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Mesenchymal stem cells (MSCs) within the periodontal ligament (PDL), termed periodontal
ligament stem cells (PDLSCs), have a self-renewing capability and a multidirectional
differentiation potential. The molecular mechanisms that regulate multidirectional
differentiation, such as the osteogenic differentiation of PDLSCs, remain to be
elucidated. Cullin 4B (CUL4B), which assembles the CUL4B-RING ubiquitin ligase
(CRL4B) complex, is involved in regulating a variety of developmental and physiological
processes including the skeletal development and stemness of cancer stem cells.
However, nothing is known about the possible role of CUL4B in the osteogenic
differentiation of PDLSCs. Here, we found that knockdown of CUL4B decreased the
proliferation, migration, stemness and osteogenic differentiation ability of PDLSCs.
Mechanistically, we demonstrate that CUL4B cooperates with the PRC2 complex to
repress the expression of miR-320c and miR-372/373-3p, which results in the
upregulation of RUNX2, a master transcription factor (TF) that regulates osteogenic
differentiation. In brief, the present study reveals the role of CUL4B as a new regulator
of osteogenic differentiation in PDLSCs.
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1 INTRODUCTION

MSCs have been widely used as basic biomaterials in tissue
engineering due to their self-renewing ability and
multidirectional differentiation potential. Periodontal ligament
stem cells (PDLSCs), MSCs derived from the periodontal
ligament, play an important role in dental tissue regeneration
as well as tooth development, which showmultiple differentiation
and self-renewing capabilities (Seo et al., 2004; Iwasaki et al.,
2013). PDLSC transplantation therapies have been reported to be
involved in the regeneration of new bone, cementum/PDL-like
structure, peripheral nerves and new cementum (Seo et al., 2004).
Owing to the advantages of their availability, rapid culture
expansion and hypoimmunogenicity (Feng et al., 2010),
PDLSCs are not only widely used as favorable seed cells for
periodontal tissues and bone regeneration but also as a cell model
to study the self-renewing ability and multidirectional
differentiation especially osteogenic differentiation (Liu et al.,
2008; Mrozik et al., 2013).

Osteogenic differentiation is regulated by a diverse set of
factors including hormones, TF and growth factors (Chen
et al., 2012; Bruderer et al., 2014). RUNX2 is one of the earliest
markers and is known as the master TF regulating osteogenic
differentiation (Komori et al., 1997; Stein et al., 2004). RUNX2
is a TF that has the ability to upregulate ColeI, ALP and OPN
genes (Fakhry et al., 2013). The regulation of RUNX2 is
essential in osteogenic differentiation (Komori, 2010).

MiRNAs are small non-coding RNAs that are 17–25
nucleotides long. miRNAs regulate the expression of target
genes at the post-transcriptional level by hybridizing with
their target mRNAs at the 3′untranslated region (3′UTR),
consequently silencing the target gene(s) and thereby
controlling target protein biosynthesis (Wahid et al., 2010;
Vimalraj and Selvamurugan, 2013). In osteoblasts, miRNAs
play a pivotal role in the post-transcriptional regulation of
genes that participate in differentiation. A number of miRNAs
have been identified that regulate osteogenic differentiation
via RUNX2 directly or indirectly (Narayanan et al., 2019).

CUL4B functions as a scaffold protein in the CUL4B-RING
E3 ligase complex (CRL4B), which includes DDB1, RBX1 and
substrate receptors (Jackson and Xiong, 2009; Hu et al., 2012;
Zhao et al., 2015; Li et al., 2017). Previously, we showed that
the constitutive knockdown of CUL4B inhibits the
proliferation of a variety of cancer cells and contributes to
cancer stemness in colorectal cancer and bladder cancer (Zou
et al., 2009; Zou et al., 2013; Mi et al., 2017; Li et al., 2020; Liu
et al., 2020). Mutations in human CUL4B cause intellectual
disability (Tarpey et al., 2007; Zou et al., 2007), and patients
with CUL4B mutations manifest disruptions in skeletal
development such as short stature and brachydactyly
(Badura-Stronka et al., 2010; Isidor et al., 2010;
Kerzendorfer et al., 2011; Ravn et al., 2012). Bone
formation is the basis of skeletal development, which
implies that CUL4B could be involved in regulating the
formation of mineralized bone. Osteogenesis is the process
of new bone formation and there are distinct stages involved
in the cells proliferate, grow and differentiate. Although

accumulating evidence indicates that CUL4B exerts
biological functions in various cancers, how it contributes
to skeletal development and the biological properties of MSCs,
as well as its role in osteogenesis, is still poorly defined. Given
the advantages of PDLSCs mentioned above, in this study, we
investigated the role of CUL4B in PDLSCs and demonstrate
the effects of CUL4B on the proliferation, apoptosis,
migration, stemness and osteogenic differentiation of
PDLSCs.

