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The diversity of MSP1 in both Plasmodium falciparum and P. vivax is presumed be associated to parasite immune evasion. In
this study, we assessed genetic diversity of the most variable domain of vaccine candidate N-terminal PvMSP1 (Block 2) in field
isolates of Manaus. Forty-seven blood samples the polymorphism of PvMSP1 Block 2 generates four fragment sizes. In twenty-
eight of them, sequencing indicated seven haplotypes of PvMSP1 Block 2 circulating among field isolates. Evidence of striking
exchanges was observed with two stretches flanking the repeat region and two predicted recombination sites were described.
Single nucleotide polymorphisms determined with concurrent infections per patient indicated that nonsynonymous substitutions
occurred preferentially in the repeat-rich regions which also were predicted as B-cell epitopes. The comprehensive understanding
of the genetic diversity of the promising Block 2 associated with clinical immunity and a reduced risk of infection by Plasmodium
vivax would be important for the rationale of malaria vaccine designs.

1. Introduction

P. vivax remains more widely distributed than P. falciparum
and is a potential cause of morbidity and mortality amongst
the 2.85 billion people living at risk of infection [1]. P. vivax
malaria accounts for 70% of reported cases in Americas [2].
In Brazil, 202.767 cases of P. vivax infection were registered
in 2012, corresponding to 85.4% of total cases [3].

At this way, it is extremely important to develop new
methods and intervention strategies to block its transmission.
One of these alternatives is vaccination, but extensive genetic
diversity in natural parasite populations is a major obstacle
for the development of an effective vaccine against the human
malaria parasite, since antigenic diversity limits the efficacy of
acquired protective immunity to malaria [4].

Among the major vaccine candidate antigens, the mero-
zoite protein 1 (MSP1) has been highlighted in several studies

which demonstrated their immunogenic potencial [5–13]. In
studies conducted in a river side communities, Portuchuelo
(Rondonia State), Rio Pardo (Amazonas state), and Ramal
do Granada (Acre) from Brazil, using recombinant proteins
of Pv-MSP1, it was identified that preferentially the asymp-
tomatic patients had high antibody titers against N-terminal
portion of Pv-MSP1, suggesting that protection to this infec-
tion may be associated with the presence of these antibodies.
Moreover, the acquisition of the repertoire of antibodies
against highly polymorphic antigens occurs in individuals
exposed to parasite and the clinical protection is induced only
after repeated infections [8, 14–16].

The MSP1 gene consists of seven interallele conserved
blocks flanked by six variable blocks. Variable blocks show
extensive sequence variations consisting of a number of
substitutions, insertions, deletions, and varying numbers of
short tandem repeats. Between these polymorphic region is
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Figure 1: Map showing Manaus, in Central Brazilian Amazon.

the Block 2 repetitive region, from 100 to 400 base pairs (bp)
[17].

Merozoite surface protein 1 is the most commonly used
genetic marker for the determination of the genetic diversity
of the malaria parasite. In some variable blocks, the variation
is dimorphic; nonetheless, Block 2 represents an exception to
dimorphism and has been used in genetic diversity studies of
P. falciparumMSP1 [18–23]. Still, P. falciparumMSP1 Block 2
has been considered as a potential candidate target for vaccine
design [6, 13, 24].

Despite the high potential of the protein, there are no
similar studies with ortholog of P. vivax, the exception is
the study performed in western Brazilian Amazon [16]. In
order to evaluate genetic diversity of P. vivax MSP1 Block-
2, PCR amplification was performed with 47 field isolates
of P. vivax collected in 2009. DNA sequencing analysis was
carried out with the positive PCR products. Alleles identified
by DNA sequencing were aligned and polymorphism anal-
ysis was done by using ClustalW tool in the MEGALIGN
program (DNASTAR/Lasergene). We still assess multiplicity
of infection to examine distribution of synonymous and
nonsynonymous nucleotide substitutions in predicted T and
B epitopes.The purpose of this studywas to explore the extent
of genetic variation in MSP1 Block 2 in central Brazilian
Amazon for studying as amolecularmarker in epidemiologic
investigations and to help in vaccine design.

