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Abstract

The Complexity-entropy causality plane (CECP) is a parsimonious representation space

for time series. It has only two dimensions: normalized permutation entropy (HS) and Jen-

sen-Shannon complexity (CJS) of a time series. This two-dimensional representation allows

for detection of slow or rapid drifts in the condition of mechanical components monitored

through sensor measurements. The CECP representation can be used for both predictive

analytics and visual monitoring of changes in component condition. This method requires

minimal pre-processing of raw signals. Furthermore, it is insensitive to noise, stationarity,

and trends. These desirable properties make CECP a good candidate for machine condition

monitoring and fault diagnostics. In this work we study the effectiveness of CECP on three

rotary component condition assessment applications. We use CECP representation of

vibration signals to differentiate various machine component health conditions for rotary

machine components, namely roller bearing and gears. The results confirm that the CECP

representation is able to detect, with high accuracy, changes in underlying dynamics of

machine component degradation states. From class separability perspective, the CECP

representation is able to generate linearly separable classes for the classification of different

fault states. This classification performance improves with increasing signal length. For sig-

nal length of 16,384 data points, the fault classification accuracy varies from 90% to 100%

for bearing applications, and from 85% to 100% for gear applications. We observed that the

optimum parameter for CECP representatino depends on the application. For bearing appli-

cations we found that embedding dimension D = 4, 5, 6, and embedding delay τ = 1, 2, 3 are

suitable for good fault classification. For gear applications we find that embedding dimension

D = 4, 5, and embedding delay τ = 1, 5 are suitable for fault classification.

Introduction

Prognostics and health management (PHM) and its functions, diagnostics and prognostics,

are key areas of interest for smart manufacturing. While, diagnostics detects and identifies a

failure mode within a component, prognostics predicts the degradation trends of a component
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and estimates the remaining useful life (RUL) of the component. Table 1 lists the common

machine component problems addressed by PHM [1]. This paper investigates a novel sensor

data representation method that allows for automatic as well as visual detection of health con-

dition of bearings and gears, which are the most prevalent components among the ones listed

in Table 1.

Bearings perform a key function of converting sliding friction into rolling friction in rotary

machines. A bearing consists of an inner ring, an outer ring, a set of ball rollers or cylindrical

rollers (usually termed as rolling elements), and a cage. The rolling elements are placed inside

a cage which is then set between the inner ring and outer ring. A bearing fault can occur in any

of the aforementioned four components of a roller bearing. The causes for faults in bearings

include, increase of operating loads, shaft imbalance or bent shaft, surface defects, surface

roughness, surface contamination, and presence of particles on inner or outer raceway [2]. El-

Thalji and Jantunen [3] presented dynamics of wear progression of roller bearings.

Gears, like bearings, serve a critical function in a rotary machine. Like bearings, gears oper-

ate in tough operating conditions involving static and impact forces. Gears are subjected to

wear in the form of cracking, pitting, and scaling which eventually culminates into a chipped

tooth or broken tooth condition. When such a fault state is reached, gears do not perform as

expected and hence they are, like bearings, ought to be continuously monitored for their health

condition.

For both bearings and gears, sensor-based monitoring methods are viable options for fault

detection and estimation of RUL. The common indirect measurements include vibration,

acoustic emission, and power sensors. The general steps for implementing machine learning

models for machine component fault detection are signal acquisition, signal processing, fea-

ture extractions, and building a machine learning model for classification or regression.

Most of the sensor data generated in manufacturing are structured time series data. Dimen-

sion reduction is an inherent challenge, particularly when real-time data processing is required

and data streams are generated continuously at high volume and high rate [4]. Dimension

reduction through parsimonious signal representation and feature extraction are necessary

for diagnostics and prognostics of mechanical components. Time domain features commonly

include root mean square (RMS), average, kurtosis, crest factor, autoregressive model coeffi-

cients [2]. Studies have found that RMS extracted from vibration measurements exhibits a

strong correlation with bearing wear [2, 5–8]. Similarly, kurtosis and crest factor are sensitive

to the signal shape; kurtosis is also sensitive to rotational speed and the frequency bandwidth

of a signal [2]. Fast-Fourier transform (FFT) is the most widely applied method for frequency

domain analysis. However due to the non-stationary nature of the signals in PHM applica-

tions, time-frequency domain analysis is preferred. Wigner–Ville distribution (WVD), wavelet

transform (WT) [9], discrete wavelet transform (DWT) [10], and short time Fourier transform

(STFT) are some of the methods of choice for bearing fault diagnosis. Several studies have

Table 1. Common machine component and machine subsystem problems in PHM [1].

