, the considered data require some transformations). By looking
at the autocorrelation function (ACF) and partial autocorrelation (PACF) plots (Figure 11),
the numbers of AR and/or MA terms that are needed can be tentatively identified.
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Figure 10. Test of Stationarity of Recovered Cases data.

Figure 11. ACF and PACF for Recovered Cases data.

Figure 12 shows the predictions of COVID-19-recovered cases with the ARIMA model.
As is shown in Figure 12, the model fits the recovered cases in Saudi Arabia very well, with
the values and the curve itself being very close to the actual ones. Table 5 shows the three
metrics of the ARIMA model. R2 of ARIMA used for recovered cases is greatly improved
compared to the baseline model with relatively low values. However, the RMSE and MAE
of the ARIMA model has slightly worse performance than the baseline model.

Table 5. Evaluation of ARIMA used for recovered cases.

RMSE MAE R2

ARIMA (1, 1, 0) 239.438 104.609 0.971
Baseline 83.906 68.791 0.861
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Figure 12. Predicted vs Recorded values for recovered cases.

3.1.3. Prediction of Deaths

When observing Figure 4, representing the deaths cases in Saudi Arabia from 2 March 2020
to 22 June 2022, it can be noted that the studied TS is non-stationary. This observation can
be proved by the results of the Augmented Dickey–Fuller test shown in Figure 13.

Figure 13. Test of Stationarity of Deaths Cases data.

From Figure 13, it can be concluded that the studied time series comprising deaths
cases in Saudi Arabia from 2 March 2020 to 22 June 2022 is non-stationary (test statistic
is greater than critical value; therefore, the TS data need to be stationary). By looking
at the autocorrelation function (ACF) and partial autocorrelation (PACF) plots of the
differenced series (Figure 14), the numbers of AR and/or MA terms that are needed can be
tentatively identified.
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Figure 14. Test of Stationarity of Deaths Cases data after differencing.

By looking at the autocorrelation function (ACF) and partial autocorrelation (PACF)
plots of the differenced series (Figure 15), we can tentatively identify the numbers of AR
and/or MA terms that are needed. In this case, an initial order for the model will be (1, 0, 1);
however, after performing a grid search for hyperparameters of the ARIMA model, we
found that the best fitted order is (0, 0, 9). Using the latter model provided the forecast
illustrated in Figure 16.

Figure 15. ACF and PACF for Deaths Cases data.
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Figure 16. Predicted vs. Actual values for death cases.

Figure 16 shows the predictions of COVID-19 death cases with the ARIMA model.
As is shown in Figure 16, the model fits the death cases in Saudi Arabia very well, with
the values and the curve itself being very close to the actual ones. Table 6 shows the three
metrics of the ARIMA model. R2 of ARIMA used for death cases is greatly improved
compared to the baseline model with relatively low values. However, the RMSE and MAE
of the ARIMA model have slightly worse performance than the baseline model.

Table 6. Evaluation of ARIMA used for death cases.

RMSE MAE R2

ARIMA (0, 0, 9) 1.782 1.544 0.964
Baseline 1.542 1.166 0.913

3.2. Results of Prophet

When using Prophet under a Python environment, an instance of the Prophet class
should be created and then its fit and predict methods are recalled. The input to Prophet is
always a data frame with the following two columns: ds and y. The ds (datestamp) column
should be of a format of a date or a timestamp expected by Pandas while y column must be
numeric, and represents the variable expected to be forecasted.

3.2.1. Prediction of Confirmed Cases

Figure 17 shows the relationship between the original values (black dots) of confirmed
cases in Saudi Arabia from 2 March 2020 to 22 June 2022 and the predicted values (blue
solid line). The predicted and the actual values are close to one another as seen in Figure 17.
We can also see the forecast components (Figure A1) by using the Prophet.plot-components
method. This method provided the analysis of the trend of COVID-19 confirmed cases
in Saudi Arabia until 22 June 2022, on a weekly and monthly basis. Table 7 shows the
three performance metrics of the Prophet model. R2 of the Prophet used for confirmed
cases is clearly better than the baseline model (0.977 against 0.734 in a scale ranging from 0
to 1 which corresponds to the ideal fit). In terms of RMSE and MAE, the Prophet model
provided a slightly worse performance than the baseline model.
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Figure 17. Predicted and actual values of Confirmed Cases.

