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Abstract

Background: Individuals born small for gestational age (SGA) are at increased risk of rapid postnatal weight gain,
later obesity and diseases in adulthood such as type 2 diabetes, hypertension and cardiovascular diseases.
Environmental risk factors for SGA are well established and include smoking, low pregnancy weight, maternal short
stature, maternal diet, ethnic origin of mother and hypertension. However, in a large proportion of SGA, no
underlying cause is evident, and these individuals may have a larger genetic contribution.

Methods: In this study we tested the association between SGA and polymorphisms in genes that have previously
been associated with obesity and/or diabetes. We undertook analysis of 54 single nucleotide polymorphisms (SNPs)
in 546 samples from the Auckland Birthweight Collaborative (ABC) study. 227 children were born small for
gestational age (SGA) and 319 were appropriate for gestational age (AGA).

Results and Conclusion: The results demonstrated that genetic variation in KCNJ11, BDNF, PFKP, PTER and SEC16B
were associated with SGA and support the concept that genetic factors associated with obesity and/or type 2
diabetes are more prevalent in those born SGA compared to those born AGA. We have previously determined that
environmental factors are associated with differences in birthweight in the ABC study and now we have
demonstrated a significant genetic contribution, suggesting that the interaction between genetics and the
environment are important.

Background
Small for gestational age (SGA) babies (typically defined
as birthweight below the 10th centile according to gesta-
tional age [1,2]) are not only at increased risk of neona-
tal morbidity and mortality, but are also at increased
risk of rapid postnatal weight gain, later obesity and dis-
eases in adulthood such as type 2 diabetes, hypertension
and ischemic heart disease [3-7] which are major causes
of adult morbidity and mortality worldwide. Although
the cause of this association is unknown, several hypoth-
eses have been proposed. The fetal insulin hypothesis [8]
proposes that common genes inherited by the fetus
affect both birth size and predisposition to adult dis-
eases. In contrast, the Barker hypothesis [4,5,9-11]

suggests the association to be the result of fetal pro-
gramming - permanent changes in physiology and meta-
bolism in response to adverse maternal uterine
environment in pregnancy that result in increased meta-
bolic disease risk in adulthood. The increased risk of
adult metabolic diseases in those who are born small at
birth is further amplified by an accelerated pattern of
growth during childhood. The thrifty phenotype hypoth-
esis explains this phenomenon by suggesting that the
fetal nutrient conserving adaptations in response to
intrauterine under nutrition is overwhelmed by nutrient
abundance post-natally and manifests in adult metabolic
diseases [9]. Singhal and Lucas [12] propose that it is
not low birth weight per se, but this rapid postnatal
growth that is responsible for the increased risk for dis-
ease in later life.
Environmental risk factors for SGA are well estab-

lished and include smoking, low pregnancy weight,
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maternal short stature, maternal diet, ethnic origin of
mother and hypertension [13]. These risk factors have
been studied and confirmed in the Auckland Birth-
weight Collaborative (ABC) study [14,15]. However, in a
large proportion of SGA, no underlying cause is evident,
and these individuals may have a larger genetic contri-
bution. The existence of such genetic factors is sup-
ported by the observation that SGA births tend to
cluster in families and to recur in successive generations
[16,17]. However, genetic association publications for
SGA to date have been rare and inconsistent. Infante-
Rivard et al., 2007 [18] provides a summary overview of
genetic association studies for SGA. In brief, only the
thrombophilia pathway including genetic variants in
MTHFR, FV, and FII [19,20], and xenobiotic-metaboliz-
ing pathways with variants in CYP1A1, GSTT and
GSTM [21,22] have been studied with any frequency.
Other pathways that have been studied with less fre-
quency include the vascular dysfunction or atherosclero-
sis pathway with variants in APOE, PON and ACE
[23-25] and the insulin resistance pathway with variants
in IGF-1 [26]. However, none of these pathways have
shown robust associations with susceptibility to adult
diseases with which SGA has been linked.
As children born SGA often become obese in later life

and/or develop type 2 diabetes we tested the association
between SGA and polymorphisms in genes that have
previously been associated with obesity and/or type 2
diabetes under the hypothesis that a common genetic
denominator might predispose to both SGA and obesity
and/or type 2 diabetes. The hypothesis was tested in
subjects from the Auckland Birthweight Collaborative
(ABC) study. Since we began this study there have been
several publications examining the relationship between
type 2 diabetes susceptibility genes and birthweight
(these studies are described in the discussion), however
we have included both obesity and type 2 diabetes sus-
ceptibility genes and we have focused on SGA status.

