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Abstract: Accumulating studies report that microRNAs (miRNAs) are actively involved in skeletal
myogenesis. Previously, our study revealed that miR-146b-3p was related to the growth of skeletal
muscle. Here, we further report that miR-146b-3p is essential for the proliferation, differentiation,
and apoptosis of chicken myoblast. Elevated expression of miR-146b-3p can dramatically suppress
proliferation and differentiation, and facilitate apoptosis of chicken myoblast. Besides, we identified
two target genes of miR-146b-3p, AKT1 and MDFIC, and found that miR-146b-3p can inhibit the
PI3K/AKT pathway. Our study also showed that both AKT1 and MDFIC can promote the proliferation
and differentiation while inhibit the apoptosis of myoblast in chicken. Overall, our results demonstrate
that miR-146b-3p, directly suppressing PI3K/AKT pathway and MDFIC, acts in the proliferation,
differentiation, and apoptosis of myoblast in chicken.
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1. Introduction

Skeletal muscle formation is a vital life process which has always attracted increasing attention from
researchers. The development of skeletal muscle goes through the process of myoblast proliferation and
differentiation into myotubes [1]. Once the course of myoblast differentiation initiates, the proliferating
myoblasts are arrested from the cell cycle, ultimately resulting in the formation of myotubes [2].
In addition to the proliferation and differentiation, apoptosis of myoblast is also recognized as an
essential process in skeletal muscle development. Apoptosis is a form of programmed cell death,
which is a tightly regulated process [3]. Inhibition of apoptosis can lead to blockage and abnormality
in skeletal muscle development, and even worse, cause inflammation and oncogenesis [4,5].

As an intricate physiological process, skeletal muscle development is regulated by a variety of
transcription factors, miRNAs are included [6,7]. MiRNAs are a class of endogenous noncoding
small RNAs of approximately 18 to 24 nucleotides, usually complementary to the sites in the
3′ untranslated region (3′UTR) of the target messenger RNAs (mRNAs) to repress gene expression
post-transcriptionally [8,9]. Emerging studies have revealed that miRNAs are involved in the regulation
of multiple life processes such as cell proliferation, cell differentiation, embryonic development, tissue
inflammation, and so on [10–13]. In the process of skeletal muscle formation, the role of miRNAs
cannot be ignored. So far, a host of miRNAs, particularly miR-1, miR-206, and miR-133, have been
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identified to be capable of mediating the skeletal muscle development [14–19]. For instance, miR-1
and miR-133 played important roles in regulating skeletal muscle proliferation and differentiation
in cultured myoblast [14]. MiR-16-5p was able to repress myoblast proliferation and differentiation,
and promote myoblast apoptosis [20]. MiR-133a-5p, miR-29b-1-5p, miR-34b-5p, and miR-30a-3p were
characterized as important miRNAs in myoblast proliferation and differentiation [21–23].

MiR-146b was primarily established as a regulator in inflammation and cancer [24–26]. To date,
only a little research has been done on miR-146b-3p, not to mention the intensive study of its roles in
myoblast proliferation, differentiation, and apoptosis in skeletal muscle development. In our previous
RNA-seq study (accession number: GSE91060), we found miR-146b-3p was differentially expressed
in the leg muscles between the E11 and E16 of Xinghua chicken [27]. Interestingly, according to our
another preliminary study (accession number GSE62971), the expression of miR-146b-3p was of higher
abundance in chicken with low body weight than those with high body weight in no matter White
Recessive Rock or Xinghua chicken, suggesting that miR-146b-3p might be a candidate inhibitor of
chicken muscle growth [28]. Therefore, in this assay, we aim to gain insight into how miR-146b-3p acts
in the regulation of the skeletal muscle development.

The AKT1 gene, also named protein kinase B α (PKBα), is an important member of the AKT family.
More notably, AKT is universally acknowledged as a core factor in the PI3K (phosphatidylinositol
3-kinase)/AKT pathway that plays critical roles in various cellular activities such as cell proliferation,
cell differentiation, cell apoptosis, metabolism, protein synthesis, transcription, and so on [29,30].
A study demonstrated that in AKT family, AKT1 primarily promoted and sustained the myoblast
differentiation [31]. Absence of AKT1 resulted in growth retardation and apoptosis promotion [32].
Several lines of apoptotic paradigms have also highlighted the principle role of AKT1 in maintaining
cell survival and suppressing apoptosis [33–35]. Besides, based on our previous study, AKT1 appears
to be one of the candidate target genes of miR-146b-3p [28]. It is of interest to uncover the potential
interaction between AKT1 and miR-146b-3p in myoblast development.

The full name of MDFIC is MyoD family inhibitor domain containing. There is a related gene
MDFI, also known as I-mfa, which was reported to play a negative role in regulating the transcription of
MyoD family in the differentiation of fibroblast [36]. MDFIC contains a cysteine-rich C-terminal region
that shares a high degree homology with I-mfa. The construction similarity between MDFIC and
I-mfa suggests that MDFIC can be an inhibitor of myoblast differentiation. However, to our surprise,
MDFIC tended to promote cell differentiation as well as cell proliferation in our current study. Thus,
it is definitely of considerable interest to further determine how myoblast responds when MDFIC is
silenced or over-expressed.

In this study, we investigate the function of miR-146b-3p on the proliferation, apoptosis, and
differentiation of myoblast. We found that miR-146b-3p can target AKT1 and MDFIC, and suppress
PI3K/AKT pathway. In addition, we also verified the effects of AKT1 and MDFIC on myoblast
proliferation, apoptosis, and differentiation in chicken.

2. Materials and Methods

2.1. Ethics Statement

All animal experiments in this study were approved by the Animal Care Committee of South China
Agricultural University (Guangzhou, People’s Republic of China) (approval number: SCAU#0014).