Table 7. Evaluation of the Prophet model used for confirmed cases.

RMSE MAE R2

Prophet 175.447 120.728 0.977
Baseline 123.215 95.674 0.734

3.2.2. Prediction of Recovered Cases

Figure 18 indicates the relationship between the original values (black dots) of recov-
ered cases in Saudi Arabia from 2 March 2020 to 22 June 2022 and the predicted values
(blue solid line). The predicted and the original values are similar, as seen in Figure 18. The
trend of recovered cases, in a weekly, and monthly analysis of COVID-19 in Saudi Arabia
until to 22 June 2022 is shown in Figure A2. Table 8 shows the three metrics of the ARIMA
model. R2 of ARIMA used for the recovered cases is greatly improved compared to the
baseline model with relatively lower values. However, the RMSE and MAE of the ARIMA
model have worse performance than the baseline model.

Table 8. Evaluation of Prophet model used for recovered cases.

RMSE MAE R2

Prophet 303.542 207.460 0.931
Baseline 83.906 68.791 0.861

3.2.3. Prediction of Deaths

Figure 19 shows the relationship between the actual (black dots) deaths in Saudi
Arabia from 2 March 2020 to 22 June 2022 and the predicted values (blue solid line). The
predicted and the original values are very similar, as seen in Figure 19. The trend of death
cases, on a weekly and monthly basis, is shown in Figure A3. Table 9 shows the three
metrics of the ARIMA model. MAE and R2 of the Prophet model used for death cases are
obviously improved compared to those of the baseline model. The RMSE of the Prophet
model has slightly worse performance than the baseline model.
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Figure 18. The predicted and original values of Recovered Cases.

Figure 19. The predicted and actual values of Death Cases.

Table 9. Evaluation of Prophet model used for death cases.

RMSE MAE R2

Prophet 1.626 1.151 0.981
Baseline 1.542 1.166 0.913

4. Discussion

To date, over 615 million confirmed cases have been reported, and over 6 million
people died worldwide. The physical and mental health of people is seriously impacted
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by COVID-19, which also has an impact on everyone’s lifestyle and the world economy.
Given that COVID-19 is currently a serious global crisis, it is essential to fully comprehend
the pandemic curve and forecast its future trajectory. An accurate COVID-19 forecast may
have various advantages. It can assist in preserving lives, minimizing losses of financial
resources, managing medical and human resources in healthcare, and reviving the world
economy. The total number of cases of COVID-19 (or any other disease) is a common
example of time series data, and there are currently a variety of analysis techniques to
help identify patterns or forecast trends in such data. Time series data analysis has been
proven to be successful with statistical methods (AR, MA, ARIMA, etc.), machine and
deep learning methods (ANN, LSTM, etc.), and many other methods. Some of these
techniques have already provided significant insights into the dynamics of infectious
disease transmission and its surveillance. Records of new infections, recoveries and deaths
are often released daily, which makes the task of predicting the future trend of the disease
having lower performance when using data-demanding techniques such as deep learning
(DL). However, statistical techniques such as ARIMA and straightforward machine learning
(ML) techniques such as Facebook’s Prophet continue to show good performance. To the
best of the authors’ knowledge, using ARIMA and Facebook’s Prophet with more than
two years of COVID-19 pandemic data in Saudi Arabia represents the first study of its
category. This relatively long period was marked by several events such as the vaccination
campaigns organized over many countries, the emergence of new variants of the virus
as well as the relaxation of lockdown measures and mask wearing. For every time series
forecasting task, establishing a baseline is crucial. Usually, before starting any forecasting
exercise, a baseline model should be first investigated. In that sense, the baseline model
offers a basis for comparison for any additional forecasting approach. The newly developed
approach should be modified or replaced if its performance is at the same level or below
the baseline model. The persistence or the “Zero Rule” algorithm, also called the naive
model, is the most often used. It uses the value at the current time step (t) to predict
the expected outcome at the next time step (t + 1) [33]. In this study, Facebook’s Prophet
and the ARIMA models are compared to the naive model. Table 10 includes the RMSE,
MAE, and R2 metrics for each model used in this study. The table clearly shows that the
ARIMA model outperforms both Facebook’s Prophet and the baseline models at predicting
confirmed and recovered cases of COVID-19 since it has the highest R2 and the lowest
MAE. However, the Prophet model performs better at predicting death cases. The ARIMA
and Prophet model performances are comparable with almost similar results. Both models
predict values that are practically equal to the actual values, which means they may be
very useful in anticipating the number of confirmed, recovered and death cases in the
future and provide individuals helpful recommendations on how to improve the COVID-
19 mitigating measures. The optimal performance that ARIMA is capable of relies on
a particular tuning parameter range. With a wide parameter selection, the model may
identify better parameters for each of the cases under consideration; however, the amount
of time and computational cost required to implement it may significantly increase. Under
these conditions, data scientist may sacrifice an amount of the accuracy for quicker and
simpler implementation of the model by using a restricted range of parameter selection. A
reduced range of parameters for faster grid search (or similar approaches) can thus be used
to speed up computing in some circumstances where the model accuracy does not need
to be exceptionally high. Regarding the Prophet model, it has been found to present clear
benefits and drawbacks. In fact, it requires the least amount of design and computing effort
among ARIMA (for confirmed, recovered, and death cases). Furthermore, in this research,
it has been found to be robust to missing data in a time series.