2. Material and Methods

2.1. Blood Samples Collection. Blood samples were collected
in 2009 from forty-seven febrile patients diagnosed with
malaria for P. vivax infection and treated at the Tropical
Medicine Foundation of Amazonas a tertiary care centre in
Manaus (Figure 1). The study received ethical approval from
the Institutional Review Board of the Federal University of
Amazonas (Ethical Approval Number 3640.0.000.115-07).

2.2. PCRAmplification Products. GenomicDNAwas purified
by the Charge Switch gDNA 50–100 𝜇L Blood kit (Invitro-
gen), according to the manufacturer’s instructions. We used
one pair of oligonucleotide designed by Bastos and colleagues
[16] that amplified the longest stretch of variable sequence
contained in ICB2-5, Block 2.The primer sense 5-CTCTGA-
CAAAGAGCTGGAC-3 was designed based on sequence
Block 2 of isolate Belem and annealed to nucleotides 517∘ to
534∘, and antisense 5-GCTCCTTCAGCACTTTCACGCG-
3 annealed to nucleotides 968∘ to 989∘.

The amplification reactions for Block 2 were performed
in a total reaction volume of 50 𝜇L, supplemented with 1 pM
primers, 100 𝜇M dNTPs, 1.5mM MgCl

2
, 1 U of Taq poly-

merase, and 100 ng of DNA template. The cycling was as
follows: one cycle of 95∘C for 5min, followed by 36 cycles
of 94∘C for 1min, 63∘C for 1min, 72∘C for 1min, and a last
cycle of 72∘C for 10min. The amplicons were visualised in
a 1% agarose gel stained with ethidium bromide. The band
sizes were determined calculating the ratio of the distance
of known bands of 100 bp molecular weight ladder. The PCR
products were purified by QIAquick Gel Extraction (Qiagen)
according to instructions and frozen at −80∘C until shipping
for sequencing.

2.3. Sequencing. The amplicons of all isolates were shipped
on dry ice for sequencing in the facilities of the Program
for Technological Development in Tools for Health-PDTIS-
FIOCRUZ, located in Salvador, BA, Brazil. The sequencing
reactions were performed in automatic DNAMegaBace 1000
by the dideoxy method. Only the amplicons with optimal
concentration were sequenced. The high-quality sequences
were chosen by the Phred program. The electrophero-
grams were visualised and edited in EditSeq of Lasergene
packet, version 4.05 (DNAStar). Nucleotide and amino acid
sequences were compared with the corresponding accessible
sequences of GenBank by Blast-P from the National Centre
for Biotechnology Information to select those PvMSP1 Block
2 sequences which had higher similarities, more than 90%.
From each isolate, the consensus PvMSP1 Block 2 sequences
were edited, comparing duplicate sequencing of both sense
and antisense strands. They were submitted to GenBank
search to select two or three other PvMSP1 sequences
worldwide with themost similarity and one or two sequences
with less similarity, according to Blast-P estimation. The
nucleotide sequences were deposited in GenBank under
submission number HQ200196-HQ200223.

2.4. Mixed Clonal Infections by Cloning of PCR Products. The
purified fragments were ligated into the TOPO cloning vec-
tor (Invitrogen). The ligations were conducted at a tempera-
ture of 16∘C overnight (following the manufacture protocol)
and then introduced into Escherichia coli (Top-10 strain) by
thermal shock. Nine colonies were expanded and extracted
using a mini prep kit (Qiagen). The purified plasmids
were then sequenced using the sense and antisense primers
targeting Block-2 PvMSP1. The amplicons were sequenced
in an automatic DNA MegaBace 1000 using the dideoxy
method.
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Table 1: Repeats and their patterns of codon degeneracy in Pv-MSP1 Block 2 haplotypes.