2.2. Cell Culture

Chicken primary myoblasts (CPMs) were isolated from the leg muscles of 11-embryo-age chicken
and cultured in the Roswell Park Memorial Institute (RPMI)-1640 medium (Gibco, Grand Island,
NY, USA) supplemented with 20% fetal bovine serum (Gibco, Grand Island, NY, USA) and 0.2%
penicillin/streptomycin solution (Invitrogen, Carlsbad, CA, USA). The differentiation of myoblasts
was induced by RPMI-1640 medium consisting of 2% horse serum (Hyclone, Logan, UT, USA) and
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0.2% penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA). Quail muscle clone 7 (QM-7) cells
were cultured in Medium 199 basic (Gibco, Grand Island, NY, USA) with 10% fetal bovine serum
(Gibco, Grand Island, NY, USA), 10% tryptose phosphate broth solution (Sigma, Louis, MO, USA),
and 0.2% penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA). DF-1 cell lines of chicken embryo
fibroblast (DF-1 cells) were cultured in high-glucose Dulbecco’s modified Eagle’s medium (DMEM)
(Gibco, Grand Island, NY, USA) with 10% fetal bovine serum (Gibco, Grand Island, NY, USA) and 0.2%
penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA). All cells were cultured in 5% CO2 at 37 ◦C.

2.3. RNA Isolation, Complementary DNA (cDNA) Synthesis, and Quantitative Real-Time PCR (q-PCR)

Total RNA from tissues or cells was extracted using Hi Pure Total RNA Mini Kit (Magen,
Guangzhou, China) following the manufacturer’s protocol. The Prime ScriptTM RT reagent kit with
gDNA Eraser (Perfect Real Time) (TaKaRa, Otsu, Japan) was used in cDNA synthesis for mRNA.
The mRNA expression levels were detected by q-PCR with Bio-rad CFX96 instrument (Bio-Rad,
Hercules, CA, USA) using iTAPTM universal SYBR GREEN superMIX (Bio-Rad, Hercules, CA, USA).
The reference genes were U6 and GAPDH in the process of quantification of miRNA and mRNA,
respectively. All primers were designed by Premier Primer 5.0 software (Premier Biosoft International,
Palo Alto, CA, USA) and synthesized by TSINGKE Biotech (Guangzhou, China). The primers of
the q-PCR are listed in Table 1. Relative mRNA expression levels were calculated using the 2ˆ−∆∆CT

method (∆CT = CTtarget gene − CTreference gene, ∆∆CT = ∆CTtreat group − ∆CTcontrol group).

Table 1. Primers used for RT-PCR.

Gene Name Primer Sequences (5′–3′) Size (bp) Annealing
Temperature (◦C)

Accession
Number

AKT1
F: CACACGCTGACAGAAAACCG

128 60 NM_205055.1
R: AACAACTCCCCTCCGTTAGC

MDFIC
F: CAATGGCAGCAAGAAGA

126 52 XM_416018.5
R: AGAACAATGTTACAGAGGGT

Cyclin B2 F: CAGTAAAGGCTACGAAAG
133 58 NM_001004369.1

R: ACATCCATAGGGACAGG

Cyclin D1 F: CAGAAGTGCGAAGAGGAAGT
188 58 NM_205381.1

R: CTGATGGAGTTGTCGGTGTA

Cyclin D2 F: AACTTGCTCTACGACGACC
150 58 NM_204213

R: TTCACAGACCTCCAACATC

PCNA
F: GTGCTGGGACCTGGGTT

217 58 NM_204170.2
R: CGTATCCGCATTGTCTTCT

p21 F: GAAGAGTTGTCCACGATAAGC
247 58 NM_204170.2

R: TTCCAGTCCTCCTCAGTCC

CDKN1B
F: GCTGTGCTGGGCTGAA

207 58 NM_204256.2
R: GGACGAAAGGATGTGGG

Caspase-3 F: TGGCCCTCTTGAACTGAAAG
106 61 NM_204725.1

R: TCCACTGTCTGCTTCAATACC

Caspase-8 F: CCCTGAAGACAGTGCCATTT
207 61 NM_204592.2

R: GGGTCGGCTGGTCATTTTAT

Caspase-9 F: TCCCGGGCTGTTTCAACTT
270 61 XM_424580.5

R: CCTCATCTTGCAGCTTGTGC

Fas
F: TCCACCTGCTCCTCGTCATT

78 61 NM_001199487.1
R: GTGCAGTGTGTGTGGGAACT

Cyt c F: TGTCCAGAAATGTTCCCAGTGC
138 61 NM_001079478.1

R: CCTTTGTTCTTATTGGCATCTGTG

MYOD
F: GCTACTACACGGAATCACCAAAT

200 58 NM_204214.2
R: CTGGGCTCCACTGTCACTCA

MYOG
F: CGGAGGCTGAAGAAGGTGAA

320 58 NM_204184.1
R: CGGTCCTCTGCCTGGTCAT

MYHC
F: CTCCTCACGCTTTGGTAA

213 58 NM_001319304.1
R: TGATAGTCGTATGGGTTGGT

GAPDH
F: TCCTCCACCTTTGATGCG

146 50–62 NM_204305.1
R: GTGCCTGGCTCACTCCTT
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2.4. RNA Oligonucleotides and Plasmids Construction

Gga-miR-146b-3p mimic, miR-146b-3p inhibitor, mimic negative control (NC), inhibitor NC, small
interfering RNA (siRNA), and siRNA negative control (si-NC) used in this study were synthesized by
RiboBio (Guangzhou, China). The oligonucleotides sequences used in the study are listed in Table 2.

Table 2. Oligonucleotide sequences used in this study.