Machine Component/

Subsystem

Problems

Bearing Outer-race, inner- race, roller, cage failures

Gear Manufacturing error, missing tooth, tooth pitting, gear crack, gear fatigue/wear

Shaft Unbalance, bend, crack, misalignment, rub

Pump (machine subsystem) Valve impact,score, fracture,pistons lap, defective bearing and revolving crank,

hydraulic problem

Alternator (machine

subsystem)

Stator faults, rotor electrical faults, rotor mechanical faults

https://doi.org/10.1371/journal.pone.0217919.t001
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used time domain analysis for gear fault detection [11–14]. RMS and kurtosis are found to be

sensitive to gear faults, especially cracked gears [14]. Both time domain and frequency domain

features have been explored to represent signals for gear fault detection [15–18] and time-fre-

quency domain [19–21] has been used for improving accuracy, enhancing robustness, and

reducing sensitivity to noise.

This paper presents a different approach to signal processing for diagnostics and prognos-

tics of bearings and gears. It investigates a complexity-entropy causality plane (CECP) based

sensor data representation that is parsimonious and effective for detection of faults in bearings

and gears. In Section 1 we reviewed different time, frequency and time-frequency methods

for sensor data representation in PHM applications. In section 2 we review different entropic

methods used for characterizing time series signals. In Section 3 we present the formulation

for the CECP representation and discuss the parameter selection for machine component

monitoring applications. In Section 4 we present the results for roller bearing fault detection

and helical gear fault detection and discuss the merits of the CECP representation in these

applications. In the conclusion section we discuss the advantages of CECP representation over

existing time, frequency, and time-frequency based approaches for PHM applications.

Materials and methods

Sensor data representation methods

The representation of the sensor data is the process of transforming a raw time series vector

X = {x1, x2, . . ., xn} into a vector F = {f1, f2, . . ., fk} in transformation space such that k< n,

where n is the number of data points in a given time series, and k is the number of entities in

the transformed space. By reducing the dimension, the computational complexity is reduced

from OðnÞ to OðkÞ. The desired properties of a good representation are preservation of local

and global characteristics with low information loss and high robustness in the presence of

noise and outliers.

The sensor signal analysis using time, frequency, or time-frequency domain are well suited

when the underlying system dynamics exhibit a linear behavior. In case of machine compo-

nents like bearing, gears, or coupled mechanical systems, sensor signals exhibit high complex-

ity and nonlinear characteristics. In recent years, entropic measures have been proven to be

effective for feature extraction from complex and nonlinear sensor signals generated by rotary

components. Approximate Entropy (ApEn) [22–24] and Sample Entropy (SampEn) [25] were

originally developed for characterizing nonlinear time series in biomedical applications. ApEn

performance depends on the signal length: shorter the signal length lower the estimation accu-

racy [25]. SampEn is an improved version of ApEn. For PHM applications, ApEn [26, 27]

method has been adopted for monitoring machine health and SampEn [28–30] for bearing

fault diagnostics. The multi-scale entropy (MSE) method developed by Costa et al. [31, 32]

proved effective in case of machine health monitoring where interaction between multiple

components (bearing, gear, and shafts) generate vibration signals that contain multiple intrin-

sic oscillatory modes in which case single scale entropic methods such as ApEn and SampEn

may be less effective for characterization of the measured signals [33, 34]. Unlike ApEn and

SampEn, MSE analyzes signals in multiple time scales rather than in a single time scale, since

entropy values do not necessarily capture complexity changes. Zhang et al. [33] applied MSE

method for bearing fault application.

