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Abstract

GENE-counter is a complete Perl-based computational pipeline for analyzing RNA-Sequencing (RNA-Seq) data for
differential gene expression. In addition to its use in studying transcriptomes of eukaryotic model organisms, GENE-counter
is applicable for prokaryotes and non-model organisms without an available genome reference sequence. For alignments,
GENE-counter is configured for CASHX, Bowtie, and BWA, but an end user can use any Sequence Alignment/Map (SAM)-
compliant program of preference. To analyze data for differential gene expression, GENE-counter can be run with any one of
three statistics packages that are based on variations of the negative binomial distribution. The default method is a new and
simple statistical test we developed based on an over-parameterized version of the negative binomial distribution. GENE-
counter also includes three different methods for assessing differentially expressed features for enriched gene ontology
(GO) terms. Results are transparent and data are systematically stored in a MySQL relational database to facilitate additional
analyses as well as quality assessment. We used next generation sequencing to generate a small-scale RNA-Seq dataset
derived from the heavily studied defense response of Arabidopsis thaliana and used GENE-counter to process the data.
Collectively, the support from analysis of microarrays as well as the observed and substantial overlap in results from each of
the three statistics packages demonstrates that GENE-counter is well suited for handling the unique characteristics of small
sample sizes and high variability in gene counts.
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Introduction

The highly parallelized deep sequencing of cDNA fragments in

RNA-Sequencing (RNA-Seq) is the new method of choice in

transcriptomics. Its high sensitivity and single-base resolution have

contributed substantially to advancing our understanding of gene

expression [1]. Recent use of RNA-Seq has led to the identification

of a substantial number of new transcripts and their genes, an

appreciation into the abundance of a diversity of transcript isoforms

as well as the diversity of alternative transcriptional start sites [2–5].

RNA-Seq has also been applied to areas of transcriptomics that in

the past, were difficult to study, such as RNA editing, allele-specific

expression, and study of expression changes in single cells as well as

co-cultivated organisms [6–8].

RNA-Seq can be used to quantify and study genome-wide

changes in gene expression. Such applications typically start with

aligning RNA-Seq reads to a reference sequence to identify all

expressed genome features. The numbers of reads per feature are

then calculated to derive feature counts and infer expression levels.

Finally, a statistical test is applied to normalized feature counts,

followed by a collective assessment of significance based on an

acceptable false discovery rate (FDR), to identify differentially

expressed features with statistical significance [9]. From this point

on, we will simply refer to features as genes.

While the use of RNA-Seq for quantifying gene expression is

relatively straightforward to conceptualize, RNA-Seq experiments

have considerable computational and statistical challenges. The

massive quantities of short reads require ultra fast alignment

programs that adequately address memory demands. The volume

of data is also of concern if the end user desires systematic storage

and management, as well as integration of data into third party

software for additional analyses. Importantly, the combination of a
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large number of comparisons and small sample sizes causes more

concern than usual about the power of the statistical test.

The small sample sizes rule out the uncritical use of methods

that rely on large-sample asymptotic theory. Elementary tools for

the Poisson distribution will over-state differential expression

because of overdispersion, the phenomenon where the count

variability between biological replicates is substantially greater

than that predicted from the Poisson model [10–12]. Failure to

address overdispersion will cause the model to incorrectly interpret

large variation between biological replicates as evidence of

differential expression and provide drastically misleading conclu-

sions [13].

The negative binomial (NB) distribution offers a more realistic

model for RNA-Seq count variation and still permits an exact

(non-asymptotic) test for differential gene expression [11,14]. For

each individual gene, a NB distribution uses a dispersion

parameter to model the extra-Poisson variation between biological

replicates. When considering all genes in an RNA-Seq experiment,

statistical power of the exact NB test can be gained by sensibly

combining information across genes to estimate the dispersion

parameter. The constant dispersion version of the edgeR package,

for example, estimates a single dispersion parameter for all genes

[11,14].

The assumption that a single parameter is constant across all

genes is, however, not met for RNA-Seq data [13]. To address

this, the edgeR package (version 2.0.3) includes an option for

empirical Bayes estimation of the dispersion parameter for each

gene, with shrinkage towards a common value as well as a ‘trend’

option that shrinks towards a value determined by nonparametric

regression of the dispersion parameter on the mean [15]. The

DESeq package, also based on the NB distribution, employs

nonparametric regression to estimate the dispersion parameter as

a function of the mean and treats the estimated dispersion

parameters from this model as known [10]. The NBPSeq package

uses a test based on a simple over-parameterized version of the NB

distribution called the NBP where an additional parameter is

introduced to allow the dispersion parameter to depend on the

mean [13].

Some computational pipelines such as Cufflinks, Myrna, and

ArrayExpressHTS have been developed for analysis of RNA-Seq

data for expression changes [12,16,17]. Cufflinks is a pioneering

pipeline that combines RNA-Seq alignment with inference of

transcript isoforms directly from the RNA-Seq reads, and

assessment of differential expression of the inferred transcripts

[16]. Cufflinks has been updated to use a test based on the NB

distribution (http://cufflinks.cbcb.umd.edu/). Myrna can use

cloud computing to cost-effectively exploit large computational

resources. With this pipeline, only permutation and large-sample

likelihood-ratio tests were considered, which do not sufficiently

address small sample sizes or the mean-variance dependence in

RNA-Seq data [12,13]. ArrayExpressHTS is an R/bioconductor-

based pipeline that combines processing, data quality assessment, a

variety of alignment programs, inference of transcript isoforms,

and statistical analysis with Cufflinks or MMSEQ [18]. The latter

provides an estimate of expression levels but does not identify

differentially expressed genes.