Tripeptide repeats Haplotypes Pattern of codon degeneracy
1 2 3 4 5 6 7

SSE 11 11 11 11 11 11 11 1-AGT-TCG-GAA

SSG 0 31,2,3 13 31,2,3 21,3 or 4 31,2,3 13
1-TCT-TCT-GGA
2-TCA-TCT-GGC
3-TCG-AGT-GGC
4-TCC-TCT-GGA

SSV 0 21,2 0 21,2 21,2 21 0 1-AGT-TCT-GTT
2-TCA-TCT-GTC

SST 1 1 1 1 1 1-TCT-TCA-ACA
SSA 1 1-AGT-TCT-GCT

SSN 12 11 11 11 1-TCG-TCT-AAC
2-TCA-TCT-AAC

SSP 1 1-TCT-TCT-CCA
SSS 1 1-TCA-TCT-TCT

GST 13 11 22 21 11 31 33
1-GGT-TCA-ACT
2-GGT-TCG-ACT
3-GGT-TCA-ACA

Numbers indicate howmany repetitions one tripeptide repeat occurred in each haplotype.The overwritten numbers distinguish synonymous mutations in the
codon sequences of repeat presented in each haplotype, according to column Pattern of codon degeneracy.

2.5. Gene Analysis. The sequences were analyzed using the
PHRED and CAP3 software tools for the correction of possi-
ble errors and to provide the electropherograms graphics. For
the investigation of multiple clones of P. vivax infection, we
aligned the various sequences using the EditSeq program and
the MegAlign Lasergene package, version 4.05 (DNA Star).
The editing of the sequences, conceptual translations, and
amino acid alignmentswere performedusing the EditSeq and
MegAlign programs of the DNAStar package (Lasergene). A
multiple alignment was performed with two isolates (10 and
15) using MUSCLE and gaps were considered as lost data.
Using Blast to check for similarity among them the haplo-
types of isolate 10 were most similar to GQ890943 sequence
from Thailand and haplotypes of isolate 15 with AF435623
from Brazilian Amazon.

2.6. Prediction of Linear B- and T-Cell Epitopes. B-cell epitope
predictions were carried out on 24 amino acids of PvMSP1
Block 2 using the BepiPred 1.0 Server [25]. Putative epitopes
that were 12 amino acids in length were generated with a
specificity of 75%. Subsequently, differential binding of T-cell
epitopes spanning the Block 2 fragments was predicted using
the ProPred MHC class II binding peptide prediction server
[26] for four MHC class II HLA alleles, including HLA—
DRB1∗0101, DRB1∗0401, DRB1∗0701, and DRB1∗1101.

3. Results

3.1. Polymorphism of PCR Products of PvMSP1 Block 2. Of
forty-seven blood samples, the polymorphism of PvMSP1
Block 2 generated one fragment size which ranged between

500, 530, 550, and 600 base pairs, as seen by agarose gel
(Figure 2(a)). The 500 bp fragment was the most frequent
among isolates (Figure 2(b)). Sequencing of Block 2 was
performed with twenty-eight P. vivax of these isolates and
deposited inGenBankunder submissionnumberHQ200196-
HQ200223. Seven haplotypes could be classified by short
tandem in positions 10∘ to 70∘ amino acids (Figure 2(c)) and
their prevalence was determined (Figure 2(d)).

Only an apparent tandem degenerating 5-mer repeat
(GSXXX) has been described in the Block 2 [17]. One more
detailed analysis showed that this degenerating 5-mer repeat
may be expanded into two types of short tandem repeats.
The first presented in the form of a degenerating tripeptide
repeat SSX (where X stands for E, G, T, A, N, P, V, or S
residue) and a conserved tripeptide repeat GST (Table 1).
Some of these repeatswere synonymous substitutions as is the
case of SSG (four combinations of degenerate codons), SSV,
and SSN (both with two combinations) and lastly the codon
degeneracy of GST had three types. Some of them ranged in
numbers of repetitions (Table 1). These short tandem repeats
were present in all haplotypes and facilitated the distinction
of them.

The haplotypes identified in Manaus were similar to
amine acid sequences from other regions (Table 2). The
most predominant sequence, the haplotype number 1
(Figure 2(d)), was very similar to Belem one and other
southeastern Asian sequences from Bangladesh, Vanuatu,
and Sri Lankan. The mild sequences, haplotypes number 2,
number 3, and number 4, were also detected in South Korea,
Bangladesh, Thailand, and Brazil. The minor sequences
number 5, number 6, and number 7 were also detected in
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Figure 2: Analysis of diversity of PCR products of PvMSP1 Block 2. (a) Agarose gel showing fragment size of PCR products of the PvMSP1
Block 2 in 17 samples. Based on 100 bp molecular weight ladder (MW), four different types of fragments ranging, and 500, 530, 550 between
600 base pairs were defined by calculating the ratio of the distance of known bands (right side). (b) Distributions of fragments per isolate and
frequencies of each type of fragment are shown. (c) Based on amino acid sequences alignment of PvMSP1 Block 2, seven haplotypes could
be classified by short tandem in positions 10∘ to 70∘. At the top of the alignment is consensus sequence. (d) Prevalence of seven haplotypes
among field isolates in Manaus.

