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Tumor shrinkage occurs in many patients undergoing radiotherapy for head-and-neck (H&N) cancer. However, one-to-one
correspondence is not always available between voxels of two image sets. This makes intensity-based deformable registration
difficult and inaccurate. In this paper, we describe a novel method to increase the performance of the registration in presence
of tumor shrinkage. The method combines an image modification procedure and a fast symmetric Demons algorithm to register
CT images acquired at planning and posttreatment fractions. The image modification procedure modifies the image intensities of
the primary tumor by calculating tumor cell survival rate using the linear quadratic (LQ) model according to the dose delivered to
the tumor. A scale operation is used to deal with uncertainties in biological parameters. The method was tested in 10 patients with
nasopharyngeal cancer (NPC). Registration accuracy was improved compared with that achieved using the symmetric Demons
algorithm.The averageDice similarity coefficient (DSC) increased by 21%.This novelmethod is suitable forH&Nadaptive radiation
therapy.

1. Introduction

Image registration is becoming a key tool inmodern radiation
therapy. In image-guided radiation therapy (IGRT), CT
images acquired before each treatment are registered with
planning CT images to verify patient position. In adaptive
radiation therapy, similar registrations are needed to segment
structures automatically and to evaluate the dose received
in each fraction [1–3]. Rigid registrations are sufficient in
situations where only rigid movements occur. However,
deformable registrations are required in caseswhere structure
deformation and/or tumor shrinkage occur.

The majority of patients with head-and-neck (H&N)
cancer who undergo fractionated radiation therapy experi-
ence significant anatomic changes, such as tumors shrinkage,
changes in overall body habitus, and weight loss [4–6].

Tumor shrinkage is mainly due to the death and destruction
of cells killed by radiation. The loss of these cells causes
tumor density and tumor volume to decrease. This means
that physical one-to-one correspondence may no longer exist
between voxels of the two image sets. This problem severely
impairs the performance of an intensity-based deformable
registration algorithm. The “Demons” family of algorithms
is such a registration form, which can accurately account for
anatomical changes at relatively low computational expense
[7–10], and is a suitable choice for registration ofH&N images
[11].

The gas pocket mismatching problem in abdominal
images also provides challenges for the intensity-based de-
formable image registration. Several methods have been used
to overcome the problems associatedwith lack of correspond-
ence and mismatched objects that occur with deformable

Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2015, Article ID 265497, 9 pages
http://dx.doi.org/10.1155/2015/265497

http://dx.doi.org/10.1155/2015/265497


2 Computational and Mathematical Methods in Medicine

registration of abdominal CT images [12–16]. In images
of the pelvic regions, the issue of no correspondence is
associated with the presence of bowel gas. Because the gas is
not clinically important (the contents of the bowel need
not be registered), the artificial gas [12, 13] or constant
intensity masks [14, 15] were introduced to create “virtual”
correspondence. This improved the registration accuracy for
the surrounding tissues, such as the rectal wall or prostate,
which were clinically important organs. However, in the
case of tumor shrinkage, the tumor itself is the treatment
target. We could not use the constant intensity masks (or
artificial intensity pattern) in the tumor, where the noncorre-
spondence problem occurred. For this reason, the approach
mentioned above is infeasible. To our knowledge, the issue of
lack of correspondence induced by the radiation therapy has
not been adequately described in the literature.

In this paper, we describe a novelmethod for dealing with
the effects of radiation on tumor tissues in the H&N during
deformable registration. The method involved modification
of image intensities of the primary tumor by calculating
tumor cell survival rate using the linear quadratic (LQ)model
according to radiation dose delivered to the tumor [17].

2. Materials and Methods

2.1. Data Extraction. The study included 10 patients with
nasopharyngeal cancer (NPC) who underwent intensity-
modulated radiation therapy (IMRT) at Cancer Institute
(Hospital) of Chinese Academy of Medical Sciences, China.
Patients were immobilized by custom-made thermoplastic
masks. Two CT image sets were acquired for each patient
(before the start of treatment and at the completion of the
treatment course) using a Philips Brilliance Big Bore 16-slice
CT scanner. The image sets were composed of 3mm thick
slices; the matrix size of each slice was 512 × 512 and the
pixel size was approximately 1mm.The initial image sets were
loaded into a Pinnacle version 8.2g system (Philips Medical
Systems, Cleveland, OH) for treatment planning. To improve
the registration speed, the number of slices for each image
pair was reduced so that it just covered the whole primary
tumor. According to our standard treatment protocol, the
primary tumorwas prescribed 70–72.6Gy.The tumor volume
was contoured by a single physician for all planning and
posttreatment CTs. Contouring was undertaken to evaluate
the registration results, rather than to help the deformation
process.