2 MATERIALS AND METHODS

2.1 Isolation, Culture and Manipulation of
Periodontal Ligament Stem Cells
Human PDLSCs were isolated from healthy periodontal ligament
(PDL) tissues of teeth extracted for orthodontic reasons. PDL
tissues were cut into small pieces, which were detached for 45 min
by 3 mg/L type I collagenase and 4 mg/ml dispase II suspended in
α-modified Eagle’s medium (α-MEM, HyClone, South Logan,
UT, United States) containing 10% fetal bovine serum (FBS,
Gibco, Grand Island, NY, United States) and 1% penicillin-
streptomycin antibiotic mixture (Invitrogen, Carlsbad, CA,
United States). The cell suspensions were implanted into
10 cm tissue culture dishes and incubated at 37°C and 5%
CO2. The non-adherent cell suspensions were removed 3 days
later, and the basic medium was changed every 2–3 days. When
MSC-like colonies had grown for 10–14 days, monoclones were
selected by the limiting dilution method, and were then expanded
for subsequent experiments.

Stable CUL4B-knockdown and -control cells were generated as
described previously (Mi et al., 2017). Stable CUL4B-overexpression
and -control cells were generated as described previously (Liu et al.,
2020). miR-320c and miR-372/373-3p Sponge vectors were
constructed by Abiotech (Abiotech, Jinan, China) ligating the
miR-320c and miR-372/373-3p sponge fragments into the
lentiviral vector pLent-EF1a-Puro-CMV-GFP-mirRNA sponge
(Abiotech, pLV100016-KD). The pLVX-IRES-Puro-CUL4B
(ΔNLS) was generated by subcloning the fragment from pCMV-
Tag2B-CUL4B (ΔNLS). Lentiviral transductions were performed as
previously described (Zou et al., 2013).

All experiments in this study were approved by the Medical
Ethical Committee of School of Stomatology, Shandong
University (No. GR201907). PDL tissue donors in the study
signed an informed consent allowing the use of their PDL
tissues for scientific research.

2.2 In vitro Proliferation Assays
Cell viability and proliferation were measured using Cell
Counting Kit-8 (CCK-8) assays (Dojindo Laboratories,
Kumamoto, Japan), colony formation assays and Cell-Light
EdU DNA Cell Proliferation (EdU) assays (Ribobio,
Guangzhou, China). For CCK-8 assays, cells were inoculated
in 96-well plates, 10 μl CCK-8 was added to each well for 60 min,
after which the absorption values were determined at 450 nm.
The colony formation and EdU labelling assays were performed
as previously described (Mi et al., 2017; Qi et al., 2019).
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2.3 Wound-Healing and Transwell Migration
Assays
To assess migration capacities of PDLSCs, wound-healing and
transwell migration assays were performed as previously
described (Mi et al., 2017).

2.4 Western Blot Analysis and Antibodies
Western blots were performed as described previously (Zou et al.,
2013). Antibodies used in this study are listed in Supplementary
Table S3.

2.5 Flow Cytometry (FACS)
The surface markers of PDLSCs were examined using a flow
cytometer (Calibur, BD Biosciences). 1 × 106 PDLSCs were
incubated with following luorochrome-conjugated antibodies:
anti-CD44-APC (Cat. MA1-10,226, Invitrogen), anti-CD105-
PE (Cat. 12–1057–42, Invitrogen), anti-CD90-PE (Cat.
12–0909–42, Invitrogen), anti-CD45-FITC (Cat. 14–9457–95,
Invitrogen), anti-CD19-APC (Cat. 17–0199–42, Invitrogen)
and anti-CD14-PerCP (Cat. 450,149–42, Invitrogen) for 1 h at
4°C in the dark and were then analyzed after washing in PBS.

The percentage of cell apoptosis was determined by FACS.
Apoptotic PDLSCs were detected according to the instructions of
the AnnexinV-APC/7-AAD apoptosis detection kit (BestBio,
Shanghan, China). Briefly, PDLSCs were trypsinized and the
resuspended. PDLSCs were washed with PBS and stained with
annexin V-APC and 7-AAD. The cells were then analyzed by flow
cytometry (CytoFLEX; Beckman Coulter, Brea, CA,
United States).

2.6 RNA Extraction, qRT-PCR and
Chromatin Immunoprecipitation Assays
Extraction of total RNAs and qRT-PCR were performed as
described previously (Zou et al., 2013). Primer sequences for
qRT-PCR used in this study are listed in Supplementary Table
S4. All primers used for miRNA qRT-PCR were purchased from
GeneCopoeia, Guangzhou, China. Chromatin
immunoprecipitation (ChIP) assays were performed as
described previously (Hu et al., 2012). Primers and antibodies
used in this study are listed in Supplementary Tables S5, S6.

2.7 ALP Activity Assay
ALP activity was measured according to the instructions of
the ALP Activity Kit (Nanjing Jiancheng Bioengineering
Institute, Nanjing, China). Briefly, cells were seeded in 6-
well plates at a density of 2 × l05 cells/well in osteogenic-
inductive medium. After induction, cells were scraped into 1%
Triton X-100, sonicated and centrifuged at 12,000 g for
10 min. The absorbance at 520 nm wavelength was
measured using a microplate reader (SPECTROstar Nano;
BMG Labtech).

2.8 Alizarin Red S Staining
Virus-infected PDLSCs (passages 3–5) were plated in 6-well
plates at a density of 2 × l05 cells/well and were cultured in

osteogenic-inductive medium. After 3 weeks of induction, cells
were rinsed with PBS and fixed with 70% ethanol, then stained
with 1% Alizarin Red S (pH 4.2; Sigma-Aldrich) for 5 min. To
measure the concentration of calcium, 10% (w/v) cetylpyridinium
chloride (CPC; Sigma-Aldrich) and 10 mM sodium phosphate
solution were added to the stained dishes for 10 min at room
temperature, and then were quantified using a spectrometer at
562 nm wavelength.