the same localities. Still, the sequence PvMSP1 Block 2 of
haplotype number 7 was similar to that of strain Sal-1. The
existence of the same MSP1 Block 2 haplotypes should be
important for the rationale of malaria vaccine designs.

3.2. Intra-Allele Recombination in PvMSP1 Block 2. Of twen-
ty-eight amino acid sequences, evidence of striking exchan-
ges was observed with two stretches flanking the repeat
region of isolate 80 (Figure 3(a)). The upstream sequence
IKDDIG-LEAFITKNKETTISNINKLSDENAKRG-QSTNT
was similar to isolate 2. In the same isolate, another

recombination event was observed in the downstream
sequence SSTNANYEAKKIIYQAIY-GIFTNQLEEA similar
to isolate 59.

Two predicted recombination sites, GCGCAAA (or its
complementary sequence CGCGTTT) and TCCAGCAC (or
its complementary reverse sequence GGTCGTGG), were
observed (Figure 3(b)). The last predict recombination site
is very similar to the Chi sequence (GCTGGTGG), which
locally increases recombination in Escherichia coli and is
merged of CAGGTG, a predicted recombination site from
hypothetical progenitors and RO33 and MAD20 haplotypes



Journal of Immunology Research 5

Consensus - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

10 20 30 40 50 60 70 80 90 10
0

12
0

13
0

Isolate 2
Isolate 80 - - - - - - - - -
Isolate 59 

IKDD IG ILEAF ITKNKET ISN INKL ISDENAKRGGQSTNTTNGTGAQ Q TASSET QSS SS SGG GS GS SP STNANYEAKK IIYQA IYKG IF

IKDD IG ILEAF ITKNKET ISN INKL ISDENAKRGGQSTNTTNGTGAQTDGHQPTTASSETSSGSSVSSVSGSSGLGSSGTG STG TG STGN ISPSQARAD SPSTG TDYNAKK IIFQAVY ST I
IKDD IGKLEAF ITKNKET ISN INKL ISDENAKRGSQSTNTTNGTGAQNNAAQGSTGNTETGTQSSASSNTLSGGAGTTVVG TSSPA PAA PS STNANYEAKK IIYQA IYKG IF
IKDD IG ILETF ITKNK IT IKN ISDL IIAENKKRSGHPTTTTNGAGTQPANGS IAAASSETTQ ISGSSNSGSTGHGSSNSGSSG TG STGNGQ SPPA TADA SSTNANYEAKK IIYQA IYNG IF

(a)
190 200 210 220 310 320 330

T A A T G G A A C C G G A G C G C A A A C C G A T G G T C A T C A A C C T A C G A C G G G T T C A A C T G G C A C G G G T T C A A C T G G C A A T A T A

T A A T G G A A C C G G A G C G C A A A A C A A T G C T G C T C A A G G T T C A A C G G A A C A T C T T C T C C A G C A C C T G C T G C T C C A T C T T

G C G G C A G C C A G T T C G G A A A - - - - - - C T A C T C A A A T T T C - - T G G G A C A A T C T C C T C C A G C A A C T G C T G A T G C A T C T T

· · ·

· · ·

· · ·

(b)