Sequence Name Sequences (5′–3′)

gga-miR-146b-3p mimic GGGAUACCUAAGUCAAGACG
gga-miR-146b-3p inhibitor CGUCUUGACUUAGGUAUCCC
si-AKT1 GCTGAAGAAATGGAAGTTT
si-MDFIC ATGGAAGTGGAATGCACAA

The complete CDS sequence of AKT1 and MDFIC were respectively amplified by PCR and were
cloned into the expression vector, pcDNA3.1 (Promega, Madison, WI, USA) by using the Xba I and
Xho I restriction sites through pJET1.2 cloning vector. The plasmids were named pcDNA3.1-AKT1
and pcDNA3.1-MDFIC, respectively. The segment sequence of the 3′UTR of AKT1 and MDFIC that
contained the putative gga-miR-146b-3p binding sequence were amplified, the segment sequence of
the 3′UTR of AKT1 was subcloned into Xba I and Xho I sites in the pmiR-GLO dual-luciferase while
the segment sequence of the 3′UTR of MDFIC was subcloned into Hind III and Not I sites reporter
vector (Promega, Madison, WI, USA). The 3′UTR mutant plasmids were obtained by converting the
binding site of miR-146b-3p from CCATAGG to TTCGCAA. PCR amplification of the mutants and
DPNI digestion removed the parental DNA. The primers used to construct the plasmids are listed in
Table 3.

Table 3. Primers used for plasmids construction.

Primer Name Primer Sequences (5′–3′) Size (bp) Annealing
Temperature (◦C)

pcDNA3.1-AKT1 F: CCCAAGCTTGAGACATTCCCGCCATTA
1612 61R: CCGCTCGAGAGAATCTGTGAGGCTTCCTA

pcDNA3.1-MDFIC F: CCCAAGCTTGTTAGTTCGGCTGGAGGGAG
1064 60R: CCGCTCGAGCAGCAGGCCGATAGTTCAGT

pmirGLO-AKT1-3′UTR-WT F: CCCAAGCTTAAAAAAATTAAAAAAGCC
100 55R: CCGCTCGAGCAAAAGGAAGGAGGAACC

pmirGLO-AKT1-3′UTR-MT F: AGAACTGAACATTCCCTAATAAGCGGGAGCAAA
2771 68R: TCTTGACTTGTAAGGGATTATTCGCCCTCGTTT

pmirGLO-MDFIC-3′UTR-WT F: CCCAAGCTTGGACTTTCTTTCTGTATTTAT
100 52R: TTGCGGCCGCAATTCTGCTTGTTTTAATTACA

pmirGLO-MDFIC-3′UTR-MT F: GTAATTTTCACTCCATAGGCAATCTTATAAGC
2771 68R: GCTTATAAGATTGAACGCTTAGTGAAAATTAC

Bold sequence represents restriction enzyme recognition sequence.

2.5. MiRNA Targets Prediction and RNA Hybrid Detection

miRDB (http://mirdb.org/miRDB/) was used to predict the target genes of gga-miR-146b-3p.
RNAhybrid (http://bibiserv2.cebitec.uni-bielefeld.de/rnahybrid/) detection was used to calculate the
combined minimum free energy (MFE) of gga-miR-146b-3p and the 3′UTR of AKT1 and MDFIC to
determine the binding stability of the duplex.

2.6. Cell Transfection

Transfections were performed with Lipofectamine 3000 reagent (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s protocol with at least three replications. The transfection concentration
of the oligonucleotides was 50 nM. The transfection concentration of the plasmids was followed as:
0.1 µg/well for 96-well plate, 0.25 µg/well for 24-well plate, 1 µg/well for 12-well plate, 2.5 µg/well for
6-well plate.

http://mirdb.org/miRDB/
http://bibiserv2.cebitec.uni-bielefeld.de/rnahybrid/


Cells 2019, 8, 656 5 of 19

2.7. Dual-Luciferase Reporter Assay

DF-1 cells were seeded in 96-well plates and co-transfected with plasmid of wild-type 3′UTR
or mutant 3′UTR with mimic or mimic-NC. After 48 h, the luciferase activity was detected using a
Dual-GLO Luciferase Assay System Kit (Promega, Madison, WI, USA) following its instruction. The
firefly luciferase and Renilla luminescence activities were detected using multi-function microplate
reader (Biotek, Winooski, VT, USA).

2.8. Immunofluorescence

Cells seeded in 12-well plates were fixed in 4% formaldehyde for 20 min and washed three times
with PBS for 5 min after 48-h transfection. Subsequently, the cells were treated with 0.1% Triton X-100
for 15 min and blocked with goat serum for 30 min and then incubated with MyHC antibody (B103;
DHSB, USA; 0.5 µg/mL) overnight at 4 ◦C. After that Fluorescein (FITC)-conjugated AffiniPure Goat
AntiMouse IgG (H + L) (BS50950; Bioworld, Minneapolis, MN, USA; 1:50) was added to the cells and
the cells were incubated at room temperature for 1 h. Besides, the cell nuclei were stained with DAPI
for 5 min. And lastly, Leica DMi8 fluorescent microscope (Leica, Wetzlar, Germany) was used to obtain
the images, and ImageJ software was used to measure the percentage of the total image area covered
by the myotubes.

2.9. 5-Ethynyl-2′-deoxyuridine (EdU) Assay

EdU Assay was performed to test cell proliferation using Cell-Light EdU DNA Cell proliferation
Kit (RiboBio, Guangzhou, China). CPMs and QM-7 cells were cultured in 96-well plates for transfection.
Briefly, after 48-h transfection, the cells were incubated with 50 nM EdU for 2 h at 37 ◦C; the cells were
then fixed with 4% paraformaldehyde and stained with Apollo dye solution for proliferating cells.
Nucleic acids in all cells were stained with Hoechst 33342. Leica DMi8 fluorescent microscope was
used to capture five randomly selected fields to visualize the EdU-stained cells. The proliferation rate
was the ratio of the number of EdU-stained cells to the number of Hoechst 33342-stained cells.