We describe GENE-counter, a simple pipeline with the

appropriate statistical tests for studying genome-wide changes in

gene expression. GENE-counter is modular and flexible to allow

the end user to use different alignment programs, easily change

parameters, and use different statistical tests for analysis of

differential gene expression and enriched gene ontology (GO)

terms. Results are transparent and systematically stored in a

MySQL database, a standard format usable by most third party

software. To test GENE-counter, we developed a pilot RNA-Seq

dataset from Arabidopsis thaliana elicited for PAMP-triggered

immunity (PTI). In PTI, recognition of conserved pathogen-

associated molecular patterns (PAMPs) leads to a number of

induced responses, including genome-wide changes in expression

that can be detected 6,7 hours post inoculation (hpi) [19]. PTI is

intensively studied and has a correspondingly extensive resource of

publicly available microarray data that we used for comparative

purposes to support our findings. RNA-Seq data were analyzed

using GENE-counter and results were well supported by other

statistics packages as well as analysis of microarrays. We also

compared the performance of GENE-counter to Cufflinks and

showed that with these data, results from the two pipelines were

considerably different.

Materials and Methods

Design and implementation of GENE-counter
We used a combination of Perl, MySQL, R, as well as C++

software (CASHX) to develop GENE-counter. Perl handles the

decision logic for the overall pipeline flow to call different software

packages for specialized needs, such as data storage and querying,

statistical analysis, and fast short-read alignment, which were

developed using MySQL, R, and C++, respectively. Perl is also

used to handle the user-interface implementation of GENE-

counter.

GENE-counter has five tools:

Configuration tool. This tool is used to configure GENE-

counter to leverage available resources, minimize computational

overhead, and reduce duplication of effort. There is potential for

multiple users to connect to the same reference sequence database

with one or more read databases. Similarly, an end user has the

option to align the sequences from their read database to multiple

installed reference sequence databases, such as different versions of

the same genome sequence. All subsequent gene count and

alignment data will be stored in an alignment database for each

end user. This flexibility enables easy switching of read databases

and/or alignment databases to test and compare results produced

by GENE-counter when used with different settings such as

alignment parameters.

Processing tool. This tool includes two modules for

processing RNA-Seq reads and aligning sequences to a reference

sequence, respectively. In the first module, user-defined

information is recorded to describe the RNA-Seq experiment,

such as treatments, replicate numbers, date, etc. The RNA-Seq

reads are processed to identify and enumerate the occurrences of

each unique sequence within each replicate. Unique RNA-Seq

sequences, their occurrence, and an assigned identification

number populate the read database. GENE-counter can use

RNA-Seq reads produced from any of the next generation

sequencing (next-gen) platforms but limited information is stored if

a platform other than Illumina is used.

The second module aligns all unique RNA-Seq sequences to

features of a reference sequence database. Any alignment program

that can output alignments in the SAM format can be used [20].

We configured GENE-counter with CASHX version 2.3, Bowtie,

and BWA [21,22]. CASHX version 2.3 is the default alignment

tool. End users will need to configure other alignment programs if

desired.

GENE-counter, by default, will generate gene counts using the

best alignments produced with the desired alignment program

settings, which are easily set by the end user. For instance, if set to

allow a maximum of two mismatches, GENE-counter first relies

on alignments with perfect matches, after which it will also use

GENE-Counter: A Pipeline for Analysis of RNA-Seq
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alignments that had one and then two mismatches that did not

produce alignments with fewer mismatches. The alignments, in

conjunction with their read occurrences, are used to derive gene

counts for each reference sequence feature. Data are systemically

stored in the alignment database.

Assessment tool. This tool can be used to assess the quality

of the data. The assessment tool interrogates the alignment

database and produces summary files that display raw count

data, summary counts for types of features annotated in the

reference sequence, and intraclass correlation coefficient (ICC)

values for replicates. The ICC is a descriptive statistic that can

be used to quantify the degree of resemblance of quantified

measurements of samples within a defined group. To derive

ICC values, counts are normalized to reads per quarter million

after incrementing by one to handle zeroes prior to log

transformation and the ‘irr’ package in R is used to calculate

ICC using the log transformed counts [23,24]. There is no

absolute ICC value that determines useable versus unusable

replicates. Rather, the end user can inspect the values as a gauge

of the quality of the replicates.

Statistics tool. This tool uses the NBPSeq statistics package

as the default method for assessing the normalized gene counts to

produce a list of differentially expressed genes [13]. GENE-

counter is also configured for the edgeR and DESeq statistics

packages [10,15]. Normalization was implemented using the built-

in normalization methods of each statistics package. For NBPSeq,

the function nbp.test() is called with the appropriate counts and

parameters, and normalization occurs automatically followed by

differential expression analysis. For edgeR, the

‘estimateTagwiseDispersion()’ function was used, with the ‘trend’

parameter set to true and using the matrix counts produced by the

‘estimateCommonDisp()’ function, to read in the matrix of read

counts and normalize counts as well as estimate the dispersion

parameters [15]. The ‘exactTest()’ function was used to calculate

p-values for each gene. For DESeq, the ‘newCountDataSet()’

function was used to generate a cds object from the matrix of read

counts and a subsequent call to the ‘estimateVarianceFunctions()’

was used to generate the variance estimates [10]. The

‘nbinomTest()’ function was called to generate the p-values for

differential expression.