2.9 Plasmids and Luciferase Assays
Wild-type and mutant RUNX2 3′- UTR vectors were constructed
by Abiotech (Abiotech, Jinan, China). Dual luciferase assays were
performed as previously described (Qi et al., 2019).

2.10 Spheroid Formation Assays
Single cells were plated in ultra-low 6-well attachment plates
(Corning, Lowell, MA, United States) in H-DMEM/F12
medium supplemented with 1% penicillin-streptomycin
antibiotic mixture, 1% (v/v) B27 (Gibco, Grand Island, NY,
United States), 5 μg/ml insulin (Sigma-Aldrich), 20 ng/ml
EGF (Gibco, Grand Island, NY, United States) and 20 ng/
ml bFGF (Sigma-Aldrich). After 7–10 days, clonal spheres
with a diameter over 50 μm were counted using an optical
microscope.

2.11 Statistical Analysis
Statistical analyses were performed using an unpaired Student’s
t test to calculate two-tailed p values between two groups.
Differences were considered significant at p < 0.05. Data are
reported as means ± SEM.

3 RESULTS

3.1 Cullin 4B Promotes Proliferation and
Migration of Periodontal Ligament Stem
Cells
We began our current study by first assessing the purification
of our PDLSCs. As shown in Supplementary Figure S1A,
cultured PDLSCs successfully exhibited spindle-shaped
morphologies. Then we verified that the isolated PDLSCs
were MSCs by analyzing specific MSCs surface markers
using flow cytometry. Flow cytometric assays showed that
PDLSCs expressed MSCs markers (CD44, CD105 and CD90),
but were negative for endothelial cell markers (CD45, CD19,
and CD14) (Supplementary Figure S1B).To evaluate the role
of CUL4B in PDLSCs, we established PDLSCs with stable
knockdown or overexpression of CUL4B (Figure 1A). CCK-8
assays showed that knockdown of CUL4B impeded, while
overexpression of CUL4B increased the growth of PDLSCs
(Figures 1B,C). An EdU incorporation assays confirmed the
role of CUL4B in PDLSCs proliferation (Figures 1D,E and
Supplementary Figure S2A,B). The result of colony-forming
efficiency assays showed that PDLSCs with stable knockdown
of CUL4B displayed much smaller and fewer colonies
(Figure 1F and Supplementary Figure S2C). Consistently,
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overexpression of CUL4B displayed much bigger and more
colonies (Figure 1G and Supplementary Figure S2D). Next,
we investigated the functions of CUL4B in the migration of
PDLSCs. Wound-healing and transwell assays showed that
knockdown of CUL4B caused a significant decrease in PDLSC
migration (Figures 1H,J and Supplementary Figure S2E,G).
In contrast, overexpression of CUL4B led to significantly
increase the migration of PDLSCs (Figures 1I,K and
Supplementary Figure S2F,H). The effect of CUL4B on
PDLSCs apoptosis was analyzed by flow cytometry, and no
significant difference between stable CUL4B-knockdown and

corresponding control group was observed (Supplementary
Figure S2I). Taken together, these results
demonstrate that CUL4B promotes proliferation and
migration of PDLSCs.

3.2 Cullin 4B Enhances Stemness of
Periodontal Ligament Stem Cells
CUL4B has been reported to enhance the enrichment of
cancer stem cells with stem cell-related characteristics (Li
et al., 2020; Liu et al., 2020), suggesting that CUL4B may be

FIGURE 1 | CUL4B promotes the proliferation and migration of PDLSCs. (A) Western blot showing knock down and overexpression efficiency of CUL4B in
PDLSCs. (B,C) Proliferation of PDLSCs with knockdown (shCUL4B) and overexpression of CUL4B (puro-CUL4B) together with corresponding control cells (puro or
con), was examined by CCK-8 assays. Quantification of percentage of EdU positive cells in indicated cells was shown in (D,E). Colony formation efficiency of indicated
cells was shown in (F,G). The normalized colony number of control cells was set as 1. (H–K) Migration ability of indicated cells was examined by wound-healing
assay and transwell assay. All quantification analyses were based on independent triplicate experiments. Error bars represent SD. Statistical comparisons were made
using two-tailed unpaired t-test, **p < 0.01 compared with negative control.
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involved in the stemness of PDLSCs. To investigate the
potential interaction of CUL4B with the stemness of
PDLSCs, the mRNA expression levels of stemness markers
were detected in PDLSCs with stable knockdown and
overexpression of CLU4B. The results showed that the
stemness markers MYC, Nanog, OCT4 and SOX2 were
significantly reduced in stable CUL4B-knockdown PDLSCs
whereas increased in CUL4B-overexpressed PDLSCs (Figures
2A,B). Sphere formation assay, commonly used to identify
cancer stem cells, was carried out and showed that the size and
number of spheres were less and smaller in PDLSCs with
knockdown of CUL4B, whereas were more and bigger in
CUL4B overexpressed PDLSCs when comparing to the
corresponding control group (Figures 2C,D and
Supplementary Figure S2J). Taken these data together, it
suggests CUL4B plays a key role in regulation of the stemness
of PDLSCs.