2.10. Flow Cytometric Analysis of Cell Cycle

CPMs or QM-7 cells were cultured in 12-well plates. After transfection for 48 h, cells were collected
and then fixed in 75% ethanol overnight at −20 ◦C. Subsequently, the fixed cells were stained with
propidium iodide (Sigma, Louis, MO, USA) (50µg/mL) containing 10µg/mL RNase A (TaKaRa, Otsu,
Japan) and 0.2% (v/v) Triton X-100 (Sigma, Louis, MO, USA), and then incubated for 30 min at 37 ◦C in
the dark. Flow cytometric analysis was performed on a flow cytometer (Beckman, Miami, FL, USA)
and data was processed using FlowJo7.6 software.

2.11. Flow Cytometric Analysis of Cell Apoptosis

CPMs or QM-7 cells were seeded in 12-well plates and after transfection for 48 h the cells were
collected. Then the cells were stained through an Annexin V-FITC apoptosis detection kit (Beyotime,
Shanghai, China) and analyzed by a flow cytometer (Beckman, Miami, FL, USA), following the
manufacturers protocol.

2.12. Western Blot Assay

Cellular proteins were extracted using ice-cold radio immunoprecipitation (RIPA) lysis buffer
(Beyotime, Shanghai, China) with 1 mM phenylmethane sulfonyl fluoride (PMSF) protease inhibitor
(Beyotime, Shanghai, China). The protein samples were separated by 10% SDS-PAGE at a voltage of
100 volts for 20 minutes and then at 120 volts for 60 minutes. Subsequently, the proteins were transferred
onto a nitrocellulose membrane (Whatman, Maidstone, UK) or a polyvinylidene fluoride (PVDF)
membrane (Bio-Rad, Hercules, CA, USA), and then probed using antibodies according to standard
procedures. The antibodies used for Western blots and their dilutions are as follows: Cleaved Caspase-8
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(Asp391) (18C8) Rabbit mAb (Cell Signaling Technology, Boston, MA, USA; 1:1000), Anti-Caspase-9
antibody [E23] (Abcam, London, UK; 1:1000), mouse anti-MyHC antibody (Bioss, Beijing, China;
1:1000), rabbit anti-Lamin B antibody (Bioss, Beijing, China; 1:500), rabbit anti-AKT1 (Bioss, Beijing,
China; 1:500), rabbit anti-phospho-AKT1 (Bioss, Beijing, China; 1:500), rabbit Anti-phospho-AKT
antibody (Bioss, Beijing, China; 1:300), and mouse anti-GAPDH (Boster, Wuhan, China; 1:2000). Finally,
the secondary antibody (Boster, Wuhan, China) containing horseradish peroxidase chain reaction
(HRP) anti-rabbit/mouse IgG antibody (Boster, Wuhan, China) was incubated in a 1:10,000 dilution.

2.13. Statistical Analysis

All data are derived from at least three replicates of experimental processing. Statistically
significant differences were calculated using Student’s t-test. Results are shown as mean ± S.E.M.
(standard error of the mean) and the difference was considered as statistically significant when the
p-value < 0.05 (*) or p-value < 0.01 (**).

3. Results

3.1. miR-146b-3p Contributes to Cell Cycle Arrest in Myoblast and Suppresses Cell Proliferation

miR-146b-3p was successfully overexpressed with the mimic and silenced with the inhibitor
respectively in CPMs and QM-7 cells, indicating that the mimic and inhibitor of miR-146b-3p were
available for the following verification experiments (Supplementary Figure S1a–d). We first investigated
the effects of miR-146b-3p on myoblast proliferation. Flow cytometry, q-PCR, and EdU assays were
performed in CPMs and QM-7 cells, respectively.

After the 48-h transfection in CPMs and QM-7 cells with miR-146b-3p mimic and inhibitor,
flow cytometry analysis of the cell cycle was performed. The results showed that overexpression
of miR-146b-3p can arrest QM-7 cells and CPMs in the G1 phase, causing the increase of the cell
population in the G1 phase while distinct decrease in the S phase (Figure 1a,b). Moreover, the inhibition
of miR-146b-3p revealed opposite results (Figure 1a,b). Overall, miR-146b-3p can block the cell cycle
progress, thereby inhibiting the myoblast proliferation.

In addition, we tested the mRNA expression levels of several cell cycle-related genes in CPMs
and QM-7 cells by q-PCR. The results showed that miR-146b-3p overexpression can reduce the mRNA
expression of cell cycle-promoting genes, such as Cyclin B2, Cyclin D1, Cyclin D2, and PCNA, while
increase cell cycle-inhibiting genes like p21 and CDKN1B (Figure 1c,d). The inhibition of miR-146b-3p
revealed opposite results to the miR-146b-3p mimic groups (Figure 1c,d). Thus, miR-146b-3p can
modulate the cell cycle-related genes to inhibit myoblast proliferation.