The conclusion about evidence for differentially expressed genes

is subsequently based on an ordering of p-values and a cutoff for

statistical significance to adhere to acceptable false discovery rates

[9]. The ‘qvalue’ package in R was used to generate q-values using

the p-values generated by the respective statistics packages.

GORich tool. The list of differentially expressed genes can be

analyzed for enriched gene ontology (GO) terms using any one of

three tests available: the parent-child-inheritance, term-for-term,

and GOperm analysis methods [25–27].

Data storage. GENE-counter records reference sequence

definitions, RNA-Seq read sequence alignments, and derived gene

count data, in a MySQL relational database.

Details in installing and using GENE-counter are provided in

the user’s manuals.

Improvements to CASHX
A number of changes were made to CASHX version 1.3 [28].

We implemented a simple hashing algorithm that eliminated

empty containers corresponding to preamble sequences absent

from reference sequences. We further compressed the database to

only store corresponding reference sequence coordinates for each

of the indexed k-mers. We also changed the order in which

information was stored within each container. The reference

sequence coordinates for each k-mer within a preamble container

are now sorted based on the sequence of the 16 nucleotides

following the preamble, allowing for sorting of 64 bit integers (2

bits for each nucleotide). Implementation of a simple binary search

algorithm dramatically reduced the search time within a preamble

container by an order of magnitude. Finally, we implemented a

mirrored search logic to index reads to their corresponding

container(s), similar to the method employed by Bowtie [21]. Two

equal-length fragments derived from each query read are used to

seed alignments of the read. CASHX uses the integer converted

from the seed fragments and increments their integers through all

possible mismatch combinations.

Mapping programs were benchmarked in a single thread on a

CentOS 5.1 8 Intel Xeon X5355 x86 64-bit processor with

2.66 GHz and 32 GB RAM. For Bowtie and SOAP2, version

0.12.3 and 2.20, respectively were used [21,29].

Developing the Arabidopsis thaliana reference database
We developed a comprehensive reference database using the

genome and transcript annotations in the TAIR9 genome release

(www.arabidopsis.org/). The Generic Feature Format (GFF3) file

was used to populate a MySQL database with information such as

genes, their classifications (e.g. coding, transposable elements,

pseudogene, etc.), transcript classifications (mRNA, miRNA,

tRNA, rRNA, etc), coordinates, gene features, and the corre-

sponding gene isoforms. Also included were over 18,000 sequences

corresponding to splice junction sequences [3].

Information on how GENE-counter can be used to derive count

data from either a list of gene features in a reference genome, or

transcript features in a reference transcriptome can be found in

GENE-counter’s user’s manual.

RNA preparation and sequencing
Bacteria were grown in King’s B media and infiltrated into

plants as previously described [30]. Briefly, we used a syringe

lacking a needle to infiltrate the abaxial side of leaves of six-week

old Arabidopsis plants. Plants were infected with either the DhrcC

mutant of Pseudomonas syringae pv. tomato DC3000 (PtoDC3000) or

mock inoculated with 10 mM MgCl2 7 hpi. Each treatment was

done as biological triplicates with each pair of replicates done at

separate times and derived from independently grown plants and

bacteria. Total RNA was extracted from leaves at 7 hpi, enriched

for mRNA using Poly(A)Purist (Ambion Inc., Austin, TX) and

processed for RNA-Seq as described [31]. The replicates were

sequenced one per channel using the 36-cycle sequencing kit on an

Illumina. Sequencing was done by the Center for Genome

Research and Biocomputing core facility at Oregon State

University (CGRB; OSU).

Pre-processing and aligning RNA-Seq reads
Prior to processing, the first six and last five nucleotides from

each RNA-Seq read were trimmed. Reads were then aligned

allowing up to two mismatches in the alignment as specified in the

global configuration file found in GENE-counter; this setting can

be changed by the end-user. Only RNA-Seq reads that aligned to

features of a single gene locus were considered, which we referred

to as unambiguous and useable reads. In cases where a read

sequence aligns to a single gene locus but to multiple gene

isoforms, GENE-counter assigned the reads equally to each of the

mapped isoforms. Furthermore, to be considered for differential

expression, genome features were required to have assignments in

all replicates of at least one of the treatments. Settings can be easily

modified at the command line when running the statistics tool of

GENE-counter.

GENE-Counter: A Pipeline for Analysis of RNA-Seq
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GENE-counter was benchmarked in a single thread on a

CentOS 5.1 8 Intel Xeon X5355 x86 64-bit processor with

2.66 GHz and 32 GB RAM.

Derivation of MA plot
M was calculated as the difference between the log2 average of

GENE-counter normalized values for all replicates in DhrcC and

MgCl2 (log2(DhrcC)2log2(MgCl2)). A was calculated as the average

of all log2 transformed GENE-counter normalized counts (1/2 *

((log2(DhrcC)+log2(MgCl2))). All normalized counts had 1 added to

them prior to log transformation to avoid problems with zeroes.

Comparing results from GENE-counter with different
statistics packages

Gene expression was calculated by natural log transformation of

the average number of raw gene counts for all genes. The

percentage of genes was plotted per expression quantile. The plot

was generated using the ‘plot’ function in R [24]. All genes were

also ranked according to the p-value assigned by the respective

statistics package and used to create a scatter plot of all genes

found significant in pair wise comparisons. Linear regression lines

were plotted using the ‘lm’ function in R [24].

Analysis of NBPSeq normalization
The findDGE.pl script of GENE-counter was run 1000 times to

examine the effects of random thinning used by NBPSeq to

normalize gene counts. For each iteration, a random seed was

supplied to the ‘-s’ option of the findDGE.pl script to randomize

the thinning process. The percentage of times each gene from the

original NBPSeq set of 308 induced genes was determined and

plotted against their original q-values. The q-value bins were

categorized in quantile increments of 0.005.