Methods
Samples
The ABC study has been fully described previously [14].
In summary, between 16 October 1995 and 12 August

1996, babies born and resident in the Waitemata Health
or Auckland Healthcare regions were eligible for inclu-
sion and from 12 August 1996 to 30 November 1997,
babies born and resident in the Auckland Healthcare
region were eligible for inclusion. Preterm infants (< 37
completed weeks of gestation), multiple births and those
with congenital abnormalities were excluded. The sam-
ple was selected disproportionately to include all infants
born at term and SGA (≤10th percentile for sex and
gestation for New Zealand) [27] and a random sample
of appropriate for gestational age (AGA) infants (> 10th

percentile for sex and gestation). Gestational age was
estimated using the date of the last menstrual period
where it was available and was within 2 weeks of the
best clinical estimate of gestational age at birth; other-
wise the best clinical estimate was used.
Data have been collected at birth, 1, 3.5, 7 and most

recently 11 years of age. The original sample at birth
resulted in a sample of 1714 subjects, of which 871
mothers were identified in the obstetric data to be of
European ethnicity. At the age of 1 and 3.5 follow up of
non-European ethnicities was poor resulting in a lack of
ability to generalise the results from these children to
their particular populations. As a result follow-up from
the age of 7 has only been carried out on those children
whose mothers were identified as European ethnicity at
birth. At 11 years 546 participants consented to collec-
tion of peripheral blood (n = 397) or a buccal swab
(n = 149) for DNA extraction and genotyping. 227 sam-
ples were from children born small for gestational age
(SGA) and 319 were from children born appropriate for
gestational age (AGA).
DNA was extracted from the blood/buccal samples

using Qiagen’s DNA extraction kit and following the
manufacturer’s instructions.
The study received ethical approval from the Northern

Regional Ethics Committee. Signed consent for the
study and extraction of DNA was given by the parents
of the children and assent also given by the child.

SNP selection
The SNPs were selected from a systematic literature
search to identify genetic variants demonstrating asso-
ciation with obesity and/or type 2 diabetes. We included
18 diabetes SNPs and 46 obesity SNPs identified from
published candidate gene or genome-wide association
studies, totalling 64 SNPs which were located in 42
genes. See table 1 for the list of genes/SNPs selected for
investigation.

Genotyping
Genotyping was performed with the MassARRAY and
iPlex systems of the Sequenom genotyping platform
(Sequenom, San Diego, CA), which uses the MALDI-
TOF primer extension assay [28,29] according to manu-
facturers’ recommendations.
Assays were optimized in 24 samples consisting of 20

reference Centre d’Etude du Polymorphisme Humain
(CEPH) samples and 4 blanks.
All sample plates contained cases, controls, blanks,

CEPH and duplicate samples. Quality control measures
included independent double genotyping, blind to sam-
ple identity and blind to the other caller, and where
available comparison of our CEPH genotypes to those in
the HapMap http://www.hapmap.org.

Morgan et al. BMC Medical Genetics 2010, 11:125
http://www.biomedcentral.com/1471-2350/11/125

Page 2 of 10

http://www.hapmap.org


Table 1 Type 2 diabetes and obesity SNPs/genes we investigated for association with SGA in the Auckland
Birthweight Collaborative study samples

Gene region Chr Association Method of identification References SNP Description

NOTCH2 1 Type 2 Diabetes GWAS [45] rs10923931 Intronic

THADA 2 Type 2 Diabetes GWAS [45] rs7578597 Missense: T1187A

ADAMTS9 3 Type 2 Diabetes GWAS [45] rs4607103 38 kb upstream

IGF2BP2 3 Type 2 Diabetes GWAS [46-48] rs4402960 Intronic

PPARG 3 Type 2 Diabetes Candidate-gene studies [49,50] rs1801282 Missense: P12A

WFS1 4 Type 2 Diabetes Candidate-gene studies [51-53] rs10010131 Intron-exon junction