To further determine the effects of miR-146b-3p on myoblast proliferation, we also performed EdU
staining experiment to observe the cell proliferation status after transfecting miR-146b-3p mimic or
inhibitor into CPMs and QM-7 cells respectively. The results showed whether in CPMs or QM-7 cells,
the ratio of proliferative cells of the miR-146b-3p mimic group was significantly reduced compared
with that of the control group (Figure 1e–h). Conversely, after the inhibition of miR-146b-3p, the
ratio of cells in proliferation phase was extremely increased (Figure 1e–h). These results indicate that
miR-146b-3p can inhibit the proliferation of myoblast.
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 Figure 1. gga-miR-146b-3p inhibits myoblast proliferation. (a,b) Cell cycle analysis of QM-7 cells and
chicken primary myoblasts (CPMs) after transfecting miR-146-3p mimic or inhibitor. (c,d) Relative
mRNA expression of the cell cycle-related genes after transfection of miR-146-3p mimic or inhibitor in
QM-7 cells and CPMs. (e) 5-Ethynyl-2′-deoxyuridine (EdU) staining of QM-7 cells after transfection of
miR-146-3p mimic or inhibitor. (f) The fold change of proliferation rates of QM-7 cells with miR-146-3p
mimic or inhibitor. (g) EdU staining of CPMs after transfection of miR-146-3p mimic or inhibitor.
(h) The fold change of proliferation rates of CPMs with miR-146-3p mimic or inhibitor. Results of all
groups are shown as mean ± standard error of the mean (S.E.M.) of three independent assessment
methods. Statistical significance of the mean difference was assessed using unpaired two-sample t-tests.
* p < 0.05; ** p < 0.01. NC, negative control.
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3.2. miR-146b-3p Inhibits Myoblast Differentiation

To observe the expression of miR-146b-3p in leg muscle during chicken embryogenesis, we
constructed an expression profile of miR-146b-3p from E11 to E18, which showed that the expression
of miR-146b-3p declined in fluctuation from E12 to E18 (Figure 2a). Besides, we also induced CPMs
to differentiate in vitro (Figure 2b) and found the expression of miR-146b-3p declined when the
cells underwent differentiation (Figure 2c). These results indicate the potential inhibitory effects of
miR-146b-3p on myoblast differentiation.Cells 2019, 8, x 9 of 21 
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Figure 2. miR-146b-3p suppresses myoblast differentiation. (a) Relative expression of miR-146b-3p in
Xinghua chicken leg muscle from E11 to E18. (b) Morphology of CPMs cultured in growth medium (GM)
and differentiation medium (DM) from day 1 to 6. (c) The relative mRNA expression of miR-146b-3p
during CPMs-induced differentiation. (d) Relative mRNA expression of the cell differentiation-related
genes after transfection of miR-146-3p mimic or inhibitor in CPMs. (e) Immunofluorescence of MyHC
after transfection of miR-146-3p mimic or inhibitor in CPMs. (f) Comparison of the area of myotubes
described in (e). Results of all groups are shown as mean ± S.E.M. of three independent assessment
methods. Statistical significance of the mean difference was assessed using unpaired two-sample t-tests.
* p < 0.05; ** p < 0.01. NC, negative control.

Therefore, we moved on to determine the role of miR-146b-3p in myoblast differentiation. It was
found that overexpression of miR-146b-3p remarkably decreased the mRNA expression of myoblast
differentiation-related genes including MyoD, MyoG, and MyHC, whereas, inhibition of miR-146b-3p
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increased the mRNA expression of MyoD, MyoG, and MyHC (Figure 2d and Supplementary Figure S2).
In addition, the protein expression of MyHC was decreased after the overexpression of miR-146b-3p
in CPMs, while the protein expression of MyHC was enriched after the inhibition of miR-146b-3p as
exhibited (Figure 3e,f).

Immunofluorescence was also performed to track the effects of miR-146b-3p on myoblast
differentiation. The results showed that overexpression of miR-146b-3p blocked the formation of
myotubes, whereas, inhibition of miR-146b-3p contributed to the formation of myotubes (Figure 2e,f).

All the results above potently state that miR-146b-3p is capable of inhibiting the
myoblast differentiation.
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Figure 3. miR-146b-3p promotes myoblast apoptosis. (a) Flow cytometry of Annexin V-FITC and
propidium iodide (PI) dual staining detecting the apoptosis of CPMs after transfection of miR-146-3p
mimic or inhibitor. (b) Flow cytometry of Annexin V-FITC and propidium iodide (PI) dual staining
detecting the apoptosis of QM-7 cells after transfection of miR-146-3p mimic or inhibitor. (c) Relative
mRNA expression of the cell apoptosis-related genes after transfection of miR-146-3p mimic or inhibitor
in CPMs. (d) Relative mRNA expression of the cell apoptosis-related genes after transfection of
miR-146-3p mimic or inhibitor in QM-7 cells. (e) The protein levels of MyHC, cleaved-caspase 8, and
cleaved-caspase 9 after the transfection of mimic or inhibitor in CPMs. (f) Gray value analysis of
protein bands in (e). Results of all groups are shown as mean ± S.E.M. of three independent assessment
methods. Statistical significance of the mean difference was assessed using unpaired two-sample t-tests.
* p < 0.05; ** p < 0.01. NC, negative control.

3.3. miR-146b-3p Promotes Myoblast Apoptosis

Apart from proliferation and differentiation of myoblast, the apoptosis of myoblast is also of great
significance in the development of skeletal muscle. Therefore, we also paid attention to the potential
effects of miR-146b-3p on myoblast apoptosis.

Flow cytometry analysis performed to detect the myoblast apoptosis showed that the expression of
miR-146b-3p promoted myoblast apoptosis (Figure 3a,b). The mRNA expression of some well-known
apoptosis-related genes, including Caspase 3, Caspase 8, Caspase 9, Cyt c, and Fas, was detected after
the overexpression and inhibition of miR-146b-3p in CPMs and QM-7 cells, respectively. The results
showed that apoptosis-related genes were all upregulated after the overexpression of miR-146b-3p,
while the apoptosis-related genes were downregulated after the inhibition of miR-146b-3p (Figure 3c,d).
Furthermore, the protein expression of cleaved-caspase 8 and cleaved-caspase 9 was detected, and the
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results showed that miR-146b-3p was able to upregulate the protein expression of cleaved-caspase 8
and cleaved-caspase 9 (Figure 3e,f). Moreover, the expression of miR-146b-3p suppressed the protein
level of lamin B (Supplementary Figure S3a,b). These results indicate miR-146b-3p has a positive
regulatory effect on myoblast apoptosis.