Analysis of microarrays
The mRNA labeling, hybridization, and scanning of Affymetrix

ATH1 microarrays were done by the CGRB core facility at OSU.

Microarrays were normalized using RMA [32]. Significance was

determined based on the overlap of genes common to each of four

methods: BRAT (corrected p-value#0.3) [27], LIMMA (p-

value#0.1) [33,34], PaGE (confidence level $0.85) [35], and

SAM (q-value %#10%) [36].

To compare against results from analysis of RNA-Seq, a log2

scatter plot was produced. For the RNA-Seq data, the fold-change

values were calculated using the GENE-counter normalized values

(DhrcC versus MgCl2). For the Affymetrix ATH1 data the raw

fluorescence values were used to calculate the normalized fold-

change values using the Robust Multi-array Analysis normaliza-

tion method [37]. The log2 values were calculated for both ratios,

and the RNA-Seq data (y-axis) was plotted against the Affymetrix

ATH1 data (x-axis). Estimated regression lines and Pearson’s

correlation coefficient were calculated using the ‘lm()’ function and

the ‘cor()’ functions in the R programming language, respectively

[24].

Cufflinks
The same set of unambiguous and usable reads from each

replicate used by GENE-counter, were also used for analysis by

Cufflinks. Reads were mapped to the genome reference sequence

using either Tophat version 1.1.2. with the flags ‘–library-type fr-

unstranded -m 2’ or Bowtie with the flags ‘-v 2 -f -a –best –strata –

S’ to most closely match alignment parameters used in running

GENE-counter (allowing for up to two mismatches and choosing

the best alignments). Bowtie alignments were converted to BAM

and sorted for use with Cufflinks using SAMtools version 0.1.6

[20]. Cufflinks version 1.0.2 was run using default parameters on

each replicate file. Each replicate ‘transcripts.gtf’ file created by

Cufflinks was then merged with the Arabidopsis annotation using

Cuffmerge with the final merged annotation file being used in

Cuffdiff as the reference genome annotation. Cuffdiff version 1.0.2

was run to most closely emulate the way GENE-counter data was

used by throwing the flags ‘–emit-count-tables -c 1 –FDR 0.05’

with the ‘-b’ flag being supplied the Arabidopsis reference genome

sequence in order to use bias correction.

Results and Discussion

We developed GENE-counter as a modular pipeline with five

tools for processing, aligning, analyzing, and storing RNA-Seq

data (Fig. 1; see material and methods). Perl is used to handle the

user-interface of GENE-counter, which makes its use relatively

easy by only requiring the end user to be familiar with simple

commands at the command line.

GENE-counter stores all processed data in a standard relational

database and each of its tools therefore use the standard structure

query language (SQL) to retrieve data. Thus, in order to run

GENE-counter, it requires configured read, alignment, and

reference sequence databases. The first two databases will be

populated while running GENE-counter to contain the RNA-Seq

reads and alignment information, respectively. The reference

sequence database should be populated with reference sequences

as well as annotation information prior to running GENE-counter.

The three databases will be interrogated by each of the tools of

GENE-counter to manage and analyze the data.

Processing tool: alignment programs
The modularity of GENE-counter gives end users a preference

in configuring any SAM compliant alignment program. The

default configured option is an improved version of the CASHX

alignment program [28]. The improved CASHX, version 2.3, is

SAM compliant, and like its predecessor, uses a 2 bit-per-base

binary format to compress both the RNA-Seq reads and reference

sequence database to exhaustively find all possible alignments that

meet user-specified criteria [20]. The improvements to CASHX

allowed for mismatch alignments and dramatically increase

alignment speed to reduce the time for aligning sequences by

almost 206and memory demands by 1.56without compromising

accuracy (Table 1).

We benchmarked the CASHX ver. 2.3 alignment program

against Bowtie and SOAP2 that, like several alignment programs,

use the Burrows Wheeler Transformation compressed index to

reduce computational weight and increase speed [21,29] (Table 1).

Using simulated data, in which we knew the exact alignments,

CASHX and Bowtie were identical in accuracy but slower than

SOAP2 in regards to speed. CASHX was marginally faster than

Bowtie when mismatches were allowed and showed a greater

advantage in alignment time as the size of the dataset increased

(data not shown). In contrast, CASHX had a fairly substantial

memory demand relative to the other two tested alignment

programs. Though, as the number of reads increased, memory

demands by SOAP2 exceeded that of CASHX (data not shown).

The memory demands are potentially limiting or end users may

simply be less familiar with CASHX. To address these possibilities,

we configured GENE-counter for two other alignment programs,

Bowtie and Burrows-Wheeler Alignment tool (BWA) [21]. Other

options to control memory demands include running fewer

instances of alignment programs or using the built-in throttling

mechanism to specify the number of sequences processed at a

GENE-Counter: A Pipeline for Analysis of RNA-Seq
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time. We did not exhaustively benchmark BWA or any other

alignment programs in the same manner as presented in table 1.

We therefore recommend end users to test their alignment

program of preference prior to use with GENE-counter.

Nonetheless, when the accuracy of alignment by BWA was

examined using reads from a pilot RNA-Seq experiment (see

below), results suggested that BWA was similar to CASHX and

Bowtie. We did observe differences in how each of the three

programs aligned reads with ambiguous bases and used best

alignments (data not shown). The default of CASHX is to exclude

reads with ambiguous bases and use only the best alignment.