Permutation entropy, introduced by Bandt and Pompe [35] has been used for analyzing and

characterizing nonlinear time series. Studies have adopted permutation entropy for fault detec-

tion of mechanical components [36, 37]. However, using permutation entropy alone as a feature

limits its ability to distinguish different types of faults. Wu et al. [38] found that permutation
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entropy on its own as a feature does not fare well with classification algorithms. They used

a technique called as multi-scale permutation entropy for feature extraction and a support vec-

tor machine (SVM) for fault signals classification. However, using multi-scale permutation

entropy, one may end up with as many features as scales. This redundant information may

hamper accuracy and further increase analysis time. Li et al. [39] used Laplacian score [40] to

select the important features generated by multi-scale permutation entropy technique.

In this work we investigate CECP as a data representation and feature extraction technique

for machine fault diagnostic and prognostics applications. The key interest in CECP represen-

tation stems from the fact that it can handle both stationary and non-stationary signals, reduce

the number of features required for accurate classification or prediction, and allow for visuali-

zation of a time series as a point in a two-dimensional space. We investigated the effectiveness

of CECP representation to detect machine component faults on publicly available sensor data-

sets on bearings and gears.

CECP representation of sensor data

Shannon entropy, S[P], is a popular measure to compute the information associated with a

process described by a probability distribution {P = pi : i = 1, 2, . . .M}. However, for differenti-

ating a simple process from a complex process, which exhibit different organizational proper-

ties, S[P], is ineffective [41, 42]. In addition, Shannon entropy on its own does not capture

temporal relationship between measurements in a time series. It requires prior knowledge

about the process in the form of an underlying probability distribution function [43] and it

nevertheless poorly characterizes highly non-linear processes (e.g. chaotic systems).

To overcome the aforementioned limitations, Bandt and Pompe (BP) [35] provided a

method to extract the underlying probability distribution from a time series. The BP method

is effective since different permutation patterns that emerge from the time series reflect the

dynamics of the underlying process. The BP method is non-parametric, rank based, and the

probability of the ordinal patterns is invariant to nonlinear monotonic changes [42, 44]. This

renders a good quantifier which is robust against nonlinear drifts and scaling [42] with ability

to handle non-stationary time series [44–46]. The BP method for generating probability distri-

butions is a simple symbolization technique that incorporates causality in the evaluation of the

probability distributions associated with a time series [43]. For a given time series X = {xt : t = 1,

2, . . .N}, at each time instance s, a sequence of measurements Xs = {xs, xs+τ(1), . . ., xs+τ(D − 1)} is

selected, where D represents the embedding dimension and τ represents the embedding delay.
The embedding dimension D reflects the amount of information captures by Xs. An ordinal

pattern (0 1 . . . D − 1) is assigned to Xs such that (0 1 . . . D − 1) 7! {xs, xs+τ(1), . . ., xs+τ(D−1)}.

The ordinal pattern is then shuffled according to the ascending order of measurements in Xs.
The shuffled ordinal pattern is referred to as permutation pattern and is represented as π. In

case the elements of Xs are identical, the ordinal pattern is taken without shuffling as the result-

ing permutation pattern. When the embedded dimension is D,D! permutation patterns are

possible. The relative frequency pi of each πi is obtained by dividing the count of permutation

pattern πi in the signal by the total number of permutation patterns (of any type) in the signal.

Thus, pi ¼ jpij=
PD!

i¼1
jpij for i = 1, 2, . . ., D! and P = {pi : i = 1, 2, . . .,D!} is the probability dis-

tribution of the permutation patterns πi in the signal. Here |πi| is the count of occurrence of per-

mutation pattern πi. The permutation entropy is computed as

S½P� ¼ �
XD!

i¼1

pilogðpiÞ ð1Þ

Complexity and entropy representation for diagnostics
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The permutation entropy as defined above takes maximum value when pi ¼ p ¼ 1

D!
for all i.

From this the max S[P] = logD!. Thus the normalized permutation entropy is given by

HS ¼
S½P�
logD!

ð2Þ

where HS 2 ð0; 1Þ.