3.4. miR-146b-3p Targets AKT1 and MDFIC and Downregulates PI3K/AKT Pathway Activity

It is well established that miRNAs function mainly by targeting their target genes. To further
explore how miR-146b-3p works in the regulation of skeletal muscle development, we tried to predict
its possible target genes on the miRDB website. We found that miR-146b-3p was predicted to be able
to target AKT1 and MDFIC. The seed sequences of miR-146b-3p were perfectly complementary to the
3′UTR region of AKT1 and MDFIC (Supplementary Figure S4a). Besides, the MFE between miR-146b-3p
and AKT1 3′UTR was approximately −21.9 kcal/mol (Supplementary Figure S4b) and MDFIC 3′UTR
was −24.2 kcal/mol (Supplementary Figure S4c), indicating they possess a stable combination. The
mRNA expression of AKT1 and MDFIC can be suppressed after overexpression of miR-146b-3p while
enhanced after inhibition of miR-146b-3p (Figure 4a). As a core factor in PI3K/AKT pathway, the
phosphorylation of AKT can affect PI3K/AKT pathway activity. Subsequently, we tested the expression
and phosphorylation of AKT1 protein and phosphorylation of AKT, it was found that miR-146b-3p
was able to negatively regulate PI3K/AKT pathway activity (Figure 4b,c).

Moreover, the dual-luciferase report experiments were performed and showed that the matching
of miR-146b-3p and the 3′UTR region of AKT1 or MDFIC led to a significant suppression of luciferase
activity, whereas mutation of target sites failed to weaken the luciferase activity (Figure 4d,e), coinciding
with the mRNA expression analysis results above.

Finally, we conducted a series of recovery validation experiments on the function of myoblast
proliferation, differentiation, and apoptosis. The effects of miR-146b-3p on myoblast proliferation,
differentiation, and apoptosis were all restored or even reversed by the co-expression assays
(Figure 4f–h).

These results sufficiently indicate the direct target relationships between miR-146b-3p and AKT1
or MDFIC. To further learn about how miR-146b-3p works by interacting with AKT1 and MDFIC, we
explored the effects of AKT1 and MDFIC on myoblast proliferation, differentiation, and apoptosis.

3.5. Both AKT1 and MDFIC Can Facilitate the Proliferation of Myoblast

To determine how AKT1 and MDFIC exert biological effects on myoblast proliferation, AKT1
and MDFIC were successfully overexpressed and silenced in CPMs and QM-7 cells, respectively
(Supplementary Figure S1e–l). The flow cytometry, q-PCR, and EdU assays were then performed.

Flow cytometry analysis of the cell cycle revealed that in both CPMs and QM-7 cells, overexpression
of AKT1 or MDFIC significantly promoted cell transition from G1 phase to S phase, while knockdown
of AKT1 or MDFIC significantly blocked cell transition from G1 phase to S phase (Figure 5a,b and
Supplementary Figure S5a,b). These results illustrate that both AKT1 and MDFIC contribute to the cell
cycle progress.

We also detected the mRNA expression levels of some cell cycle-related genes after overexpressing
or silencing AKT1 or MDFIC in CPMs and QM-7 cells by q-PCR, respectively. The results showed
that both AKT1 and MDFIC overexpression can upregulate the cell cycle promoting genes including
Cyclin B2, Cyclin D1, Cyclin D2, and PCNA, while downregulate cell cycle inhibiting genes like p21
and CDKN1B (Figure 5c,d and Supplementary Figure S5c,d). It turned out to be an opposite result
after silencing AKT1 or MDFIC (Figure 5c,d and Supplementary Figure S5c,d). These results indicate
that both AKT1 and MDFIC can regulate the cell cycle-related genes and participate in promoting
myoblast proliferation.

In addition, the EdU assay showed that in both CPMs and QM-7 cells, the proportion of
proliferative cells remarkably increased, whereas the knockdown of AKT1 decreased the proportion of
proliferative cells (Figure 5e,f and Supplementary Figure S5e,f); and, MDFIC showed the same effect
(Figure 5g,h and Supplementary Figure S5g,h).
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Taken together, we draw a conclusion that both AKT1 and MDFIC can promote myoblast
proliferation in chicken.
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Figure 4. miR-146b-3p targets AKT1 and MDFIC and downregulates PI3K/AKT pathway activity.
(a) Relative mRNA expression of AKT1 and MDFIC in QM-7 cells after overexpression or inhibition of
miR-146b-3p. (b) The phosphorylation levels of AKT and AKT1 and the protein expression of AKT1
after transfecting miR-146b-3p mimic or inhibitor in CPMs. (c) Gray value analysis of protein bands in
(b). (d) Dual-luciferase report assay performed after co-transfecting the wild type or mutant 3′UTR of
AKT1 with miR-146b-3p mimic or mimic NC in DF-1 cells. (e) Dual-luciferase report assay performed
after co-transfecting the wild type or mutant 3′UTR of MDFIC with miR-146b-3p mimic or mimic NC in
DF-1 cells. (f) Relative mRNA expression of the cell differentiation-related genes after co-transfection.
(g) Relative mRNA expression of the cell apoptosis-related genes after co-transfection. (h) Cell cycle
analysis of QM-7 cells after co-transfection. Results of all groups are shown as mean ± S.E.M. of three
independent assessment methods. Statistical significance of the mean difference was assessed using
unpaired two-sample t-tests. * p < 0.05; ** p < 0.01. NC, negative control.
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Figure 5. AKT1 and MDFIC promote myoblast proliferation. (a) Cell cycle analysis of CPMs after
overexpression or inhibition of AKT1. (b) Cell cycle analysis of CPMs after overexpression or inhibition
of MDFIC. (c) Relative mRNA expression of the cell cycle-related genes after overexpression or inhibition
of AKT1 in CPMs. (d) Relative mRNA expression of the cell cycle-related genes after overexpression or
inhibition of MDFIC in CPMs. (e) EdU staining of CPMs after overexpression or inhibition of AKT1.
(f) The fold change of proliferation rates of CPMs with pcDNA3.1-AKT1 or si-AKT1. (g) EdU staining
of CPMs after overexpression or inhibition of MDFIC. (h) The fold change of proliferation rates of
CPMs with pcDNA3.1-MDFIC or si-MDFIC. Results of all groups are shown as mean ± S.E.M. of three
independent assessment methods. Statistical significance of the mean difference was assessed using
unpaired two-sample t-tests. * p < 0.05; ** p < 0.01. NC, negative control.
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3.6. In Terms of Myoblast Differentiation, Both AKT1 and MDFIC Exhibit Positive Impacts