CDKAL1 6 Type 2 Diabetes GWAS [46-48,54] rs7754840 Intronic

JAZF1 7 Type 2 Diabetes GWAS [45] rs864745 Intronic

SLC30A8 8 Type 2 Diabetes GWAS [47,48] rs13266634 Missense: R325W

CDKN2A/B 9 Type 2 Diabetes GWAS [46-48] rs10811661 125 kb upstream

CDC123-CAMK1D 10 Type 2 Diabetes GWAS [45] rs12779790 Intergenic region

TCF7L2 10 Type 2 Diabetes Fine-mapping of linkage peak [38,55,56] rs7903146 Intronic

HHEX 10 Type 2 Diabetes GWAS [46-48] rs1111875 7.7 kb downstream

KCNJ11 11 Type 2 Diabetes Candidate-gene studies [52,57-59] rs5219 Missense: E23K

MTNR1B 11 Type 2 Diabetes GWAS [60-62] rs10830963 Intronic

rs1387153 29 kb upstream

TSPAN8-LGR5 12 Type 2 Diabetes GWAS [45] rs7961581 Intronic

HNF1B 17 Type 2 Diabetes Candidate-gene studies [63,64] rs757210 Intronic

NEGR1 1 Obesity GWAS [65,66] rs2568958 16.7 kb downstream

rs2815752 64 kb downstream

SEC16B 1 Obesity GWAS [65] rs10913469 Intronic

ADIPOR1 1 Obesity GWAS [67] rs3820152 Intronic

TMEM18 2 Obesity GWAS [65,66] rs7561317 23 kb upstream

rs6548238 33 kb upstream

INSIG2 2 Obesity GWAS [68,69] rs7566605 10 kb upstream

rs2012693 25.8 kb upstream

ETV5 - DGKG 3 Obesity GWAS [65] rs7647305 Intergenic

GNPDA2 4 Obesity GWAS [66] rs10938397 453.9 kb downstream

NCR3 - AIF1 6 Obesity GWAS [65] rs2844479 Intergenic

NAMPT 7 Obesity Candidate gene study [70] rs10487818 Intronic

MTMR9 8 Obesity GWAS [71] rs2293855 intronic

LPL 8 Obesity GWAS [67] rs3200218 3’UTR

PTER 10 Obesity GWAS [72] rs10508503 179 kb upstream

PFKP 10 Obesity GWAS [67,69] rs6602024 Intronic

rs2388395 317 kb upstream

rs2388399 317 kb upstream

rs2388397 317 kb upstream

MTCH2 11 Obesity GWAS [66] rs10838738 Intronic

BDNF 11 Obesity GWAS [65] rs6265 Missense V66M

rs925946 9.2 kb upstream

ADIPOR2 12 [67] rs2286385 Intronic

BCDIN3 D - FAIM2 12 Obesity GWAS [65] rs7138803 Intergenic

MAF 16 Obesity GWAS [72] rs1424233 48 kb downstream

SH2B1 16 Obesity GWAS [65,66] rs7498665 Missense A434T

FTO 16 Obesity and Type 2 diabetes GWAS [65,67,73,74] rs9939609 Intronic

rs6499640 Intronic

rs8050136 Intronic

NCP1 16 Obesity GWAS [72] rs1805081 Missense H 215R

MC4R 18 Obesity GWAS [65,75,76] rs17782313 187.5 kb upstream

rs17700633 109.1 kb upstream
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Statistical analysis
SNPs were tested for deviation from Hardy Weinberg
Equilibrium (HWE) in both cases (SGA) and controls
(AGA), and for the weighted population using a chi-
square goodness-of-fit test.
To determine if there were differences between chil-

dren born SGA and those born AGA, genotype and
allele frequencies for each SNP were analyzed by logistic
regression using the major allele as the reference for
allele analyses and the major homozygote group as the
reference for the genotype analysis. Odds ratios show
the increased risk (OR > 1) or decreased risk (OR < 1)
for the minor allele, or genotype group, of being SGA in
relation to the reference group. Univariable logistic
regression was carried out to assess the relationship of
each SNP with SGA and those found to be significant at
the 10% level were carried through to multivariable ana-
lyses. The multivariable model controlled for the pre-
viously published model for SGA in this population [14]
namely gestational age, gender, socio-economic status,
age mother left school, marital status, attendance at
antenatal classes, primiparity, maternal smoking during
pregnancy, marijuana use during pregnancy, maternal
height and weight, maternal age at index pregnancy and
maternal hypertension.
Statistical analyses were carried out using R [30] and

SAS (V9.1 SAS Institute., Cary, NC, USA).