Entropic measures, including permutation entropy, are able to quantify information but

they do not capture the structure or patterns in a process [43, 47]. To uncover organizational

properties of a process, several statistical complexity measures (SCM) have been developed

[42]. Of them, Jensen-Shannon complexity, CJS, which combines both information and dis-

equilibrium measures, has potential to effectively detected the underlying dynamics. It is

defined as [48, 49]

CJS ¼ QJ½P; Pe�HS ð3Þ

where Pe = {1/D!, 1/D!, . . ., 1/D!} is the uniform distribution and disequilibrium QJ[P, Pe] is

Jensen-Shannon divergence that links two probability distributions, P and Pe:

QJ½P; Pe� ¼ Q0J½P; Pe� ð4Þ

where

J½P; Pe� ¼ S½ðP þ PeÞ=2� � S½P�=2 � S½Pe�=2 ð5Þ

and Q0 is a normalization constant equal to the inverse of the maximum possible value of

J[P, Pe], which happens when one of the pi of distribution P is 1 and all other pi are 0 [42]. The

Q0 is computed using the following equation [50]:

Qo ¼
1

� 1

2

� �
D!þ1

D!
logðD!þ 1Þ � 2 logð2D!Þ þ logðD!Þ

� � : ð6Þ

The inclusion of factor Q0 ensures that 0� QJ[P, Pe]� 1. The Jensen-Shannon divergence

quantifies the difference between two probability distributions, P and Pe, using a non-trivial

function of entropy. Here P is a probability distribution that represents the state of the system

and Pe is a uniform distribution that serves as a reference [42]. As implied by the second law of

thermodynamics, HS serves as the time dimension and the CJS versus HS graph maps the tem-

poral evolution of the SCM [51]. For a given value of HS, the values of complexity CJS varies

between a minimum and maximum boundary which are termed the limit curves [52].

Signal lengthN, embedding dimension D, and embedding delay τ affect the value of permu-

tation entropy. A large value of Nmay result in a near constant features on the CECP map,

thereby neutralizing the ability of CECP to discern the dynamic changes. On the other hand, a

small value of Nmay yield statistically insignificant results. Literature points out that in order

to use CECP to differentiate chaotic processes from stochastic processes, it is necessary to sat-

isfy the condition that signal length be relatively much larger than D!, i.e., N� D! [44, 53].

The CECP representation is able to distinguish stochastic processes with different long range

correlations when D is between 3 and 6 [44–46]. For practical purposes Bandt and Pompe [35]

recommended 3� D� 7 and τ = 1.

With respect to vibration signals for component fault diagnostics, Yan et al. [36] studied

the relationship between N and HS. After analyzing signals of different lengths (N = 32, 64,

128, 256, 512, 1024, and 2048), they reported that variation in HS values for N> 256 was

insignificant; they observed a stable and near-constant HS value when N = 128 or N = 256.

Complexity and entropy representation for diagnostics
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They further observed that when D< 4, permutation entropy was not able to detect the exact

dynamic changes in the mechanical vibration signals; a D> 8 was computationally expen-

sive; and time delay τ> 5 is not conducive for detecting small changes in the signal. In the

end, they used D = 6 and τ = 3 for computing permutation entropy values for component

fault diagnostics.

The CECP analysis has been extensively investigated for characterizing correlated stochastic

processes [45, 54, 55], and distinguishing chaotic processes from stochastic processes [44, 51].

In econophysics, the CECP was used for quantification of stock market inefficiencies [56],

evaluation of efficiency of bond markets [57], and analysis of commodities [58]. In addition,

CECP was applied for river flow characterization [42], mountain stream temperature variation

analysis [59], and song classification [50].

In this paper, we study the performance of CECP representation for identifying and moni-

toring faults of rotary machine components in three different applications: ball bearing dataset

from the Machinery Failure Prevention Technology (MFPT) Society, bearing dataset from

Case Western Reserve University, and gear dataset from the PHM Society.

Results

MFPT ball bearing experiment

In this application we consider two classes of vibration signals from ball bearing dataset pro-

vided by the MFPT Society [60]. Bechhoefer [60] complied this dataset from a set of bearing

experiments. The dataset contains labeled signatures of faulty inner race and outer race of ball

bearings. The signatures of faulty inner and outer races were generated at a constant shaft rota-

tional speed of 25 rps (1500 rpm) and at seven different load conditions: 11.33, 22.67, 45.35,

68.0388, 90.71, 113.39, and 136.07 kg (or 25, 50, 100, 150, 200, 250, and 300 lbs). Each vibration

signal is recorded for 3 seconds at 48,828 Hz frequency; it resulted in a signal of length 146,484

data points. Fig 1 shows a sample of vibration signals collected from the faulty inner race and

outer race of the ball bearing. These sample signals were collected at 45.35 kg (100 lb) load and

25 rps (1500 rpm) shaft rotational speed. The vibration signals for both inner and outer race

faults are periodic. The fault characteristic frequencies for inner race fault and outer race fault

are outlined by Zhang et al. [61]. We performed Augmented Dickey-Fuller (ADF) test to verify

the stationarity of the signals. For both the inner and outer race faults, we obtain a p value of

0.01< 0.05 confirming the stationarity of the signals.