Although a fair comparison should be conducted on the same data set, covering the
same period and the same location, results obtained in this study have been compared
to those of three previous works in Saudi Arabia. The work in reference [10] used the
ARIMA model but covered the beginning of the pandemic (From 2 March 2020 to 20 April
2020). The disease spread has after that shown many fluctuations. Our work is more
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beneficial to the work in [10] since it covered a period of more than two years where
many aspects and virus variants appeared and highly impacted the disease dynamics.
Reference [40] developed several growth models for the case study of Saudi Arabia. It
obtained a coefficient of determination comparable to the performances of our present
study. However, those models failed in predicting the probable end date of the disease.
The work in [41] provided performances worst than those obtained in this study although
it used sophisticated deep learning techniques shown to be data demanding.

In this study, the Prophet and ARIMA models produced reliable findings. However,
given the complexity of the COVID-19 situation which exhibited concerns with virus
mutation, population density, international travel, human behaviors, etc., the Prophet and
ARIMA models are not well suited to handle such data trends. They occasionally perform
worse than the baseline model in terms of RMSE and MAE (see Table 10). To overcome this
issue, either multivariate time series forecasting or hybrid techniques may be implemented.
Multivariate forecasting can be used to improve the thoroughness of the experiment and
attain the best results since more data sources can improve accuracy. Recently, hybrid
models ([42–44]) were used in time series analysis. For improved outcomes, these models
typically incorporate machine learning techniques such as ANN (Artificial Neural Network)
and statistical models including ARIMA. Future research can examine these models to
improve their ability to forecast COVID-19.

Table 10. Evaluation of all models.

RMSE MAE R2

Confirmed Cases
ARIMA (1, 0, 7) 148.228 74.747 0.983

Prophet 175.447 120.728 0.977
Baseline 123.215 95.674 0.734

Recovered Cases
ARIMA (1, 1, 0) 239.438 104.609 0.971

Prophet 303.542 207.460 0.931
Baseline 83.906 68.791 0.861
Deaths

ARIMA (0, 0, 9) 1.782 1.544 0.964
Prophet 1.626 1.151 0.981
Baseline 1.542 1.166 0.913