3.3 Cullin 4B Regulates the Osteogenic
Differentiation of Periodontal Ligament
Stem Cells by Post-transcriptionally
Controlling the Expression of RUNX2
Protein
Patients with CUL4B mutations manifest disruptions of skeletal
development implying that CUL4B might be involved in the
formation of mineralized bone, and that osteogenic
differentiation is the crucial stage of new bone formation.
Since the potential association of CUL4B with the stemness of
PDLSCs as shown in above results, we expected that CUL4B
might be involved in the regulating osteogenic differentiation of
PDLSCs. To test whether CUL4B regulates the osteogenic
differentiation of PDLSCs, CUL4B-knockdown PDLSCs were
cultivated in osteogenic induction medium to induce
osteogenic differentiation. ALP activity has been widely used

FIGURE 2 |CUL4B enhances stemness of PDLSCs. (A,B) Expression levels of stemnessmarkers as indicated in CUL4B stably overexpressing (puro-CUL4B), (A)
and knockdown [shCUL4B, (B)] PDLSCs together with corresponding control cells (puro or con) analyzed by qRT-PCR. (C,D) Representative bar graph of the
percentages of spheres (C) and the diameter of the spheres (D) in CUL4B stably overexpressing (puro-CUL4B) and knockdown (shCUL4B) PDLSCs together with
corresponding control cells (puro or con). Scale bars: 200 μm. All quantification analyses were based on independent triplicate experiments. Error bars represent
SD. Statistical comparisons were made using a two-tailed unpaired t-test, *p < 0.05, **p < 0.01 compared with the negative control.

Frontiers in Cell and Developmental Biology | www.frontiersin.org June 2022 | Volume 10 | Article 9216635

Mi et al. CUL4B Regulates Osteogenic Differentiation

https://fanyi.so.com/
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


FIGURE 3 | Knockdown of CUL4B suppresses the osteogenic differentiation of PDLSCs through post-transcriptional regulation of RUNX2 protein. (A) CUL4B
stable knockdown (shCUL4B) and corresponding control (con) PDLSCs were cultured in osteogenic induction medium and were collected at 14 days to measure ALP
activity. (B) PDLSCs with stable CUL4B knockdown (shCUL4B) or corresponding control vector (con) were cultured in osteogenic induction medium for 21 days, and
Alizarin Red staining was performed, scale bars: 200 μm. (C) 10% CPC was added, and the concentration of calcium deposition was quantified by absorbance at
562 nm. (D) Western blot showing knock down efficiency of CUL4B in PDLSCs after 3 weeks osteogenic induction-f CUL4B stable knockdown (shCUL4B) and
corresponding control (con) PDLSCs were infected with indicated CUL4B expressing lentiviral or empty control lentiviral, indicated PDLSCs were cultured in osteogenic

(Continued )

Frontiers in Cell and Developmental Biology | www.frontiersin.org June 2022 | Volume 10 | Article 9216636

Mi et al. CUL4B Regulates Osteogenic Differentiation

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


as a marker of the early osteogenic differentiation of stem cells. In
our study, ALP activity was measured after 14 days induction of
osteogenic differentiation (Figure 3A). The results showed that
the knockdown of CUL4B significantly inhibited ALP activity
compared with the control group (con). Extracellular matrix
calcification was determined by Alizarin Red S staining and
the relative amount of calcium was quantified. The results
indicate that after induction, knockdown of CUL4B
significantly inhibited mineralization compared with the
control group (con) (Figures 3B–D). To further confirm the
functional connection between CUL4B and osteogenic
differentiation, we performed rescue experiment by
transfecting of wild type and nuclear localization signal (NLS)-
deleted CUL4B expression vectors into CUL4B knockdown
PDLSCs. As shown in Figures 3E–H, after induction of
osteogenic differentiation, transfection of wild-type, but not
control or nuclear localization signal (NLS)-deleted, CUL4B
expression vectors rescued the attenuated ALP activity and
mineralization caused by CUL4B knockdown. Together, these
data confirmed that CUL4B positively regulate osteogenic
differentiation of PDLSCs.

Moreover, the effect of CUL4B on the osteogenic
differentiation of PDLSCs was further determined by
evaluating genes associated with osteogenic differentiation. The
expression levels of osteogenesis-related genes were analyzed by
qRT-PCR, we found that the knockdown of CUL4B significantly
inhibits the expression levels of genes associated with osteogenic
differentiation in PDLSCs, including ALP and OPN (Figures
3I,J). Interestingly, the RUNX2 mRNA expression level, which
controls the expression of OPN and ALP by binding to the cis-
acting element of their promoter regions was not significantly
changed (Figure 3K) (Ge et al., 2007; Bruderer et al., 2014).
However, the RUNX2 protein level, together with its targets ALP
and OPN, was significantly decreased in CUL4B knockdown
PDLSCs after the induction of osteogenesis (Figure 3L). These
data suggested that CUL4B decreased the RUNX2 protein
expression level not through the transcriptional regulation.