Fig 1. Sample vibration signals representing (a) an inner race fault and (b) an outer race fault.

https://doi.org/10.1371/journal.pone.0217919.g001
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The raw data includes inner and outer race fault signals of 146,484 data points each. For

CECP computation, we segment each signal of 146,484 data points into 35 sub-signals of 4,096

data points each. Fig 2(a) plots HS values of 35 outer race and 35 inner race sub-signals. The

overlap of HS for inner race and outer race signals indicates that HS is not an effective parame-

ter to distinguish inner race faults from outer race faults. Fig 2(b) presents a CECP map (i.e.,

scatter plot of CJS vs. HS) of 35 outer race and 35 inner race sub-signals. It is clear from the fig-

ure that the CECP representation is able to separate inner race faults from outer race faults in

the plot.

Fig 3 presents CECP maps for four different signal lengths. It is evident from the figure

that the separation distance between fault classes widens and the variance of HS of each class

decreases with increasing signal length. This leads to improvement in Dunn index of cluster

formation as the signal length increases (see Fig 4). Dunn index, which is the ratio of mini-

mum inter-cluster distance to maximum intra-cluster distance [62], measures the quality of

cluster formations: the higher the Dunn index the better the cluster quality. Dunn index form
clusters is defined as

Dunn Index ¼
min1�i<j�mdðCi;CjÞ
max1�k�mdiamðCkÞ

ð7Þ

where d(Ci, Cj) is dissimilarity (inter-cluster) between clusters Ci and Cj. It is defined as

Fig 2. (a) Permutation entropy values of 35 inner race fault signals and 35 outer race fault signals, and (b) CECP values of 35 inner race

fault signals and 35 outer race fault signals. The dashed lines represent the lower and upper limit curves.N = 4096,D = 6, and τ = 1. Inset

figure is a scaled version of subplot (b).

https://doi.org/10.1371/journal.pone.0217919.g002
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dðCi;CjÞ ¼ mina2Ci ;b2Cj
Eða; bÞ, where E(a, b) is the Euclidean distance between points a and b.

diamðCkÞ ¼ maxa;b2CkEða; bÞ is the diameter of cluster Ck.
As mentioned in the earlier section, D< 4 is not desired for mechanical vibration signals

since the permutation entropy is not able to detect exact dynamic changes. On the other hand

D> 8 is computationally expensive. Similarly, τ> 5 is not recommended for vibration signals.

We performed sensitivity analysis for all the load conditions by varying N,D, and τ. The results

Fig 3. Complexity CJS vs. Permutation Entropy HS feature plane for different values of subsample length N for the case of 45.35 kg (100 lb)

load and 25 rps (1500 rpm) rotational speed: (a) N = 2048, (b) N = 4096, (c) N = 8192, and (d) N = 16384; the CECP parameters are set to

D = 6 and τ = 1. The stars represent the inner race fault and the circles represent outer race fault. The dashed lines represent the lower and

upper limit curves. Some figures may not show the limit curves due to axis scale effects.

https://doi.org/10.1371/journal.pone.0217919.g003
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of the sensitivity analysis are presented in S1 File (see Figs S1-S12). We set the parameter values

as follows: N = 2048, 4096, 8192, 16384, 32768; D = 3, 4, 5, 6; and τ = 1, 2, 3, 4, 5. In general,