The CT images, contours, and treatment plan doses for
each patient were exported from Pinnacle using the DICOM
RTprotocol.The exported dose array was a 3D dosemap.The
dose voxel size was 4 × 4 × 4mm3.

The study was approved by the local ethical committee,
and informed consent was obtained from all patients.

2.2. Image Preparation. The posttreatment CT was used as
the static image and the planning CT as the moving image
for each image pair. This represented a worst-case scenario
for tumor shrinkage to test our proposed algorithm. The
couch region was manually selected in the transverse plane
and the voxels CT numbers were set to that of air (i.e.,

−1000HU). Voxels CT numbers below the empirically deter-
mined −500HU were also set to −1000HU. This was done
to reduce the interference from nonuniformities outside the
patient.

Both the planning CT images and the posttreatment CT
images were cropped on the transverse plane, to restrict the
regions of interest (ROI) to the head.The images were resam-
pled and determined to have the same voxel dimensions of
2 × 2 × 3mm3 using the nearest interpolation.

2.3. Rigid Registration. Rigid registration was performed in
advance to improve the speed and accuracy of the deformable
registration. A minimum threshold of around 500HU was
applied to the two images so only the bony structures of the
skeleton remained.The rigid registration determined a trans-
lation that minimized the correlation coefficient between
voxels in the two images. To evaluate the accuracy of the
rigid registration, we created a set of simulated translations
of patient CT images. Compared to the introduced (known)
shifts, the mean residual shifts (error) were 1.1mm, within
the voxel size of the patient images. This rigid alignment
provided the basic initialization for subsequent deformable
registration.

2.4. Deformable Registration. The “Demons” algorithm is an
image intensity-based, deformable registrationmethod that is
widely used in medical practice as it demands relatively low
computational expense. A variant of this algorithm, proposed
by Wang, was used in the present study [18].

In the original Demons algorithm, the displacement for
each voxel is obtained using the spatial gradient of static
target image intensities. The displacement field is then reg-
ularized using a Gaussian smoothing filter to suppress noise
and preserve the geometric continuity of the moving image.
This iterative process alternates between calculation of the
displacement field and regularization. By introducing an
“active force,” Wang et al. modified the standard Demons
algorithm to obtain faster convergence and improve registra-
tion performance. The updated deformation field 𝐷

𝑛
for the

current iteration was written as follows:
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where 𝐺
𝜎
is the Gaussian kernel, ∗ denotes the convolution

operator, and the width of the Gaussian kernel 𝜎 was fixed
to 1. 𝐷

𝑛−1
is the deformation field at iteration 𝑛 − 1. 𝐼 is the

intensity of the moving image and 𝐼 is the intensity of the
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Figure 1: Method workflow consisting of the following proce-
dures: rigid registration, intensity modification, intensity scale, and
deformable registration.

static image; the respective gradient images are denoted by
⇀

∇
𝐼
 and ⇀∇

𝐼
. 𝑘 is a normalization factor and we used 𝑘 = 0.4.

2.5. Intensity-Modification Procedure (IMP). In patients
undergoing radiation therapy, including H&N cancer, it
is important that target volumes are accurately registered.
Due to the cells killed by radiation, the density and even the
volume of primary tumor may decrease. Unless this one-to-
one correspondence is addressed, a large registration error
will occur. We thus proposed to change the image intensities
for the target volume in the planning CT image (moving
image) based on the linear quadratic (LQ) model. The
intensity modification was only done for the planning tumor
and all other voxels of planning CT remained unchanged.

The workflow of the proposed method is shown in Figure
1. We implemented all procedures described here using in-
house program written in Matlab (version 7.1, MathWorks)
software. Based on the planning dose array, we modified the
image intensities within the primary tumor using the LQ
model. The details of this procedure are described below.

2.5.1. Data Import. The primary tumor volume contours as
manually delineated during the routine treatment process
were loaded into the planning CT images. The dose array
was resampled to have the same spacing as the planning CT.
The dose array and the planning CT were aligned according
to their positions in the DICOM patient coordinate system.
Thus, each element in the dose array represented the dose to
be delivered to the corresponding voxel in the planning CT
images.