We and others have recently demonstrated that CUL4B
regulates the expression of several tumor suppressors,
including MYCN, PIK3CA, HER2, SOX4, C-MYC and CDH2
at the posttranscriptional level (Mi et al., 2017; Qi et al., 2018; Qi
et al., 2019; Zhao et al., 2019; Li et al., 2020; Liu et al., 2020). Here
we found that the RUNX2 mRNA expression level was not
significantly changed in CUL4B- knockdown PDLSCs
indicating that CUL4B likely regulates RUNX2 at the
posttranscriptional level. To confirm this, we treated CUL4B-
knockdown cells with MG132 and observed that MG132 did not

block the reduction of RUNX2 protein (Figure 3M), which
suggests that CUL4B does not regulate the degradation of
RUNX2. Taking these data together, we concluded that
CUL4B regulates the expression of RUNX2 protein at the
post-transcriptional level in PDLSCs.

3.4 Cullin 4B Upregulates RUNX2 by
Repressing the Expression of miR-320c/
miR-372/373-3p
Next, we investigated the underlying molecular mechanisms by
which CUL4B controls the protein level of RUNX2 in PDLSCs.
Based on a previous report and our findings above, we
hypothesized that miRNAs might be involved in the
upregulation of RUNX2 by CUL4B. It has been reported that
several miRNAs regulate RUNX2 (Narayanan et al., 2019), so we
first asked whether those miRNAs were regulated by CUL4B and
could subsequently modulate the expression of RUNX2. We
focused on 11 miRNAs that have been reported to target
RUNX2 (Supplementary Table S1). Meanwhile, CUL4B has
been shown to epigenetically represses several miRNAs (Zou
et al., 2013; Mi et al., 2017; Qi et al., 2018; Zhao et al., 2019; Li
et al., 2020; Liu et al., 2020), so we determined if these miRNAs
regulated by CUL4B could potentially bind RUNX2 3′-
untranslated region (UTR) to modulate RUNX2 expression.
We used three different bioinformatic prediction tools to
analyze 9 miRNAs or miRNA clusters that are directly
targeted by CUL4B (Supplementary Table S2) and found that
miR-372/373-3P could potentially bind the RUNX2 3′-UTR. So,
we selected miR-372/373-3P and 11 other miRNAs which
regulate RUNX2 as candidates. To evaluate the potential roles
of these miRNAs in RUNX2 protein expression we first examined
the expression of these candidates’ miRNAs in PDLSCs with
knockdown or overexpression of CUL4B. Among them, miR-
320c and miR-372/373-3p were found to be consistently changed
with the knockdown or overexpression of CUL4B (Figure 4A).
Therefore miR-320c and miR-372/373-3p were selected for
further investigation.

To determine the role of miR-320c and miR-372/373-3p in
regulating RUNX2 expression, we subcloned the RUNX2 3′-UTR
with or without mutated miR-320c and miR-372/373-3p binding
sites into the luciferase reporter vector pmir-GLO
(Supplementary Figure S3A,B). As shown in Figures 4B–D,
luciferase reporter assays showed that while overexpression of
miR-320c and miR-372/3-3p in PDLSCs significantly repressed
the relative luciferase activity of the wild-type (WT) construct of
pmirGLO-RUNX2 3′-UTR, it had little effect on the activity of

FIGURE 3 | inductionmedium andwere collected at 14 days tomeasure ALP activity (E), for 21 days, Alizarin Red staining was performed (F), 10%CPCwas added and
the concentration of calcium deposition was quantified by absorbance at 562 nm (G). Western blot showing expression efficiency of indicated CUL4B in PDLSCs after
3 weeks osteogenic induction (I–K) CUL4B stable knockdown (shCUL4B) and corresponding control (con) PDLSCs were cultured in osteogenic induction medium for
14 and 21 days and the expression of osteogenesis-related genes were analyzed by qRT-PCR. (L) Protein levels of osteogenesis-related genes were determined by
western blot in CUL4B stable knockdown (shCUL4B) and in corresponding control (con) PDLSCs after culture in osteogenic induction medium for 14 and 21 days. (M)
Protein expression levels of RUNX2 in CUL4B stable knockdown (shCUL4B) and in the corresponding control (con) PDLSCs treated with MG132 were determined by
western blot. Band intensities underneath the gel images in (L,M) were measured using ImageJ software (NIH, Bethesda, MD) and are presented as fold change. All
quantification analyses were based on independent triplicate experiments. Error bars represent SD. Statistical comparisons were made using a two-tailed unpaired
t-test, *p < 0.05, **p < 0.01 compared with the negative control.
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FIGURE 4 | CUL4B upregulates RUNX2 by repressing the expression of miR-320c/miR-371–373. (A) Expression of candidate miRNAs in CUL4B stable
overexpressing (puro-CUL4B) or knockdown (shCUL4B) PDLSCs together with the corresponding control cells (puro or con) were determined by qRT-PCR. (B–D)
Luciferase reporter assays of PDLSCs, which were transiently transfected with the wild-type construct of pmirGLO-RUNX2 3′-UTR (WT), with mutant constructs of
pmirGLO-RUNX2 3′-UTR (MUT-1: mutated miR-320c binding site, MUT-2: mutated miR-372/3-3p binding site), with control RNA (NC) or with miR-320c andmiR-
372-3p/373-3p mimics. (E–F) Western blot analysis of RUNX2 expression in PDLSCs transfected with miR-320c and miR-372-3p/373-3p mimics or inhibitors and
relative control RNAs (Mimics-NC or Inhibitor NC). (G) Luciferase reporter assays of CUL4B knockdown (shCUL4B) or control (con) PDLSCs that were transiently
transfected with vectors carrying wild-type RUNX2 3′UTR (WT) or mutant RUNX2 3′UTR (MUT-1 or MUT-2 as above). (H) Luciferase reporter assays showing decreased
luciferase activity of wild-type CUL4B overexpressing PDLSCs (puro-CUL4B) that was rescued by miR-320c and miR-372-3p/373-3p. (I) Western blotting analysis
showing decreased RUNX2 expression in CUL4B knockdown PDLSCs (shCUL4B) was rescued by 320c and miR-372-3p/373-3p repression. Band intensities
underneath the gel images in (I)were measured using ImageJ software (NIH, Bethesda, MD) and are presented as fold change. All quantification analyses were based on
independent triplicate experiments. Error bars represent SD. Statistical comparisons were made using a two-tailed unpaired t-test, *p < 0.05, **p < 0.01 compared with
the negative control.
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the construct of pmirGLO-RUNX2 3′-UTR containing the
mutated miR-320c (MUT-1) or miR-372/3-3p (MUT2)
binding sites. In addition, we showed that miR-320c and miR-
372/373-3p mimics reduced RUNX2 protein expression, while
miR-320c or miR-372/373-3p inhibitors resulted in increased
amounts of RUNX2 protein (Figures 4E,F). Together, our data
demonstrate that miR-320c and/or miR-372/373-3p can repress
RUNX2 expression in PDLSCs.