CECP analysis is employed for characterizing time series, which is sensitive to parameter

choices. However, in the current work we are more interested in using CECP representation

for class separation (or classification accuracy) with a correct set of application specific param-

eters. From the sensitivity analysis we found that for load conditions 11.33 kg and 22.67 kg,

parameters D = 4, 5, 6, and τ = 1, 2, 3, 4 are suitable for achieving good class separability. Simi-

larly, for load conditions 45.35 kg, 68.03 kg, and 90.71 kg, parameters D = 4, 5, 6, and τ = 1, 4

are appropriate and for load conditions 113.39 kg, and 136.07 kg, parameters D = 4, 5, 6, and τ
= 1, 2, 3 are appropriate. To verify beyond visual observation of separability, we used a SVM to

see how the classification accuracy improves with increasing signal length. For demonstration

purpose we used D = 6 and τ = 1. Note that for practical purposes Bandt and Pompe [35] rec-

ommended 3� D� 7 and τ = 1. We used receiver operating characteristic curve (ROC), area

under curve (AUC), and classification accuracy (ACC) to evaluate the performance of the

SVM classifier. We employed a linear SVM model with 5-fold cross validation. The results of

the SVM are given Table ST1 in S1 File. Figs S13-S15 in S1 File present ROC, AUC and ACC

Fig 4. Effect of signal length N on Dunn Index. In this example,N = 2048, 4096, 8192, and 16384. In this case load = 45.35 kg (100 lb) and

rotational speed = 25 rps (1500 rpm).

https://doi.org/10.1371/journal.pone.0217919.g004
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plots. We observed that for all load conditions, the SVM classifier performance improves with

increasing signal length, which is consistent with the results of the earlier analysis using Dunn

Index.

Bearing dataset from CWRU

Case Western Reserve University (CWRU) bearing dataset [63] includes high quality signals

collected at normal and faulty conditions of bearings. Fig 5 shows the setup of the experiment.

The testbed consists of a 2-hp motor (left side), a torque transducer/encoder (center), and a

dynamometer (right side).

The setup has test bearings located at the drive-end and the fan-end of the motor. The faults

were introduced in the inner race and outer race and on a ball for both drive-end bearings and

the fan-end bearings using electro-discharge machining.

The accelerometers attached to the motor housing using magnetic bases were used to mea-

sure vibration signals from the setup. One accelerometer was attached on the drive-end of the

motor and another on the fan-end of the motor. For some experiments, an additional acceler-

ometer was attached to the base plate supporting the motor. Vibration signals were collected

using a 16-channel DAT recorder. Sensor signals were collected at a frequency of 12,000 Hz.

The length of the baseline signals (i.e., signal collected from components at normal condition)

was varied between 200,000 and 500,000 data points and the length of fault-related signals

was varied between 120,000 and 130,000 data points. Fig 6 shows the sample vibration signals

Fig 5. Schematic of CWRU experimental setup for bearing fault data.

https://doi.org/10.1371/journal.pone.0217919.g005

Fig 6. Sample vibration signals representing (a) baseline condition, (b) ball fault, and (c) inner race fault. In this case, the fault diameter for

both the ball and inner race is 0.17 mm (0.007 inches), load is 0 kW (0 hp), and rotational speed is 29.95 rps (1797 rpm). The bearing considered

is drive-end bearing.

https://doi.org/10.1371/journal.pone.0217919.g006
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representing the baseline condition, ball fault and inner race fault. The fault characteristics

of the CWRU dataset are exhaustively studied in time and frequency domains by Smith et al.

[64]. We performed Augmented Dickey-Fuller (ADF) test to verify the stationarity of the sig-

nals. For signals in all the three cases (baseline, inner race fault and ball fault) we obtain a p
value of 0.01< 0.05 confirming the stationarity of the signals.

Speed and horsepower data were hand-recorded from the torque transducer/encoder. In

this case we analyzed only baseline signals, inner race fault signals, and ball fault signals. The

experimental parameters are outlined in Table 2. For all the parameter variations, the fault

depth was maintained constant at 0.2794 mm (0.011 inches).

We performed sensitivity analysis for all the load conditions by varying N, D, and τ. The

results of the sensitivity analysis for a selected set of operating conditions are given in Figs

S16-S23 in S1 File. We set the parameter values as follows: N = 2048, 4096, 8192, 16384, 32768;

D = 3, 4, 5, 6; and τ = 1, 2, 3, 4, 5. From the sensitivity analysis we noticed that for all operating

conditions given in Table 2, for both fan-end and drive-end bearing, D = 4, 5, 6 and τ = 1, 2

are suitable parameters to obtain good class separability. For both drive-end and fan-end bear-

ings the baseline condition exhibit higher complexity and lower permutation entropy com-

pared to inner race and ball fault conditions. We observed that the fan-end bearing exhibits

bigger class separation between baseline and faulty conditions than the drive-end bearing.