2.5.2. Image Intensities Modification. We calculated voxel
intensity within the primary tumor using the LQ model. For
every slice in the planning CT images, 𝐼

0
represented the

intensity of a voxel within the primary tumor. By definition,
the relationship between 𝐼

0
(CT numbers, expressed in

Hounsfield units) and the corresponding linear coefficient 𝜇
0

was calculated as
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Rearranging this gives
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where 𝜇
𝑊

is the attenuation coefficient of water (approxi-
mately 0.1928−1).

After the primary tumor cells in a given voxel were
irradiated at dose 𝐷, the intensity value would decease to 𝐼

𝑆

(HU) with the corresponding attenuation coefficient 𝜇
𝑆
. 𝐼
𝑆

was converted to 𝜇
𝑆
by the equation
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As shown in (5), 𝜇
𝑆
is proportional to the number of

primary tumor cells 𝑁
𝑆
in a given voxel that survives

irradiation, and 𝜇
0
is proportional to the number of cells in

that voxel prior to irradiation𝑁
0
:
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where, according to the LQ model, the survival fraction SF is
given by

SF = exp(−𝛼𝐷(1 + 𝑑

𝛼/𝛽

)) . (6)

In this situation, cell proliferation is negligible. 𝑑 and 𝐷
are the dose per fraction and the total dose to the voxel,
respectively. 𝛼 and 𝛽 are the LQ parameters. For the purposes
of illustration, we assumed that 𝛼 was 0.33Gy−1 and 𝛼/𝛽
was 10Gy [19–22]. Note that the result is not sensitive to the
variation of 𝛼 and 𝛼/𝛽 values as demonstrated in the result
section. Using (3), (4), (5), and (6), we obtained
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2.5.3. Voxel Intensity Scale. In the planning CT image, 𝑆
0

was defined as the sum of voxel values within the primary
tumor, and 𝑆 denoted the sum of the voxel values within the
corresponding region in the posttreatment CT image. The
intensity value (𝐼

𝑆
) of the primary tumor voxel was scaled as

follows:

𝐼

=

𝐼
𝑆
𝑆

𝑆
0

. (8)

Equations (7) and (8) were used to modify the intensity of
every voxel of primary tumor in the planning CT images.
Figure 2 shows an axial slice of a planning image before and
after image modification. This procedure was coupled with
Wang’s “Demons” algorithm to calculate the displacement
field.

2.6. Evaluation. To quantitatively evaluate the performance
of the proposedmethod, theDice similarity coefficient (DSC)
was calculated for the tumor. For two segmentations on the
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(a) (b) (c)

Figure 2: Example of intensity-modification procedure. (a) An axial slice of a planning image. (b)The same image after intensitymodification.
This modified planning image can be accurately registered using deformable image registration. (c) The corresponding slice from the
posttreatment CT image.

target images, given by the deformed contours using the
computed motion fields and manual contours, respectively,
their corresponding volumeswere denoted by𝑉

𝑑
and𝑉
𝑚
.The

DSC was then defined as [23]

DSC =
2𝑉
𝑑
∩ 𝑉
𝑚

𝑉
𝑑
+ 𝑉
𝑚

× 100%. (9)

DSC ranged between 0 and 100%. A DSC value of 0 indicated
two completely uncorrelated images and aDSC value of 100%
indicated a perfect match.

To assess the effectiveness of the proposed intensity mod-
ified procedure (IMP), we compared results of deformable
image registration with and without intensity modification
when all other parameters were set to the same. We also
calculated the DSC for the tumor performed only with the
rigid registration between these 10 pairs of CT images. The
Wilcoxon signed-rank testwas used to compare eachmethod.

3. Results

3.1. Registration Example. To compare the effectiveness of
the intensity modification, we performed deformable image
registration in 10 pairs of head CT images with and without
the intensity-modification procedure. An example is shown
in Figure 3. The target volume change for this case was
found to be 33% (from 15.59 cc to 10.47 cc). The left row of
Figure 3 shows the planning CT in axial and sagittal views
together with manually delineated tumor volume (green
contours). The right row shows the posttreatment CT. Both
sets of contours were overlaid in these images: the deformed
contours without IMP (shown in blue) and the deformed
contours with IMP (shown in red). As it can be seen in the
figure, the deformed contours without using IMP clearly did
not match with the reduced tumor target, due to the lack of
one-to-one correspondence.