Benchmarking GENE-counter
We processed 522 million RNA-Seq reads of 40 nt in length to

demonstrate extremes in running parameters of GENE-counter (S.

A. Filichkin and T. C. Mockler, unpublished). In one, we

Figure 1. Entity-relationship diagram for four tools of GENE-counter. Each tool is numbered indicating the order in which data is typically
processed: 1a and 1b) the two modules of the processing tool, 2) the assessment tool, 3) the statistics tool, and 4) the GORich tool. The processing
tool uses a directory of FASTA files for each replicate as an input (RNA-Seq reads) to tabulate a list of unique read sequences and enumerate the
occurrence of each read sequence within each FASTA file. Data are stored in a read database. The processing tool uses a SAM compliant alignment
program to align and assign read sequences to features stored in a user-developed reference sequence database. Alignment information and
associated count data are stored in the alignment database. Results can be analyzed by the assessment tool to produce an alignment summary,
which includes a summary report of replicates and intraclass correlation coefficient (ICC) values. For statistical analysis, the statistics tool can use the
NBPSeq, trend version of edgeR, or DESeq statistics package to assess the normalized gene count data. Results are produced as a list of differentially
expressed genes, their associated gene counts, normalized gene counts, p- and q-values. The GORich tool can be used to identify enriched Gene
Ontology (GO) terms in a list of differentially expressed genes. Three different methods are provided. The amount of time (hours) for steps to analyze
over half a billion RNA-Seq reads is shown (GENE-counter running eight instances of CASHX with no throttle control and one instance of Bowtie with
maximum throttle control (separated by a comma).
doi:10.1371/journal.pone.0025279.g001

Table 1. Benchmarking CASHX ver. 2.3.

Mapping program* Clock time (min)
Peak memory
usage (Mb)

Alignments
identified

Missed alignments (% of the ,8.8
million expected found){

Unsupported
alignments{

0 mismatches1

CASHX ver. 2.3 3.70 2.32 8,815,743 0 (100%) 0

CASHX ver. 1.3 73.23 3.48 8,815,743 0 (100%) 0

SOAP2 1.71 0.79 8,815,745 2 (,100%) 4

Bowtie 3.22 0.13 8,815,743 0 (100%) 0

2 mismatches1

CASHX ver. 2.3 16.32 2.32 9,138,971 0 (100%) 0

SOAP2 8.85 0.81 9,094,436 44,576 (100%) 41

Bowtie 20.38 0.19 9,138,971 0 (100%) 0

*CASHX ver. 1.3 does not allow for mismatches and was not benchmarked for all tests [21,28,29].
1We derived a simulated RNA-Seq dataset from 8,815,743 regions of the Arabidopsis genome that were unique in sequence and lacked any Ns for use in benchmarking
CASHX ver. 2.3.

{For no mismatches, values are based on expected unique alignments; for two mismatches, values are based on the number of alignments confirmed by at least two
software programs.
{Number of alignments that were not confirmed by at least one of the other tested software programs.
doi:10.1371/journal.pone.0025279.t001

GENE-Counter: A Pipeline for Analysis of RNA-Seq
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maximized speed at the expense of memory by using eight

instances of CASHX in the absence of throttle control. The entire

process took GENE-counter ,29 hours and memory demands

peaked at 17 GB to analyze the greater than half billion RNA-Seq

reads (Fig. 1). Similar running parameters using BWA took

,30 hours and memory peaked at 5 GB [22]. In another setting,

we emphasized memory demands over speed by using only one

instance of Bowtie and maximum throttling to limit memory usage

[21]. GENE-counter took ,52 hours but memory demands

peaked at only ,1 GB. In both cases, up to two mismatches

were allowed and all steps, from populating the read database with

raw RNA-Seq reads to assessing data for enriched GO terms, were

measured. These examples demonstrate the range in versatility

and scalability of GENE-counter to flex to the size of the RNA-

Seq experiment and operate within the limits of an end-user’s

computer hardware. Running times will vary depending on

hardware.

Storing and interrogating information in databases adds a

considerable amount of analysis time by GENE-counter. Although

this could be considered a disadvantage, it is offset by the

substantial timesaving that will be gained in downstream analyses.

Most production level desktop and web-based software platforms

have application program interfaces (APIs) that interact with

MySQL. These data can therefore be easily queried using third

party programs. For example, alignment data processed by

GENE-counter can be easily pulled into the generic Genome

Browser (GBrowse), a robust web-based platform for visualizing

genomes, gene features, and expression data [38]. The systematic

storage of data contributes to the modularity of GENE-counter

and gives each of the tools a high degree of independence, which

allowed for the easier path in configuring different alignment

programs and statistics packages. It also gives software developers

the ability to leverage the comprehensive data querying language

of MySQL to quickly extend the utility of GENE-counter to

accelerate development of additional analytical methods and

distribution tools. If time is of concern, end users can use a

preferred alignment program to derive gene counts independent of

GENE-counter and provide counts directly to the statistics tool.

However, alignment data will not be stored.

Analysis of a pilot RNA-Seq dataset
To examine the efficacy of the entire GENE-counter pipeline,

particularly the analysis of differential gene expression, we

developed a small-scale RNA-Seq dataset using the intensively

studied defense response of Arabidopsis (E-GEOD-25818; http://

www.ebi.ac.uk/arrayexpress/). We chose this response because of

the availability of microarray data that we could use to support

results. We isolated, prepared and sequenced cDNA preparations

derived from biological triplicates from Arabidopsis infected with

either a DhrcC strain of PtoDC3000 or mock inoculated with

10 mM MgCl2 7 hpi. The DhrcC strain has a mutation that affects

the assembly of the type III secretion system (T3SS). The T3SS is

an apparatus required to inject type III effector proteins, which

collectively dampen host defenses, directly into plant cells [39,40].