Results
We do not have genotypic data for 10 SNPs: rs1387153
(MTNR1B), rs6020339 (CTNNBL1), rs2388399 (PFKP),
rs477181 (MC4R), rs3820152 (ADIPOR1), rs7561317
(TMEM18), rs7647305 (ETV5 - DGKG), rs2844479
(NCR3 - AIF1), rs8050136 (FTO) and rs10487818
(NAMPT). These SNPs either could not be multiplexed
into our sequenom assays, failed or did not pass our

quality control measure for inclusion in the analysis.
The remaining 54 SNPs produced genotypic data for
analysis. Each of these SNPs had a genotyping call rate
greater than 90% and the genotyping calls did not differ
significantly from HWE criteria.
Nine SNPs were significant at the 10% level in the

univariable analysis at either the genotypic or allelic
level and each of these SNPs was then taken forward to
multivariable analysis (see tables 2 and 3 for results).
Six SNPs demonstrated statistical significance at

p < 0.05 in either the univariable or multivariable analy-
sis: rs9939609 which is an intronic SNP in FTO, rs5219
which is a missense (Lys-Glu) SNP in KCNJ11, rs925946
which is located 9,240 bp from BDNF, rs6602024 which
is an intronic SNP in PFKP, rs10508503 which is located
179,016 bp from PTER and rs10913469 which is an
intronic SNP in SEC16B.
As we have two SNPs in BDNF and these two SNPs

are in LD (D’ = 1, r2 = 0.116) and exist within the same
haplotype block (confirmed using haploview 4.2) we
conducted a haplotype analysis to determine if the hap-
lotype would give stronger results than the individual
SNPs (data not shown). The haplotype analysis of
rs6265 and rs925946 found an overall effect (Global Stat
= 5.92, p = 0.05). In univariable analysis compared to
the GG haplotype the AG haplotype did not show a sta-
tistically increased risk (OR = 1.22, 95%CI = 0.86-1.68),
whilst those with the GT haplotype had a borderline
decreased risk (OR = 0.78, 95%CI = 0.59-1.04). In multi-
variable analyses these odds ratios moved towards unity
and were not statistically significant suggesting that the
haplotype analysis does not add anything further to the
analysis of each SNP individually.
We have examined anthropometric characteristics of

the children at 11 years of age (table 4) and found that
the children born SGA remain significantly lighter,

Table 1 Type 2 diabetes and obesity SNPs/genes we investigated for association with SGA in the Auckland Birth-
weight Collaborative study samples (Continued)

rs12970134 153.8 kb upstream

rs4450508 125.1 kb upstream

rs477181 142.5 kb upstream

rs502933 142 kb upstream

KCTD15 19 Obesity GWAS [65,66] rs11084753 17 kb downstream

rs29941 4.4 kb downstream

CTNNBL1 20 Obesity GWAS [69] rs6013029 Intronic

rs16986921 Intronic

rs6020712 Intronic

rs6020846 Intronic

rs6020395 Intronic

rs16986890 Intronic

rs6096781 26.7 kb downstream

rs6020339 Intronic
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Table 3 Univariable and multivariable associations of
obesity and diabetes SNPs with small for gestational age
at term (genotype data)

SNP genotype n Univariable OR Multivariable* OR

rs9939609 A 61 0.91 (0.50 - 1.64) 0.96 (0.47 - 1.94)

FTO AT 265 1.54 (1.07 - 2.22) 1.30 (0.85 - 1.99)

T 218 Ref Ref

rs864745 A 145 Ref Ref

JAZF1 AG 346 1.57 (1.03 - 2.39) 1.43 (0.88 - 2.32)

G 136 1.18 (0.73 - 1.91) 1.04 (0.59 - 1.83)

rs5219 C 223 Ref Ref

KCNJ11 CT 252 1.64 (1.13 - 2.37) 1.50 (0.98 - 2.31)

T 76 1.59 (0.94 - 2.69) 1.90 (1.04 - 3.50)

rs6265 A 17 2.84 (1.03 - 7.87) 3.29 (1.08 - 9.99)

BDNF AG 142 1.17 (0.79 - 1.74) 1.18 (0.74 - 1.90)