Figure 4 shows the dense displacement fields with and
without IMP.The arrows indicate the displacement in 3D but

Table 1: Statistics for Dice similarity coefficient (DSC) for the tumor
using rigid registration and deformable image registration with and
without the intensity-modification procedure (IMP).

Patient DSC (rigid) DSC (IMP) DSC (no IMP)
1 86.7 91.6 88.0
2 78.9 95.1 82.3
3 73.5 90.9 60.7
4 86.9 96.8 86.2
5 52.5 78.2 63.4
6 71.5 89.4 53.9
7 76.8 94.0 82.5
8 79.3 95.8 75.1
9 80.4 95.2 87.5
10 76.0 93.3 80.7
Mean 76.3 92.0 76.0

are projected as 2D images for display purposes. A vector
field was used to assess the result and detect errors. It is
evident from these displays that the displacement vectors
(within the smaller region around the primary tumor where
noticeable shrinkage occurs) are more chaotic, discontin-
uous, and abrupt, when IMP is not applied (Figure 4(a)).
The voxels in this region exhibit unrealistic displacement
due to the lack of correspondence. This is improved when
the deformable registration is embedded with the intensity-
modification procedure (Figure 4(b)).

3.2. Registration Statistics. The DSC values calculated for the
tumor using rigid and deformable registrationwith andwith-
out IMP are summarized in Table 1. The Wilcoxon signed-
rank test showed that there was little difference between the
rigid registration and the deformable registration method
without using the IMP method (𝑃 = 0.721). Nevertheless,
there was a significant improvement when the IMP method
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Planning CT

(a)

Posttreatment CT 

(b)

Figure 3: The CT images of one patient with the registered contours overlaid. (a) Planning CT in sagittal and axial slices and the manual
contours overlaid. (b)The corresponding slices of posttreatment CTwith the deformed contours overlaid.The red and blue contours represent
the segmentation results with (red) and without (blue) the IMP.

(a) (b)

Figure 4: Displacement field calculated using the deformable registration algorithm overlaid on an axial slice. Displacement field: (a)
computed without using the intensity-modification procedure (IMP) and (b) computed using the IMP.

was used over the rigid registration (𝑃 < 0.005) or
the deformable registration method without using the IMP
method (𝑃 < 0.005). The images with rigid registration had
a mean overlap value of DSC = 76.3%. The mean value of
the calculated DSC was 76.0% for deformable registration

without IMP.The application of the IMP leads to amean value
of DSC = 92.0%. On average, the improvement in DSC was
21% with IMP in these 10 cases.

In this study, hypothesesweremade on the values of𝛼 and
𝛼/𝛽 ratio.The uncertainty in radiosensitivity parametersmay
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Figure 5: Sensitivity of the Dice similarity coefficient (DSC) with
respect to 𝛼 and 𝛼/𝛽 for patient 2.

affect the reliability of the outcome. Therefore, a sensitivity
analysis was performed to quantify the uncertainty of DSC
when different parameter combinations were applied in the
study. A typical example is shown in Figure 5.We adjusted the
key parameters (𝛼 and 𝛼/𝛽) in a large range of possible values
and provided the DSC results. It indicated that our method is
not sensitive to the radiosensitivity parameters. For example,
DSC slightly increased from 93.6% to 95.3%, even with more
than one order of magnitude change on 𝛼 and 𝛼/𝛽 values (𝛼
from 0.1 Gy−1 to 1 Gy−1 and 𝛼/𝛽 from 3Gy to 40Gy).

The computing time to perform the deformable registra-
tion varied depending on the number of registered image
slices. For a typical planning and posttreatment CT pair, the
run time for the full registration was approximately 15min.
These results were obtained on a Dell desktop PC with dual
2.13 GHz Intel Xeon processors and 2.25GB of RAM.

As our focus was the accuracy of registration, we made
no special effort to improve the speed of the registration pro-
cess. However, time saving could be achieved by improving
computer hardware such as GPU-based implementation of
the Demons algorithm [24, 25].

4. Discussion

Previous studies have shown that nonrigid anatomical
changes can occur in H&N during the course of fraction-
ated radiation therapy [26]. The Demons algorithm has
been shown to be a good choice for registration of H&N
images [11]. However, the issue of primary tumor density
change/volume shrinkage due to radiation treatment has not
been addressed by the authors. In our experience, registration
accuracy using this algorithm is reduced under these circum-
stances.