Figure 3: Evidence of intra-allele recombination in PvMSP1 Block 2. (a) Alignment of sequences of isolates (2, 80, and 59) showing exchange
of homologues sequences. The segment of isolate 80 could have been originated from others isolates; blue rectangle shows exchange between
isolates 2 and 80, red rectangle exchange between isolates 59 and 80 and (b) DNA-SP 5.0 analysis determined two putative recombination
sites (dark and red boxes) in the PvMSPI gene for generating the isolate 80.
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Figure 4: Occurrence of nucleotide diversity by non synonymous and synonymous mutations in polymorphic region of Block 2. (a) Using
Blast, the sequence GQ890943 was similar to the haplotypes of isolate 10. Only nucleotide substitutions were shown in the panel with colonies
of E. coli containing PCR products of Block 2 from isolate 10 cloned into plasmids. (b) The same was evaluated with PCR products of Block
2 from isolate 15. The sequence AF435623 was selected using BLAST and only nucleotide substitutions were shown in the panel. (c) The
sequences encompassing Block 2, (interspecies conserved blocks (ICB) 1 and 2) were represented. Prediction of linear B-cell epitopes was
carried out and underlined by bars [25]. Differential binding of T-cell epitopes was predicted for all HLA-DRB alleles accessible into the
ProPred usingMHC class II binding peptide prediction server [26].We observed several T-cell epitopes (blue letters) with residue anchor (red
letter). Location of nonsynonymous substitutions was represented by black dots. Superior sequence (GQ890943) was similar to haplotypes
of isolate 10. Inferior sequence (AF435623) was similar to haplotypes of isolate 15.

of P. falciparum [29]. These data demonstrate a predicted
recombination site in P. vivaxMSP1.

3.3. Single Nucleotide Polymorphisms in PvMSP1 Block 2. In
order to evaluate the occurrence of multiclonal infections,
sequencing of PCR products cloned into plasmid was per-
formed in the isolates 10 and 15 (Figure 4). The sequence
GQ890943 was similar to the haplotypes of isolate 10 and
served as template. Only nucleotide substitutions were shown
in the panel with colonies of E. coli containing PCR products
of Block 2 from isolate 10 cloned into plasmids (Figure 4(a)).
Eight haplotypes were identified from nine colonies of isolate
10 that presented at least a single nucleotidemutation. In total,
eleven dimorphic nucleotide substitutions were observed of
which five were by nonsynonymous substitutions (asterisk in
Figure 4(a)).

The same was evaluated with PCR products of Block 2
from isolate 15. The sequence AF435623 was selected using
BLAST and only nucleotide substitutions were shown in the
panel (Figure 4(b)). Five haplotypes were identified in the
isolate 15 after determination of sixteen single nucleotide
polymorphisms (SNPs), whereas five of them were by non-
synonymous substitutions (asterisk in Figure 4(b)).

Punctual substitutions in polymorphic Block 2 of the
MSP1 gene were random and frequent events but prefer-
entially distributed in the repeat rich region. We observed
that nonsynonymous substitutions were more frequent in the
B-cell epitopes (underlined letters) than in T-cell epitopes
with residue anchors (blue and red letters) within of Block 2
(Figure 4(c)). The occurrence of nonsynonymous substitu-
tions supports the idea that Block 2 is continually evolving
under immune selective pressure.
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Table 2: Similarities between amino acid sequences of Manaus haplotypes and others regions.

Haplotype Similarity Accession number Origin References

1 accession number: AEA77298

96% AAN86210 Bangladesh [17]
100% AAN86238 Brazil [17]
93% AAN86243 Vanuatu [17]
90% AAA63427 (Belem) Para (Brazil) [27]
99% CAA40355 Sri Lankan [27]

2 accession number: AEA77275 100% AAN86221 Thailand [17]
100% ADF48579 Thailand [28]

3 accession number: AEA77282
99% AAN86235 Thailand [17]
100% ABV25925 Acre (Brazil) [16]
94% AAN86229 Bangladesh [17]

4 accession number: AEA77292
100% ABV25923 Acre (Brazil) [16]
100% ADF48559 Thailand [28]
94% ADF48816 South Korea [28]

5 accession number: AEA77272 100% AAN86231 South Korea [17]
100% AAN86237 Brazil [17]

6 accession number: AEA77293 99% ADF48790 Thailand [28]
99% AAN86213 Thailand [17]

7 accession number: AEA77276

99% AAM22837 South Korea Han and Chai, 2001, unpublished
82% EDL45115 (sal-1) Salvador Carlton J., unpublished
92% AAN86232 Bangladesh [17]
100% AAN86246 Thailand [17]

Haplotypes: accession number in GenBank of amino acid sequences from haplotypes.
Similarities determined by Blast-P program.