During the leg muscle development of Xinghua chicken in the embryonic period, the expression
of AKT1 and MDFIC was gradually upregulated from E11 to E18 (Figure 6a,b), suggesting that AKT1
and MDFIC may be involved in the regulation of the differentiation of skeletal myoblast.Cells 2019, 8, x 15 of 21 
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Figure 6. Both AKT1 and MDFIC promote myoblast differentiation, while suppress myoblast apoptosis.
(a) Relative expression of AKT1 in Xinghua chicken leg muscle from E11 to E18. (b) Relative
expression of MDFIC in Xinghua chicken leg muscle from E11 to E18. (c) Relative mRNA expression
of AKT1 during CPMs induced differentiation. (d) Relative mRNA expression of MDFIC during
CPMs-induced differentiation. (e,f) Relative mRNA expression of the cell differentiation-related genes
after overexpression or inhibition of AKT1 or MDFIC in CPMs. (g,i) Immunofluorescence of MyHC after
overexpression or knockdown of AKT1 and MDFIC in CPMs. (h,j) Comparison of the area of myotubes
described in (g,i). Results of all groups are shown as mean ± S.E.M. of three independent assessment
methods. Statistical significance of the mean difference was assessed using unpaired two-sample t-tests.
* p < 0.05; ** p < 0.01. NC, negative control.
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With the CPMs differentiating, the mRNA expression levels of AKT1 and MDFIC were getting
higher (Figure 6c,d). The overexpression of AKT1 or MDFIC significantly upregulated the mRNA
expression of the myogenic marker genes, and it showed an opposite effect after the interference of
AKT1 or MDFIC (Figure 6e,f and Supplementary Figure S6a,b). Moreover, the protein expression
of MyHC was also upregulated after the overexpression of AKT1 or MDFIC in CPMs, and it was
downregulated after the knockdown of AKT1 or MDFIC in CPMs (Figure 7e,f).
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Figure 7. AKT1 shows an inhibitory effect on myoblast apoptosis and so does MDFIC. (a,b) Flow
cytometry analysis of Annexin V-FITC and PI dual staining detecting the apoptosis of CPMs after
transfection of pcDNA3.1-AKT1 or si-AKT1. (c) Relative mRNA expression of the cell apoptosis-related
genes after transfection of pcDNA3.1-AKT1 or si-AKT1 in CPMs. (d) Relative mRNA expression of the
cell apoptosis-related genes after transfection of pcDNA3.1-MDFIC or si-MDFIC in CPMs. (e,f) The
protein levels of MyHC, cleaved-caspase 8, and cleaved-caspase 9 after the overexpression or silence of
AKT1 and MDFIC in CPMs. (g,h) Gray value analysis of protein bands in (e,f). Results of all groups are
shown as mean ± S.E.M. of three independent assessment methods. Statistical significance of the mean
difference was assessed using unpaired two-sample t-tests. * p < 0.05; ** p < 0.01. NC, negative control.
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Immunofluorescence staining was also performed and the results showed that overexpression of
AKT1 or MDFIC facilitated the formation of myotubes, while it showed opposite results after silencing
AKT1 or MDFIC (Figure 6g–j).

All these results demonstrate that both AKT1 and MDFIC can promote the differentiation
of myoblast.

3.7. AKT1 Shows an Inhibitory Effect on Myoblast Apoptosis and so Does MDFIC

As described earlier, in the development of myoblast, cell apoptosis is also an important process.
We wondered if miR-146b-3p can interact with AKT1 or MDFIC in regulating myoblast apoptosis.

Flow cytometry results showed that myoblast apoptosis was suppressed after the overexpression of
AKT1 in QM-7 cells and CPMs (Figure 7a,b). Besides, the mRNA expression levels of several well-known
apoptosis-related genes including Caspase 3, Caspase 8, Caspase 9, Cyt c, and Fas were detected. The
results showed that the apoptosis-related genes were downregulated after the overexpression of AKT1
or MDFIC, while apoptosis-related genes were upregulated with the knockdown of AKT1 or MDFIC
(Figure 7c,d and Supplementary Figure S6c,d). In addition, the protein levels of cleaved-caspase 8
and cleaved-caspase 9 were downregulated by the expression of AKT1 and MDFIC (Figure 7e–h).
Moreover, both AKT1 and MDFIC can promote the protein expression of lamin B (Supplementary
Figure S3c–f). The regulatory effects of AKT1 and MDFIC on apoptosis-related genes were contrasting
to those of miR-146b-3p, suggesting that miR-146b-3p can promote the chicken myoblast apoptosis by
inhibiting AKT1 and MDFIC.