In the current study, we used a modification to the
Demons algorithm which adjusted the intensities of the
primary tumor voxels according to the LQmodel. Qualitative
and quantitative results demonstrated that the proposed
method increased the performance of the registration in
presence of tumor shrinkage.

The intensity-modification procedure used in this study
is essentially a preprocessing method that can be used in
conjunction with other intensity-based deformable registra-
tion algorithms. While the focus of the current work was to
evaluate deformable registration in H&N region, the method
may also be adapted to other anatomical regions where
tumor shrinking occurs (e.g., in lung cancer). In lung cancer,
noncoplanar beams may be used and more slices should be
included along both the superior and inferior directions to
the tumor.

The LQ model is generally effective in describing tumor
response to radiation and is widely used in experimental and
clinical radiobiology. So we chose this model to calculate
the NPC cell killing by radiation. The cell killing process is
a complicated biological process. However, this preliminary
model could serve as a basis for more complex models to
deal with the problem of tumor shrinkage. Considering the
nonhomogeneous dose distributions in IMRT, we assumed
that the primary tumor volume was composed of a series
of subvolumes (voxels), each one receiving a homogeneous
dose. In this setting, the basic LQ model may be used to
estimate the NPC cell killing by radiation. We also recognize
that further studies would be desirable to validate this
assumption.

The radiation therapy parameters values used in our
study were derived from the literature [19–22]. The ratio
𝛼/𝛽 was assumed to be 10Gy, which is a nominal value
for most tumors, and 𝛼 was set at 0.33Gy−1. Radiobiology
parameters have a high degree of uncertainty caused by
interpatient variations, tumor heterogeneity, and effects of
hypoxia and chemotherapy. To deal with this uncertainty,
we used a scale procedure within the LQ model to fix the
potential problems caused by the patient and tumor specific
biological parameters. The scale adjustments were based on
information from pretreatment CT images. The sensitivity
analysis showed that our method was not sensitive to the
radiosensitivity parameters. It may also be possible to obtain
biological information for individual patients noninvasively
using functional imaging [27, 28].

In the formulation for the deformation field, we have
chosen 𝜎 to be 1 and 𝑘 to be 0.4 based on previous studies
done by other investigators [7, 8, 11, 14, 18] and our own initial
testing experience. The impacts of the 𝜎 and 𝑘 parameters
were not investigated thoroughly in this preliminary study.
However, these specific values work well in most of our
cases. Adjusting parameters by a trial-and-error method
was also tested. No significant improvement was observed
compared to the fixed values. In addition, our emphasis is
on the comparison of the various schemes and not the final
performance. Therefore, we used the same set of parameters
for all experiments, without multiresolution adjustments.

Validation of deformable image registration remains a
difficult task due to the lack of the ground truth. Our
deformable registration algorithm was validated by simulat-
ing the deformation on patient CT image. We applied a 2nd-
order polynomial transformation to the original H&N image
(Figure 6(a)) and deformed its shape by more than 5mm on
average (Figure 6(b)). Our algorithm automatically generated
the deformation field and deformed the original image to
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(e)

Figure 6: (a) Original image; (b) original image transformed by a “polynomial” transformation; (c) deformed image derived from (a) using
the Demons algorithm; (d) difference image of (b) and (a); (e) difference image of (b) and (c).
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the mathematically transformed one (Figure 6(c)). The dif-
ference images (Figures 6(d) and 6(e)) were, respectively,
Figures 6(b)-6(a) and Figures 6(b)-6(c). Figure 6(e) showed
that the original CT image registeredwith themathematically
deformed CT image with little difference. Quantitative vali-
dation results showed that more than 90% of the voxels were
within 2mm of their intended shifts. Future work includes
a further improvement to the performance of IMP method
by implanting fiducial markers into the patient for further
validation.

5. Conclusion

We developed and tested a novel method for performing
deformable registration between planning and posttreatment
CT images in the H&N region. The technique was able
to account for tumor responses to radiation therapy by
modifying image intensities of the primary tumor voxels
according to the LQ model and to deal with the interpatient
heterogeneity of radiobiology parameters by a scaling factor.
The preliminary tests resulted in higher registration accuracy
than current methods, indicating a role in H&N adaptive
radiation therapy.
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