We next investigated whether CUL4B regulating RUNX2
expression in PDLSCs is mediated by miR-320c and/or by
miR-372/373-3p. Luciferase reporter assays showed that the
activity of the construct containing miR-320c and miR-372/3-
3p binding site of RUNX2 3′UTR but not the construct
containing miR-320c and miR-372/3-3p mutant binding site of
RUNX2 3′UTR was repressed by knockdown of CUL4B
(Figure 4G), and transfection with miR-320c or miR-372/373-
3p mimics impeded the increase in the WT construct activity
caused by high expression of CUL4B (Figure 4H). Furthermore,

the downregulation of RUNX2 by CUL4B knockdown could be
efficiently attenuated by transfection with inhibitors of miR-320c
or miR-372-3p/373-3p (Figure 4I). Taking these data together,
we demonstrated that CUL4B controls the expression of RUNX2
mediated by miR-320c and miR-372/373-3p in PDLSCs.

3.5 Cullin 4B Epigenetically Represses the
Expression of miR-320c/miR-372-3p/
373-3p in Periodontal Ligament Stem Cells
We then characterized how CUL4B regulates the function of miR-
320c and miR-372-3p/373-3p in PDLSCs. Mature miR-320c is
derived from miR-320c1 and miR-320c2 on chromosome 18, and
miR-372-3p/373-3p, miR-371a, miR-371b and miR-372/373-5p all
belong to the miR-371–373 cluster. We first analyzed the expression
levels of primary polycistronic miRNA transcript (pri-miRNA) of
miR-320c and miR-371–373 cluster. Pri-miR-320c2 and pri-miR-
371–373 levels were remarkably raised but not pri-miR-320c1 in

FIGURE 5 | CUL4B epigenetically represses the expression of miR-320c/miR-371–373 in PDLSCs. (A) pri-miR levels in CUL4B stable overexpressing (puro-
CUL4B) and knockdown (shCUL4B) PDLSCs together with the corresponding control cells (con or puro) were analyzed by qRT-PCR. (B,C)miRNA and pri-miRNA levels
in PDLSCs treated with 1 µMDzNep for 24 and 48 h determined by qRT-PCR. (D,E) ChIP assays performed using PDLSCs with antibodies against IgG, CUL4B, DDB1,
EZH2, H2AK119ub and H3K27me3. qRT-PCR was performed with primers at the region of miR-320c (D) and miR-371–373 (E) promoter. (F,G) ChIP assays
performed in CUL4B stable knockdown (shCUL4B) PDLSCs together with the corresponding control cells (con) with antibodies against CUL4B, DDB1, EZH2,
H2AK119ub, H3K27me3, H3K4me3, and Histone H3. qRT-PCR was performed with primers at the region of miR-320c (F) and miR-371–373 (G) promoters. All
quantification analyses were based on independent triplicate experiments. Error bars represent SD. Statistical comparisons were made using a two-tailed unpaired
t-test, *p < 0.05, **p < 0.01 compared with the negative control.
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CUL4B stable knockdown PDLCSs but were reduced in CUL4B-
overexpressing PDLSCs (Figure 5A), which suggests that CUL4B
may repress the initial step of miR-320c andmiR-372/373 biogenesis.