To confirm the visual observation of class separability, we used a SVM to see how the clas-

sification accuracy improves with increasing signal length. For demonstration purpose we

used D = 6 and τ = 1. We used a linear SVM model with 5-fold cross validation. The results

of the SVM for fan-end bearing are given in Table ST3 in S1 File. The results of the SVM for

drive-end bearing are given in Table ST4 in S1 File. Figs S24-S25 in S1 File present ROC,

AUC and ACC plots. Similar to the results of the MFPT experiment, we observed that for

almost all operating conditions the SVM classifier performance improves with increasing

signal length.

Gear dataset from the PHM society

We considered a dataset provided by the PHM society that contains labeled data on different

types of gear degradation [65]. The experiments were conducted using spur gears and helical

gears. For CECP application, we considered experiments with helical gears. Fig 7 shows the

experimental setup. The setup is common for both spur gears and helical gears. Fig 7 shows

Table 2. Drive-end bearing and fan-end bearing data for analysis [63].

Fault Diameter (mm) Motor Load (kW) Approx. Motor Speed (rps)

0.17 mm (0.007”) 0 29.95 rps (1797 rpm)

0.73 kW (1 hp) 29.53 rps (1772 rpm)

1.47 kW (2 hp) 29.16 rps (1750 rpm)

2.20 kW (3 hp) 28.83 rps (1730 rpm)

0.35 mm (0.014”) 0 29.95 rps (1797 rpm)

0.73 kW (1 hp) 29.53 rps (1772 rpm)

1.47 kW (2 hp) 29.16 rps (1750 rpm)

2.20 kW (3 hp) 28.83 rps (1730 rpm)

0.53 mm (0.021”) 0 29.95 rps (1797 rpm)

0.73 kW (1 hp) 29.53 rps (1772 rpm)

1.47 kW (2 hp) 29.16 rps (1750 rpm)

2.20 kW (3 hp) 28.83 rps (1730 rpm)

https://doi.org/10.1371/journal.pone.0217919.t002
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the details of gear teeth for both spur and helical gears. For our analysis we considered only the

helical gears.

The setup has an input shaft, an idler shaft and an output shaft on which the gears are

mounted. The input side is on the left and the output side is on the right. Two accelerometers

are mounted, one on the input side and the other on the output side. The left helical gear on

the input shaft has 16 teeth and the left helical gear on the idler shaft has 48 teeth. The right

helical gear on idler shaft has 24 teeth and the right helical gear on the output shaft has 40

teeth. Experiments with helical gears were performed six times. All in all, there are two fault

categories (chipped tooth and broken tooth) and one baseline category (no known faults).

From the PHM dataset we picked the case labled helical 1 which has no known gear defects

as the baseline case. We selected helical 2 which has a chipped tooth in helical gear with 24

teeth as a chipped tooth gear case and helical 5 which has a broken tooth in helical gear with 24

teeth as a broken tooth gear case. In all the three cases, we used the vibration signals recorded

from accelerometer 2 placed on the output side. The signals were recorded under two different

load conditions labeled as low and high and five different rotational speeds, i.e. 30 rps (1800

rpm), 35 rps (2100 rpm), 40 rps (2400 rpm), 45 rps (2700 rpm), and 50 rps (3000 rpm). For

each of these settings, two signals were recorded for four seconds each. Thus, for one fault sig-

nal, 533,312 data points were generated in eight-second recording at a sampling rate of 66,666

samples per second. Fig 8 shows sample signals of length 4096 data points each representing

the baseline and the fault conditions. We performed Augmented Dickey-Fuller (ADF) test to

Fig 7. Experimental setup for gear fault detection [65].

https://doi.org/10.1371/journal.pone.0217919.g007

Fig 8. Sample signal representing (a) baseline condition, (b) chipped tooth condition, and (c) broken tooth condition. The sample signals

shown here are taken from experimental condition of high load and 50 rps (3000 rpm) rotational speed.

https://doi.org/10.1371/journal.pone.0217919.g008
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verify the stationarity of the signals. For all the three cases (baseline, chipped tooth and broken

tooth) we obtain a p value of 0.01< 0.05 confirming the stationarity of the signals.