5. Conclusions

When compared to other countries, the patterns from the most recent statistics demon-
strated that the Saudi Arabian authorities’ quick and effective actions to restrict the pan-
demic imparted a beneficial effect, although numerous parameters affected the pandemic
spreading in the country. This relatively successful experience in mitigating the disease pro-
vided this research with insights to deeply analyze and predict the time series data collected
from official authorities. The evolution of COVID-19 using the Facebook’s Prophet and
ARIMA models was investigated. The forecast was based on the data from 2 March 2020
until 22 June 2022. The results from these two models are not quantitatively different, since
both models predicted a significant decrease in recovered cases and deaths in Saudi Arabia
for the next month. For both models, the confirmed cases expected next month are in
flux. These findings would aid the Saudi authorities in better containing the COVID-19
outbreak in the future. The results indicate that, although a one-size-fits-all approach does
not exist, the Prophet model prevails since it is the easiest model to use and requires almost
no manual effort. However, in the case of COVID-19, there are multiple issues involved
such as virus mutation and human behaviors and such data cannot fit well in the Prophet
model. These influential factors that may affect the disease dynamics need to be further
investigated in a multi-variate time series context. Another improvement that should be
investigated is the use of hybrid models which aggregate the benefits of different models,
more specifically statistical and machine learning approaches.



Healthcare 2022, 10, 1874 21 of 27

Author Contributions: Conceptualization, R.Z., S.B. and M.A.A.A.-N.; Data curation, S.C.V.; Formal
analysis, R.Z., S.B., M.A.A. and S.A.; Funding acquisition, R.Z.; Investigation, S.B. and M.A.A.;
Methodology, S.K.; Project administration, F.D.A.; Resources, F.D.A., F.A., F.S.A. and B.K.A.; Software,
S.K. and S.C.V.; Supervision, R.Z. and F.D.A.; Validation, S.K. and M.A.A.A.-N.; Visualization, S.K.;
Writing—original draft, S.K.; Writing—review & editing, R.Z., S.K. and S.B. All authors have read
and agreed to the published version of the manuscript.

Funding: This research has been funded by Scientific Research Deanship at University of Ha’il—Saudi
Arabia through project number RG-20 214.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created in this study. Data sharing is not applicable
to this article.

Conflicts of Interest: All authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ACF Auto Correlation
ADF Augmented Dickey-Fuller
AIC Akaike’s Information Criterion
ANN Artificial Neural Network
AR Auto Regression
ARIMA Autoregressive Integrated Moving Average
FDA Food and Drug Administration
MA Moving Average
MAE Mean Absolute Error
LSTM Long-Short Term Memory
ODE Ordinary Differential Equation
PACF Partial Auto Correlation
PCR Polymerase Chain Reaction
R2 Coefficient of determination
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
RT PCR Reverse Transcription Polymerase Chain Reaction
SIR Susceptible Infectious Removed
TS Time Series



Healthcare 2022, 10, 1874 22 of 27

Appendix A

Figure A1. Components of Confirmed Cases.

To see the forecast components, one can use the Prophet−plotcomponents method.
By default you’ll see the trend and seasonality. Here, you can see the components (trend,
seasonality) of confirmed cases in KSA from 2 March 2020 till 22 June 2022.
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Figure A2. Components of Recovered Cases.

To see the forecast components, one can use the Prophet−plotcomponents method. By
default, the trend and seasonality can be viewed. Here, you can see the components (trend,
seasonality) of recovered cases in KSA from 2 March 2020 till 22 June 2022.
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Figure A3. Components of Deaths Cases.

To see the forecast components, one can use the Prophet−plotcomponents method. By
default, the trend and seasonality can be viewed. Here, you can see the components (trend,
seasonality) of death cases in KSA from 2 March 2020 till 22 June 2022.
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Appendix B

(a) (b) (c)

Figure A4. Predicted Future Cases (30 Days) using Prophet. (a) Daily cases. (b) Recovered cases.
(c) Deaths cases.
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This figure shows the predicted values of confirmed, recovered and death cases in
KSA for next month (from 23 June 2022 till 22 July 2022) using Prophet model.
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