A previous study showed that EZH2 binds to the promoter region of
miR-320c and miR-372-3p/373-3p (Alzrigat et al., 2017; Liu et al.,
2020). We then measured the expression of mature miR-320c and

FIGURE 6 | CUL4B regulates the osteogenic differentiation of PDLSCs via the miR-320c and miR-372-3p/373-3p-RUNX2 axis. (A–E) CUL4B stable knockdown
(shCUL4B) or control (con) PDLSCs were infected with lentivirus carrying: miR-320c sponge (sp320c), miR-372-3p/373-3p sponge (sp372) or control sponge (spnc),
after which the infected cells were cultured in osteogenic induction medium for 14 or 21 days. At 21 days, the cells were collected for Alizarin Red staining (A) and
analysis of the concentration of calcium deposition (B). Scale bars: 200 μm. (C) ALP activity of different groups of PDLSCs were analyzed at day 14.The expression
of osteogenesis-related genes OPN (D) and ALP (E) in different groups of PDLSCs collected at day 14 were determined by qRT-PCR. (F) Schematic of the CUL4B-miR-
320c and miR-372/373-RUNX2 axis and its role in the regulation of PDLSC osteogenesis. All quantification analyses were based on independent triplicate experiments.
Error bars represent SD. Statistical comparisons were made using a two-tailed unpaired t-test, *p < 0.05, **p < 0.01 compared with the negative control.
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other members of the miR-371–373 cluster: miR-372-3p and miR-
373-3p and miR-372-5p in PDLSCs treated with 1 µM EZH2
inhibitor DzNep for 24 and 48 h, using DMSO treatment as a
control. These mature miRNAs were significantly upregulated after
treatment with DzNep. Consistent with that, pri-miR-320c2 and pri-
miR-371–373 expression levels were also significantly raised but not
pri-miR-320c1 after treated with DzNep (Figures 5B,C). We then
used Chromatin immunoprecipitation (ChIP) assays with primer
pairs covering those regions as reported before. CUL4B, EZH2 and
DDB1 co-occupancywas detected at those regions andwas associated
with enriched H2AK119ub1 and H3K27me3 in PDLSCs (Figures
5D,E). Knockdown of CUL4B caused a significant reduction in the
recruitment of CUL4B, EZH2 and DDB1, consequently decreased
H2AK119ub1, H3K27me3 at miR-320c2 and miR-371–373
promoter, and increased H3K4me3 at miR-320c2 and miR-
371–373 promoter (Figures 5F,G). Taken together, our data
suggested that CUL4B functions to repress miR-320c2 and miR-
371–373 transcription in PDLSCs by promoting H2AK119
monoubiquitination and consequently the recruitment of the
PRC2 complex.

3.6 Cullin 4B Regulates the Osteogenic
Differentiation of Periodontal Ligament
Stem Cells via the miR-320c and
miR-372-3p/373-3p-RUNX2 Axis
Finally, the role of the miR-320c and miR-372-3p/373-3p-
RUNX2 axis in the osteogenic differentiation of PDLSCs
regulated by CUL4B was further evaluated by gene
knockdown experiments using lentiviral-mediated stable
expression of miRNA sponges. The expression levels of miR-
320c and miR-372-3p/373-3p were significantly decreased in
PDLSCs infected with the lentivirus expression of miR-320c
and miR-372-3p sponges (Supplementary Figure S4A–C). As
shown by Alizarin Red staining and ALP activity assay (Figures
6A–C), the downregulation of osteogenic activities by CUL4B
RNAi could be efficiently attenuated by inhibitors of miR-320c
and miR-372-3p/373-3p after the lentiviral-mediated stable
expression of miRNA sponges.

The decreased expression of the osteoblast marker genes ALP
and OPN by CUL4B knockdown could also be efficiently
attenuated in PDLSCs by the stable expression of miRNA
sponges (Figures 6D,E). Taken together, these data implied
that the miR-320c and miR-372-3p/373-3p-RUNX2 axis is
implicated in modulating the osteogenic differentiation of
PDLSCs regulated by CUL4B.

In summary, the CRL4B complex can epigenetically repress
the transcription of miR-320c and miR-372/373-3p, which
directly targets RUNX2, and consequently activates the
osteoblast marker genes ALP and OPN modulating osteogenic
differentiation (shown schematically in Figure 6F).

4 DISCUSSION

PDLSCs, a subtype of MSCs, are an excellent source of cells
with self-renewing capability and multidirectional

differentiation potential for use in periodontal tissue
engineering and bone regenerative applications (Seo et al.,
2004; Tassi et al., 2017). Understanding the mechanisms of
self-renewal and multi-directional differentiation is of great
significance for the application of this type of cell. PDLSCs
derived from dental tissues have the advantages of availability,
rapid culture expansion and hypoimmunogenicity, not only
are widely used as favorable seed cells for periodontal tissues
and bone regeneration but also as a suitable cell model to
study the self-renewing ability and multidirectional
differentiation mechanisms, especially osteogenic
differentiation.

Cullin 4B (CUL4B), which assembles the CUL4B-RING
ubiquitin ligase (CRL4B) complex, participates in a variety of
developmental and physiological processes. CUL4B plays a
critical role in regulating DNA replication and cell-cycle
progression (Zou et al., 2009; Zou et al., 2013). Previous
studies have indicated that CUL4B exerts biological
functions in various types of cancers (Hu et al., 2012; Mi
et al., 2017; Qi et al., 2018; Jiao et al., 2019; Qi et al., 2019; Li
et al., 2020). Mutations in human CUL4B cause intellectual
disability (Tarpey et al., 2007; Zou et al., 2007) and patients
with CUL4B mutations manifest disruptions in skeletal
development such as a short stature and brachydactyly
(Badura-Stronka et al., 2010; Isidor et al., 2010;
Kerzendorfer et al., 2011; Ravn et al., 2012). Bone
formation is the basis of skeletal development, which is
associated with osteogenic differentiation. But how CUL4B
manifests skeletal development or bone formation is still
poorly defined. So, given the advantages of PDLSCs
mentioned above, in this study we induced the osteogenic
differentiation of PDLSCs as a cell model to investigate how
CUL4B contributes to osteogenesis as well as its role in
regulating the biological properties of MSCs, which
provided insights into how CUL4B manifests skeletal
development and bone formation. We found that the lack
of CUL4B impedes the proliferation and migration of
PDLSCs. CUL4B enhances stemness of PDLSCs. Our
silencing experiments also confirmed that reducing the
expression of CUL4B led to a significant inhibition of
PDLSC osteogenesis. This is the first demonstration that
CUL4B is a new regulator of osteogenic differentiation in
PDLSCs.