Without the T3SS, strains are nonpathogenic and elicit PTI.

GENE-counter took ,3.0 hours when eight instances of

CASHX were run in parallel, to process and analyze the ,54

million 25 nt-long reads. For the alignments, we allowed up to two

mismatches. On average, ,63% of the reads from the DhrcC-

challenged and mock-inoculated Arabidopsis RNA-Seq experi-

ment aligned to the reference sequence database. We further

required GENE-counter to only consider reads that aligned to a

single annotated feature of an expressed gene, such as 59 and 39

UTRs, exons, splice junctions, and retained introns. Approxi-

mately 50% of the total reads met this additional criterion and

were termed unambiguous and usable. Thus, based on the

replicate with the fewest number of unambiguous and usable reads

and our requirement for a feature to be aligned with reads in all

replicates of at least one treatment, 20,045 of the 33,518 genes

annotated for Arabidopsis were considered expressed. Intraclass

correlation coefficient (ICC) values for the DhrcC and mock

treatments were both considered acceptable with values of 0.8 and

0.88, respectively [23]. The ICC is a quantitative statistic for

assessing the degree of similarity of values within a group.

Statistics tool
The trend version of edgeR, as well as the DESeq and NBPSeq

statistics packages use different ways to model the NB dispersion

parameter as a function of the mean [10,15]. The three are similar

in the exact test they use and each method provides the same

power benefit associated with combining information across genes

[13]. We demonstrated through systematic simulation studies that

in terms of statistical power and control of false discoveries, the

three methods performed similarly to each other and substantially

better than alternative test procedures such as t-test, a test based on

Poisson model, and the constant or moderated dispersion versions

of edgeR [13]. We therefore configured GENE-counter with each

of the three statistics packages. Since Perl handles the user-

interface, end users are not required to use the R statistics

programming language.

The NBPSeq package was implemented as the default method

and represents the first known practical use of the NBP

distribution. The NBP model has the advantage of relative

transparency and model simplicity. The NBP does not require the

input of any user-defined parameters. In contrast, tuning

parameters are employed by the trend version of edgeR and

DESeq to control smoothing of mean-variance and mean-

dispersion curves [10,15]. How to find the best tuning parameters

is still a topic of research. Additionally, while these two other

methods provide more flexibility, they also run the risk of

overfitting and are prone to the impact of potential unstable

variance estimation in the extreme range of expression levels, or

‘boundary effects’ [13].

With a FDR#5%, GENE-counter running NBPSeq, returned a

list of 308 differentially induced and 79 repressed genes in DhrcC-

infected plants relative to mock-inoculated plants (Fig. 2A; Table

S1; from hereafter referred to as the ‘original NBPSeq set’).

GENE-counter running the trend version of edgeR and DESeq

identified 308 and 251 induced genes, respectively (Fig. 2B). Of

these, 88% and 94% of the genes, respectively, were also in the

original NBPSeq set. We plotted the genes identified from the

three methods on an expression scale to examine the effects of

gene expression levels on detection of differential expression

(Fig. 2C). In general, the three methods captured broad and very

similar distributions of gene expression levels. A fair proportion of

genes unique to edgeR and DESeq were concentrated in the

middle of the expression scale, giving a pronounced sharp peak

where results from NBPSeq showed more of a plateau. The genes

uniquely identified were found distributed throughout the

expression scale.

We also compared the p-value rankings for the induced genes

identified from each statistical package (Fig. 2D). Again, in

general, there were good correlations in rankings between all pair

wise comparisons. For the genes uniquely identified by one

method but not the other, the unique genes were still nevertheless

highly ranked, typically within the top ,2.5% or 500 of the

,20,000 ranked genes. Our results confirmed our previous
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findings that all three statistics packages were comparable and

therefore suitable options in GENE-counter [13].

In order to use an exact NB test, which does not rely on large-

sample asymptotics for assessing differential gene expression, the

three statistics packages need to normalize the counts. In other

words, the total numbers of reads must be approximately equal in

all replicates. The edgeR method uses quantile adjustment, DESeq

adjusts the counts by scaling and NBPSeq adjusts gene counts by

random thinning [10,15]. Normalization is suggested to potentially

affect the sensitivity of RNA-Seq analysis [41]. With the data

tested here, similar results were produced from GENE-counter

when run with each of the three different statistics packages,

including their corresponding methods for normalization. This

observation suggested that the different normalization methods did

not have large effects on the results (Fig. 2).