G 347 Ref Ref

rs925946 G 232 Ref Ref

BDNF T 66 0.84 (0.48 -1.46) 0.71 (0.38 - 1.34)

GT 249 0.58 (0.40 -0.83) 0.58 (0.38 - 0.89)

rs6602024 A 0 undefined undefined

PFKP GA 116 0.68 (0.44 - 1.04) 0.57 (0.35 - 0.95)

G 435 Ref Ref

rs10508503 C 447 Ref Ref

PTER CT 82 0.55 (0.33 - 0.91) 0.51 (0.28 - 0.91)

T 3 2.49 (0.22 - 27.7) 1.19 (0.09 -16.58)

rs10913469 C 13 2.94 (0.89 - 9.73) 2.54 (0.65 - 9.97)

SEC16B TC 367 0.74 (0.50 - 1.09) 0.56 (0.35 - 0.89)

T 158 Ref Ref

* Multivariable model controls for gestational age, gender, socio-economic
status, age mother left school, marital status, attendance at antenatal classes,
primiparity, maternal smoking during pregnancy, marijuana use during
pregnancy, maternal height and weight, maternal age at index pregnancy and
maternal hypertension.

Table 4 Anthropometric characteristics of children at
11 years of age

SGA AGA T (p-value)

Weight (kg) 40.6 (10.5) 43.9 (10.3) 3.85 (< 0.0001)

Weight SDS† 0.26 (1.14) 0.71 (1.04) 4.80 (< 0.0001)

Height (cm) 147.2 (7.6) 150.9 (7.4) 6.06 (< 0.0001)

Height SDS† 0.16 (1.07) 0.70 (1.04) 5.92 (< 0.0001)

BMI 18.6 (3.7) 19.1 (3.2) 1.98 (0.048)

BMI SDS†† 0.22 (1.22) 0.50 (1.10) 2.91 (0.004)
†Weight and Height SDS derived from the UK standards of Freeman et al [77]
††BMI SDS derived from the UK standards of Cole et al [78]
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shorter and still have lower BMI than the AGA children.
Hence not all of the SGA children have shown catch up
growth.

Discussion
We have found associations (with p values less than
0.05) for SGA with the diabetes related SNP in KCNJ11
and the obesity related SNPs in FTO, PFKP, PTER,
SEC16B and BDNF. After controlling for potential con-
founders the association with the FTO SNP did not
remain significant, whilst the other 5 SNPs were posi-
tively associated with SGA in the multivariable model.
The T allele of KCNJ11 SNP rs5219 is associated with

type 2 diabetes in adults and has been shown to be
associated with reduced insulin secretion (see table 1 for
references) so our study result finding that this risk
allele is associated with being SGA is compatible with
the fetal insulin hypothesis where genetically mediated
reduced insulin secretion beginning in-utero results in
reduced birthweight, and later increases the risk of
developing T2 D. Two previous studies evaluated the
diabetes related KCNJ11 variant with birthweight and
found no association [31,32]. It is possible that this var-
iant interacts with other factors, either genetic or envir-
onmental, that exist within the ABC cohort but are not
present in the other two studies.
Our study found that the high risk allele for obesity in

the PTER SNP (C allele at rs10508503) was associated
with being SGA. This finding would fit with the fetal
insulin hypothesis only if this allele had a direct effect
on increasing insulin resistance prior to manifesting as
increased BMI later in life, and thus manifests as low
birth weight and later leads to obesity. Alternatively, the
association of this obesity gene in SGA babies may be
due to some survival advantage of being a “thin-fat”
baby in terms of inappropriate fat mass for body size
[33], not discerned by the simple measure of birth
weight. It may be that most of these SGA babies grow
into genetically predisposed obese children and adults;
hence we are observing the association with post-natal
obesity in our SGA cohort.
Conversely, our study found an association of SGA

with the low risk alleles for obesity in the BDNF and
SEC16B genes suggesting that these alleles may confer a
propensity to small size beginning in-utero, since the
same SNP in BDNF has been associated with thinness
in women [34]. It would be interesting to examine
whether this sub-group of SGA babies go on to have
improved metabolic outcomes later in life by having a
lower risk of obesity.
Since we began this study associations between com-