We performed sensitivity analysis for all the load conditions by varying N, D, and τ. The

results of the sensitivity analysis for a selected set of operating conditions are given in Figs

S26-S41 in S1 File. We set the parameter values as follows: N = 2048, 4096, 8192, 16384, and

32768, D = 3, 4, 5, and 6, and τ = 1, 2, 3, 4, and 5. We observed that D = 4, 5 and τ = 1, 5 are

suitable for obtaining good class separability. In addition to visual observation of class separa-

bility, we used a SVM to see how the classification accuracy improves with respect to the

increasing signal length. For demonstration purpose we used D = 6 and τ = 1. We used a linear

SVM model with 5-fold cross validation. The results of the SVM for low and high load condi-

tions are given in Table ST5 in S1 File. Figs S42-S45 in S1 File give ROC, AUC and ACC plots.

Similar to the results of the MFPT and CWRU experiments, we observed that for almost all

operating conditions the SVM classifier performance improves with increasing signal length.

The same pattern is observed when using the Dunn Index values across all operating condi-

tions (see Fig 9).

Conclusion

PHM enables effective preventive maintenance (PM), reliability centered maintenance

(RCM), and condition based maintenance (CBM) of mechanical components. Advancement

in sensor technology, machine learning algorithms, and computing technology have contrib-

uted to the advancement of PHM. In a PHM framework, both diagnostics and prognostics use

data-driven models for fault detection of machine components. In this approach, sensor sig-

nals need a good representation that enables accurate detection of faults and health condition

of machine components. The results confirm that CECP representation enables accurate clas-

sification of different faults in bearings and gears. It is observed that CECP representation is

able to handle signal lengths larger than those demonstrated in existing studies. In case of

CECP representation, as the signal length increases, so does the Dunn index and SVM

Fig 9. Variation of Dunn Index values with respect to varying signal length. N takes values 2048, 4096, 8192, 16384, and 32768. The plots give

Dunn Index values for low and high load conditions and different rotational speeds, i.e.30 rps (1800 rpm), 35 rps (2100 rpm), 40 rps (2400 rpm),

45 rps (2700 rpm), and 50 rps (3000 rpm).

https://doi.org/10.1371/journal.pone.0217919.g009
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classification accuracy. In other words, as the signal length increases, the ability of CECP

representation to detect changes in health condition of components improves. We observed

that the optimum parameter values for CECP representation depends on the application. For

bearing applications we found that embedding dimension D = 4, 5, 6, and embedding delay

τ = 1, 2, 3 are suitable for good fault classification accuracy. For gear applications, D = 4, 5, and

delay τ = 1, 5 are suitable for good fault classification results. For signal length of 16,384 data

points, the fault classification accuracy varies from 90% to 100% for bearing applications, and

from 85% to 100% for gear applications. Given that CECP representation has only two param-

eters, not only can it be used for predictive analytics but also for visualization of sensor signals

in a 2-dimensional plane. While predictive models can used for optimizing maintenance deci-

sions, visualization can be used for creating dashboards for monitoring health condition of

machine components. From class separability perspective, the CECP repesentation is able to

generate linearly separable classes for the classification of different fault states. Beyond separa-

bility characteristics, there are several statistical tests that can be performed for permutation

entropy and complexity [66, 67] as needed in individual applications.

Real-world manufacturing PHM applications often involve unreliable connectivity in cloud

computing. These applications require high bandwidth and cost for transferring data to the

cloud. They suffer from high latency which is not desirable for closed-loop interaction between

machine state and actuation. In addition, the data transfer and processing operations are sub-

ject to compliance, regulation, and cyber security constraints. These constraints create a need

for localized edge computing, which pushes the intelligence, processing power, and communi-

cation capabilities of an edge gateway directly into devices like PACs (programmable automa-

tion controllers). Intelligent PACs collect, analyze, and process data from the physical assets

they are tethered to while they run the control system program at the same time. In such an

edge computing environment, a signal representation like CECP is highly desirable because

of its compactness, lean computation complexity, robustness to different types of signals, and

good predictive performance.

Supporting information

S1 File. Sensitivity analysis on CECP parameters and signal length.

(PDF)
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