The adjusting of gene counts by random thinning will yield

slightly different normalized counts by separate analyses. This

method, however, does not have substantial consequences to the

overall conclusions on differential gene expression. As evidence,

we analyzed results from running GENE-counter 1000 times with

NBPSeq and randomly thinned gene counts (Fig. 3). As expected,

the trend in consistency of differential expression correlated

Figure 2. Analysis of RNA-Seq data for genes differentially expressed in Arabidopsis infected with DhrcC relative to mock
inoculation 7 hpi. (A) The differentially expressed genes identified between DhrcC- and mock-treated Arabidopsis. Results are plotted using an MA-
based method. Differentially expressed genes were identified using GENE-counter with the NBPSeq statistics package. Induced and repressed genes
are highlighted in red and green, respectively (FDR#5%). (B) Area-proportional Venn diagram comparing the differentially induced genes identified
using GENE-counter running NBPSeq, the trend version of edgeR, or DESeq. Read counts were normalized using the methods provided in each
statistical package prior to analysis (FDR#5%). (C) Distribution of gene expression levels. Percentages of total genes (y-axis) were categorized per
expression quantile, increasing from left to right (x-axis; natural log transformation of average number of normalized aligned reads per gene): gray; all
genes; blue, red, and green; differentially induced as identified using GENE-counter running edgeR, DESeq, or NBPSeq, respectively. (D) Pair-wise
comparisons of p-value rankings for genes identified as significant. Genes were color-coded gray if identified by both statistical packages, blue, red,
or green, if uniquely identified by GENE-counter running NBPSeq, edgeR, or DESeq, respectively. Regression lines are plotted based on all genes
(black) or only those common to both statistical packages (red). Pearson’s r values are shown and colored accordingly.
doi:10.1371/journal.pone.0025279.g002
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strongly with increasing significance of q-values. Of the original

NBPSeq set of 308 differentially induced genes, 87% were

identified as differentially induced in $90% of the samples

(Fig. 3). Thus, in general, the great majority of genes were

consistently identified and thinning will not have substantial

impacts on conclusions. There are however, some instances where

random thinning could be viewed as undesirable, e.g., one

replicate is severely under-sequenced relative to all others. We

would encourage an end user to re-sequence the replicate.

Nevertheless, an alternative option would be to use one of the

other configured statistics packages of GENE-counter.

Analysis of enriched GO terms
A careful inspection of descriptions of the original NBPSeq set

of differentially induced genes found that 36% of the annotated

genes functions were in plant defense or were identified based on

differential expression in response to pathogens, wounding, and/

or stresses. Another 15% were annotated as being involved in

signal perception, transduction, secretion or modification of the

plant cell wall. We also analyzed the induced genes using the

parent-child-inheritance method available in the GORich tool of

GENE-counter and found 124 enriched GO terms (Table S2)

[26]. We compared these to enriched GO terms of genes identified

from publicly available microarray studies of plant defense [42–

49]. A total of 88 enriched GO terms associated with the

differentially induced genes were found associated with at least one

other microarray study; 62 were found in at least three of the

studies. We concluded that the original NBPSeq set of differen-

tially induced genes was similar to those previously found using

analysis of microarrays.

Comparisons with analysis of microarrays
We used analysis of microarrays as an alternative technical

method to globally assess differential induction and provide

independent support for the original NBPSeq set of induced

genes. We hybridized the same mRNA samples to Affymetrix

ATH1 microarrays and identified 366 induced genes (Table S3;

GSE25818; http://www.ncbi.nlm.nih.gov/geo/). For compari-

sons between RNA-Seq- and microarray-based expression studies,

we limited the analysis to only genes that were detectable by both

methods. As a result, 254 (82%) and 364 (99%) of the genes

identified using GENE-counter or analysis of microarrays,

respectively, could be compared.

The log2-fold change of expression for the induced genes

identified from the two methods was well correlated (Fig. 4A). As

previously noted, stronger correlations were noted for genes with

higher levels of expression [50]. Importantly, analysis of micro-

arrays gave strong support for the genes found by GENE-counter

and measurable using microarrays, 174 of 254 or 68% of the

induced genes, were common to both expression platforms

(Fig. 4B). Additionally, of 22 randomly selected induced genes,

20 were confirmed as differentially induced using qRT-PCR ($2-

fold relative expression; data not shown). We also compared results

from an independent microarray study most similar to ours,

infection of Arabidopsis with a DhrpA T3SS mutant of PtoDC3000

at 6 hpi [46]. We used the same methods to reanalyze these data

and arrived at 414 differentially induced genes, which when

compared, supported 58% and 57% of the differentially induced

genes identified using GENE-counter and analysis of our

microarrays, respectively. Between the two microarray studies,

78% of the differentially induced genes identified using GENE-

counter, and measurable by both methods, were supported.

Collectively, our analyses suggested the majority of the genes

identified using GENE-counter are bona fide differentially induced

genes.

Comparison to Cufflinks
We compared the performance of GENE-counter to Cufflinks

version 1.0.2. For alignments, Cufflinks uses Bowtie with a genome

reference sequence and TopHat with an optional transcriptome

reference annotation to identify splice junctions and guide

inference of transcript isoforms, respectively [16]. In contrast,

with GENE-counter, an end user can specify genome, transcrip-

tome, or both reference sequences for alignments. A total of

27,968,144 reads were found to be unambiguous and usable based

on alignments by GENE-counter. Cufflinks, when given this set of

reads, aligned 26,873,027 to the genome and 735,520 to splice

junctions. This compared favorably to GENE-counter, which

aligned 26,976,496 to the genome and 991,648 to the transcrip-

tome reference sequence. There were some rare and notable

differences but they are not expected to be of much consequence;

for example, 16,784 reads used by TopHat to infer splice junctions

were aligned to the genome reference sequence by CASHX. As

expected with the similarities in alignments, there were high

correlations in mean gene expression levels for both treatments

(Fig. S1).