4. Discussion

In this study, we characterized the role of miR-146b-3p in the regulation of skeletal muscle
development. We confirmed that miR-146b-3p can regulate myoblast proliferation, differentiation, and
apoptosis via negatively regulating the activities of the PI3K/AKT1 pathway and another target gene
MDFIC (Figure 8).

It has been widely reported that miR-146b-3p mainly associates with glioma and thyroid
tumor [26,37], while there is no research revealing its significant participation in skeletal muscle
development. In our previous study, miR-146b-3p was proposed as a promising candidate gene
related to the muscle development of chicken [28]. Here, we have performed a series of experiments
in vitro to further determine the biological function of miR-146b-3p in skeletal muscle development.
In verification, both mimic and inhibitor can cause large biological changes, some changes may be
small, but they also have statistically significant differences. For example, compared with the control,
inhibiting miR-146b-3p resulted in a transition of the cell cycle from G1 to S and the change of cell
percentage in S is not particularly large. But the values in the group are so similar, resulting in a
small S.E.M. in the group and a significant difference between the groups. Experiments such as
EdU assay, Immunofluorescence assay, and the caspase cleavage assay have directly shown that
these differences can cause large biological changes in myoblast proliferation, differentiation, and
apoptosis. In fact, the expression change of one gene is often accompanied by the expression changes
of multiple genes, which all together can lead to a specific phenotype. For instance, miR-16 was able
to simultaneously target SENE1, Bcl6, and FOXO1, which altogether resulted in promoting chicken
myoblast proliferation [19,20]. Therefore, we concluded that miR-146b-3p inhibited chicken myoblast
proliferation and differentiation and promoted apoptosis.

To well grasp the biological effects of miRNAs, their target genes are supposed to be taken into
consideration. In this study, we found miR-146b-3p can target and inhibit the expression of AKT1 and
MDFIC and downregulate the activity of the PI3K/AKT pathway simultaneously.

AKT1, present in a variety of cell types, is widely distinguished as a key factor mediating
numerous cellular activities including cell proliferation and differentiation [38–40]. In our present
study, AKT1 showed positive effects on myoblast proliferation and differentiation, coincidently contrary
to those of miR-146b-3p. Besides, a variety of cell death paradigms have identified AKT1 as a vital
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anti-apoptotic gene [41–43]. It is well established that AKT1 is a vital gene in the PI3K/AKT pathway.
An important function of activated PI3K in cells is the inhibition of programmed cell death, and AKT,
a perfect candidate of PI3K, can serve in favor of PI3K to mediate cell-survival and cell-apoptosis
responses [35,44,45]. Here, our results provide another piece of important evidence that AKT1 is an
essential suppresser of the myoblast apoptosis. Of note, the Western blot showed not only the protein
abundance and the phosphorylation level of AKT1, but also the phosphorylation level of AKT that
was dramatically suppressed by miR-146b-3p (Figure 4b,c), which can cause the downregulation of the
PI3K/AKT pathway activity. The decline of the PI3K/AKT pathway activity caused by miR-146b-3p
can lead to the inhibition of myoblast proliferation and differentiation and the promotion of myoblast
apoptosis. Thus, our results collectively suggest that miR-146b-3p can suppress PI3K/AKT pathway by
directly targeting AKT1.
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Figure 8. Model of miR-146b-3p mediated regulatory mechanism in myoblast proliferation,
differentiation, and apoptosis. In simple terms, miR-146b-3p downregulates the expression of AKT1
and MDFIC by targeting the 3′UTR of their mRNA. Both the phosphorylation of AKT1 and AKT can
trigger the activation of PI3K/AKT pathway, thereby promoting the expression of cell cycle-related
genes and myoblast differentiation-related genes and suppress cell apoptosis-related genes, which in
turn facilitate cell proliferation and differentiation and inhibit apoptosis. In addition, the expression of
MDFIC can also lead to the same effect.

When we were searching the targets for miR-146b-3p, the gene named MDFIC caught our eyes.
As its name implies, MDFIC is an inhibitor of the MyoD family, which suppresses the myoblast
differentiation. However, according to our preliminary reply verification, the overexpression of MDFIC
can reverse the inhibitory effects of miR-146b-3p on chicken myoblast differentiation (Figure 4f), which
aroused our interest to further detect how exactly MDFIC acts in the development of chicken myoblast.
It was unexpected but our data did show that MDFIC promoted not only myoblast differentiation but
also proliferation in chicken.
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MyoD and MyoG, two essential members of the MyoD family, are upregulated to promote and
maintain the process of myoblast differentiation [2,46]. Here, we are pleasantly surprised that MDFIC
exhibited positive impacts on the mRNA expression of MyoD and MyoG in chicken myoblast (Figure 6f).
Moreover, immunofluorescence also provided a convincing demonstration that MDFIC can promote
myotubes formation in chicken (Figure 6i,j). The article that originally identified I-mfa as a myogenic
repressor interacting with members of the MyoD family described their animal material was mouse
and the transfected cells were NIH3T3 cells, a kind of fibroblasts [36]. While in our study, the animal
material was chicken and the transfected cells were QM-7 cells and CPMs, both are myoblasts. Our
experiment materials are completely different from those of the above study. The function of MDFIC
can be different, depending on species and cell types.

Here, we identified MDFIC as a novel factor promoting chicken myoblast proliferation and
differentiation and inhibiting chicken myoblast apoptosis. As a matter of fact, to date, there are no
reports about the role of MDFIC in myoblast development of chicken. Therefore, our study is the first
to uncover the exact function of MDFIC in this field.

Collectively, our study sheds light on a mechanism by which miR-146b-3p inhibits myoblast
proliferation and differentiation and promotes myoblast apoptosis via suppressing PI3K/AKT pathway
activity and MDFIC expression. These discoveries reveal a novel model of miR-146b-3p on regulating
skeletal muscle development.
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