4. Discussion

Different studies suggest that acquisition of antibodies against
the domain Block 2 of ortholog MSP1 could associate with
clinical immunity and a reduced risk of infection with
Plasmodium vivax [8, 14, 15]. Nonetheless, highly specific
antibodies against to allelic types of MSP1 Block 2 are non-
cross-reactive, and notably, this extensive allelic diversity of
MSP1 may impede the development of effective vaccines.
And hence, antibodies against multiple MSP1 Block 2 alleles
would be needed to protect against the maximum number
of parasites, taking into account the divergent sequences that
occur naturally [30].

However the alignment of several PvMSP1 alleles of the
Block 2 possessed an apparent tandem degenerating 5-mer
repeat (GSXXX) that could range from 0 to 9 repetitions [17].
Here, we present information about genetic diversity ofMSP1
Block 2 of isolates of Plasmodium vivax circulating inManaus
(Brazilian Amazon). Initially, four sizes of PCR products
ranged from 500 to 600 base pairs were amplified from
blood samples (Figure 2(b)). Nonetheless, after sequencing of
Block 2 of twenty-eight P. vivax isolates, extensive sequence
variations consisting of a number of substitutions, insertion,
and deletions and varying numbers of short tandem repeats
were found (Figure 2(c) and Table 1) such that seven distinct
variants were identified circulating in endemic area from
Manaus.These results confirm what had been suggested with
MSP1 Block 2 of P. falciparum at which the fragment size may

not be an accurate marker for genetic diversity within MSP1
Block 2 [22].

Regarding the PvMSP1 Block 2 sequences found in
Manaus, two of them were similar to major Belem and Sal-1
haplotypes, number 1 and number 7, respectively. According
to our data, Belem haplotype is predominant among P. vivax
isolates circulating in Manaus. All haplotypes identified were
common to other malaria-endemic areas (Table 2), South
Korea,Thailand, Bangladesh, Vanuatu, Sri Lankan, and Brazil
[16, 17, 27, 28, 31]. As the Block 2 region of PvMSP1 has been
considered a promising new candidate for the development
of a malaria vaccine, as it is a target of protective immunity
against P. vivax [14, 15], the existence of same MSP1 Block
2 haplotypes in different malaria endemic areas will be
important for the rationale of malaria vaccine designs.

This study also demonstrated evidence of recombination
in polymorphic Block 2 in three isolates, describing predicted
recombination sites in genome of P. vivax. One of them is
very similar to the Chi sequence, which locally increases
recombination in Escherichia coli [32]. Another predicted
recombination site would be merging to hypothetical pro-
genitors and RO33 and MAD20 haplotypes of P. falciparum
[29, 33]. Intragenic recombination during meiosis has been
proposed as an important mechanism for the generation of
new genetic variants on malaria antigens, and it was also
one of the most important factors considered to explain the
generation of new alleles in the MSP1 context [22, 34].
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Studies evaluating number of concurrent infections per
patient or MOI (multi clonal infection) have been used as
one of several measures of the impact of malaria intervention
[35]. Importantly, sequence analysis revealed Block 2 as a hot
spot for genetic variation.Thenon-synonymous substitutions
were preferentially distributed in the rich-repeat region
that contained the B-cell epitopes predicted by BepiPred
[25]. Based on genetic diversity in Plasmodium falciparum
merozoite surface proteins, nonsynonymous SNPs contribute
largely to the variability of the parasite and provide escape
from host immunity [34, 36].

In conclusion, the generation of diversity of the most
polymorphic block from orthologs MSP1 accumulates
recombination sites and multiples nonsynonymous
substitutions. Based on findings acquisition of antibodies
against the MSP1 Block 2 could associate with clinical
immunity and reduced risk of infection with Plasmodium
vivax; a comprehensive understanding of genetic variation of
the promise malaria vaccine candidate would be important
for the rationale of malaria vaccine designs.

Conflict of Interests

All authors declare that there is no conflict of interests
regarding the publication of this paper.

Authors’ Contribution

LeidianeAmorim Soares and Janáına Evangelista contributed
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