RUNX2, which is a key TF involved in regulating osteogenesis, is a
member of the mammalian RUNT related TF family (Bruderer et al.,
2014). RUNX2 can upregulate expression of the ColeI, ALP and OPN
genes (Ge et al., 2007). The regulation of RUNX2 is pivotal in the
osteogenesis of PDLSCs and other types of stem cells. miRNAs are
small non-coding RNAs that are 17–25 nucleotides long. miRNAs
regulate the expression of target genes at the post-transcriptional level
by hybridizing with target mRNAs at the 3′untranslated region
(3′UTR), consequently silencing the target genes and thereby
controlling the biosynthesis of target proteins (Wahid et al., 2010;
Vimalraj and Selvamurugan, 2013). A large number of miRNAs have
been shown to directly bind to the 3′UTR of RUNX2. In addition,
because RUNX2 has a large 3′UTR (3.777 kb), RUNX2 is likely
targeted by several groups of miRNAs. Previous studies have
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demonstrated that RUNX2 is targeted by miR-320c in human
mesenchymal (skeletal) stem cells (Hamam et al., 2014). In the
current study, we demonstrated that RUNX2 is indeed a direct
target for miR-320c in PDLSCs. We found that RUNX2 is also a
direct target of miR-372-3p/373-3p. The results show that miR-320c
and miR-372/373-3p repress RUNX2 expression and consequently
regulate the osteogenesis of PDLSCs, which suggests that miR-320c
andmiR-372/373-3p are crucial targets of CUL4B in PDLSCs. CUL4B
was reported to negatively regulate the biogenesis of miRNAs inmany
types of cancer cells. We previously showed that CUL4B functions to
repress miRNA transcription, an important step by which CUL4B
exerts its functions both in physiology and in pathology (Li et al., 2020;
Liu et al., 2020). We demonstrated in this study that CUL4B binds to
the promoters of miR-320c2 and the miR-371–373 cluster to catalyze
H2AK119 monoubiquitination and consequently the recruitment of
the PRC2 complex. Cheng and Zhou have reported that the LPS-
induced overexpression of EZH2 suppressed the osteogenic
differentiation of PDLSCs under inflammatory conditions (Cheng
and Zhou, 2020). Treatment with DzNep restores the osteogenic
differentiation defect of endogenous osteoporotic BMSCs (Jing et al.,
2016). CUL4B epigenetically represses miR-320c/miR-371–373 in
PDLSCs by promoting the monoubiquitination of H2AK119 and
the consequent binding of EZH2.Hamam et al. reported that themiR-
320c/RUNX2 axis regulates osteogenic differentiation in human
mesenchymal cells (Hamam et al., 2014), but the roles of miR-372-
3p/373-3p, which is a new regulator of RUNX2 and a target of EZH2
in osteogenic differentiation remain poorly understood. Our results
show that CUL4B regulates the expression of RUNX2 protein at the
post-transcriptional level. Thus, CUL4B is a new regulator of RUNX2.

CUL4B possesses oncogenic properties in a variety of human
cancers (Hu et al., 2012; Yuan et al., 2015; Mi et al., 2017; Qi et al.,
2018; Qi et al., 2019; Li et al., 2020; Liu et al., 2020). RUNX2 is often
aberrantly reactivated in many cancers. A recent clinical study
reported high-expression levels of RUNX2 in tumors derived from
epithelial tissues including breast (Chang et al., 2014), pancreas
(Kayed et al., 2007), prostate (Lim et al., 2010), lung (Herreño
et al., 2019) and colorectal (Ji et al., 2019), in which CUL4B is
also aberrantly reactivated. We demonstrated that CUL4B is a new
regulator of RUNX2 for osteogenic differentiation in PDLSCs, but the
relationship between CUL4B and RUNX2 in cancers remains
unknown. Therefore, further investigations are needed to
characterize the mutual interactions of CUL4B and RUNX2 in
cancers including miR-320c2 and miR-372-3p/373-3p. In addition,
in this study we demonstrated the CUL4B-miR-320c and miR-372/
373-3p-RUNX2 axis regulates the osteogenic differentiation in vitro.
However, the CUL4B-miR-320c and miR-372/373-3p-RUNX2 axis
that regulate osteogenic differentiation in vivo remain largely unclear.
It would be interesting to further investigate the signaling activation
in animal models.

In summary, CUL4B can epigenetically repress the
expression of miR-320c and miR-372/373-3p that directly
affects the level of RUNX2, and consequently activates the
osteoblast marker genes ALP and OPN (Figure 6F).
Intervention of the CUL4B-miR-320c and miR-372/373-
RUNX2 axis may have important implications in
transplantation therapies of PDLSCs and could be used for
periodontal tissue engineering and guiding bone regeneration.
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