Despite the congruence of results up to this step of the two

pipelines, only ,24% of the 260 differentially induced and

significant genes identified by Cufflinks overlapped with the

original NBPSeq set of 308 genes (Table S4). Only ,10% of the

genes unique to Cufflinks were identified in a minimum of at least

one microarray study, with the majority of those found in only one

[42–49]. In contrast, ,86% of genes unique to GENE-counter

were often identified across several microarray studies (data not

shown). Additional attempts that included increasing the ‘mini-

Figure 3. Analysis of NBPSeq normalization on differential
expression. The percent of iterations a gene from the original set was
identified as differentially induced (y-axis; n = 1000) was plotted as a
function of q-value (x-axis; q-values determined for the original set of
differentially induced genes categorized in quantile increments of 0.005
from least significant (q-value = 0.05) on the left to most significant (q-
value = 0) on the right). For each iteration, different random number
seeds were used to randomly thin gene counts. The percentage of
genes found in $90% of the samples is indicated.
doi:10.1371/journal.pone.0025279.g003
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mum alignment count’ of Cufflinks to filter out low expressing

genes, using all reads in Cufflinks, using Bowtie for alignments to skip

isoform predictions by Cufflinks, and comparing results to GENE-

counter using an exon only reference database for alignments,

resulted in no substantial increases in overlap of gene lists (data not

shown). Therefore, our comparisons show that, with the settings,

databases, and data used, the final outputs of GENE-counter and

Cufflinks were dissimilar with no more than 30% overlap.

Results from independent statistics packages and expression

platforms were largely in agreement with results from GENE-

counter but the same cannot be said for Cufflinks. The different

strategies for measuring isoform versus gene expression could

partially explain the discrepancy in results. A study suggested that

Cufflinks (ver. 1.0.0), but not methods like GENE-counter, could

reliably identify differentially expressed genes when simulated total

gene counts were held constant and expression was switched in silico

from all isoforms in one group to exclusively a single isoform in

another group [51]. This is, however, a unique and extreme case and

unlikely generalizable to all genes that differed in the comparisons.

The pilot RNA-Seq dataset could also have contributed to the

observed differences as statistical analysis of RNA-Seq data has

suggested that technical variability can be substantial and is further

exacerbated with lower depth of sequencing [52]. We have used

GENE-counter to analyze other RNA-Seq datasets and in these

few cases, greater depth of sequencing did not appear to improve

results. Particularly informative were two independent rRNA-

depleted RNA-Seq experiments of in vitro grown bacteria. The

depth of sequencing amply exceeded the depth achieved with the

Arabidopsis dataset and furthermore, analyses were not compli-

cated by the presence of alternatively spliced isoforms. Neverthe-

less, in one experiment the overlap in differentially expressed genes

identified using GENE-counter and Cufflinks was still less than

30% (J. Dangl, and C. Jones; personal communication). In the

other, the number of genes identified using Cufflinks was slightly

more than 20% the number found using GENE-counter (J.

Kimbrel and J. Chang, unpublished).

There are differences in the statistical methods used by the two

pipelines. Uncertainties in read assignments are addressed by

Cufflinks using maximum likelihood estimates. This approach has

the potential to impact conclusions on differential gene expression

[51]. Secondly, Cufflinks uses a different statistical test than

GENE-counter, but this is very likely minor. It is also unclear to us

whether Cufflinks uses an important statistical power saving

feature that is used by all three statistics packages configured in

GENE-counter. We are reluctant in speculating whether these

explain the differences in results as Cufflinks experienced

substantial and multiple recent changes. We encourage end users

to consider and test both pipelines to identify the method most

suitable for their purposes.

One important consideration is that GENE-counter does not

infer transcript isoforms or directly examine their differential

expression. This, however, does not preclude the use of GENE-

counter for studying differential expression of transcript isoforms.

End users can select genome, transcriptome, or both types of

reference databases for alignments. The transcriptome databases for

many model organisms are continuously updated to include newly

discovered transcript isoforms and when combined with the rapid

advances in next-gen technology, may contribute to more accurate

alignments of RNA-Seq reads to resolve transcript isoforms and

homologous genes. Many software programs for de novo assembly of

transcripts as well as empirical identification of splice junctions and

inference of splice variants from RNA-Seq reads are available

[16,53–55]. These programs could be used to first develop a

transcript isoform database with empirically supported sequences.

This database could then be used by GENE-counter to identify

differentially expressed transcript isoforms.

In summary, GENE-counter is a pipeline for analyzing RNA-

Seq data for differential gene expression. Its strengths include ease

of use, modularity, appropriateness of statistical tests, and

systematic storage of data. Additionally, GENE-counter is well

suited for studying gene expression changes of prokaryotes as well

as non-model organisms with only a transcriptome reference

sequence first inferred directly from the RNA-Seq data using other

software programs. GENE-counter and its user’s manuals can be

downloaded from our website at: http://changlab.cgrb.oregon

state.edu/. GENE-counter is also available for download from

sourceforge.net. Note added in Proof: Cufflinks version 1.1.0 was

released on 9/8/2011 that includes a check for sufficiency in depth

of sequencing and fixes a bug in the calculation of the parameters

for the NB distribution (http://cufflinks.cbcb.umd.edu/).

Figure 4. Comparison of analysis of RNA-Seq with analysis of microarrays. (A) Comparison of estimated log2-fold changes from analysis of
microarrays (x-axis) and RNA-Seq using GENE-counter running NBPSeq (y-axis). Only induced genes measurable by both platforms are presented.
Differentially induced genes are colored to highlight genes uniquely identified using microarrays (open red down triangles) or RNA-Seq (open blue
up triangles) and found common between the two methods (purple crosses). (B) Three-way Venn comparing differentially expressed genes identified
from GENE-counter’s assessment of RNA-Seq data and analysis of microarrays. Only genes measurable using both methods were included in the
comparison.
doi:10.1371/journal.pone.0025279.g004
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