mon variants in type 2 diabetes susceptibility genes have
been tested in several large birthweight cohorts. Freathy
et al, 2009 [35] looked at five type 2 diabetes

susceptibility genes and found that the CDKAL1 and
HHEX-IDE loci were associated with reduced birth
weight. They did not detect an association with
CDKN2A/B, IGF2BP2, and SLC30A8. All 5 of these loci
were included in our study and we did not detect an
association for any of them with SGA. Zhao et al, 2009
[36] also observed an association between lower birth
weight and the CDKAL1 locus. However, no association
was found with 19 other diabetes genes examined,
including KCNJ11 for which we found an association
with SGA. Pulizzi et al, 2009 [37] investigated 9 diabetes
genes, all of which are included in our study but were
not found to be associated with SGA. Of the tested var-
iants, the risk variant in HHEX showed a trend towards
a low birthweight and the risk variant in the CDKN2A/
2B locus was associated with high birthweight. The
three studies described above investigated birthweight.
Only TCF7L2 has been studied for association with
SGA [38,39]. The gene was not associated with SGA in
these two cohorts or our own. However, an association
has been described between TCF7L2 and birthweight,
although the effect was strongest with maternal geno-
type and after adjustment for maternal genotype
fetal TCF7L2 genotype was not associated with birth
weight [40].
We examined the publically available British 1958

birth cohort database http://www.b58cgene.sgul.ac.uk/
for our significant genes. SNPs in BDNF and FTO were
associated with birthweight but KCNJ11, PTER, PFKP
and SEC16B did not show any associations.
The failure to replicate the associations reported by

Freathy et al, Pulizzi et al and Zhao et al and our
reporting of significant results for different genes may
be due to the different phenotype used (birthweight vs.
SGA) and/or due to different study populations with dif-
ferent environmental and genetic influences.
To summarise, we have identified five SNPs/genes

which are associated with SGA. While noting that repli-
cation in independent samples is essential, our data pro-
vides evidence that genetic variation in type 2 diabetes
and obesity susceptibility genes such as KCNJ11, BDNF,
PFKP, PTER and SEC16B have a possible role in SGA as
well as their established roles in obesity and/or diabetes.
We recognise that the association observed with these

SNPs are unlikely to survive any adjustment for multiple
testing and could thus be false positives. But it is possi-
ble that we may be seeing small genetic effects here and
as our sample size is small compared to the majority of
genetic association studies today we have low power to
detect these associations with a high level of statistical
significance. Calculations of statistical power using PS
2.1.31 [41] show that for the ABC study we have 31.61%
power to detect an odds ratio of 1.2, 56.84% power to
detect an odds ratio of 1.3 and 78.01% power to detect
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an odds ratio of 1.4 for a SNP with a minor allele fre-
quency of 0.48 (such as rs864745 in JAZF11). For SNPs
with a lower allele frequency the power would be less.
For example for a SNP with a minor allele frequency of
0.12 (such as rs6602024 in PFKP) we have 17.36%
power to detect an odds ratio of 1.2, 31.42% power to
detect an odds ratio of 1.3 and 48.05% power to detect
an odds ratio of 1.4.
It is also possible that these genes may have more

subtle effects and could affect a related phenotype,
rather than be directly associated with SGA. Although
beyond the scope of this paper it would be interesting
to look at these SNPs/genes in relation such phenotypes
e.g., catch up growth. Alternatively, the associations
could reflect underlying LD with other markers in these
genes. Further analysis in these genes with which we
demonstrate an association with SGA is therefore
required. Also, further investigation of the 36 genes for
which we found no association should not be ruled out.
The lack of association of these genes with SGA in our
sample could be explained by a lack of power and we
cannot rule out that we were unable to detect smaller
effects of these variants. It is also possible that these
obesity and/or diabetes genes may lead to small
decreases in birthweight but do not result in the more
severe SGA phenotype. Alternatively, it may be possible
that any direct effects of susceptibility genes resulting in
an individual being born SGA (by reduced insulin secre-
tion) may be offset by an opposing effect from the
maternal genotype (through the effects of the same var-
iants on maternal glucose levels) [42]. Unfortunately,
maternal DNA samples are not presently available from
the ABC cohort and so we are unable to test this.
During revision of this manuscript Freathy and collea-

gues reported a meta-analysis of genome-wide associa-
tion studies and followed up the top hits in 13
replication studies [43]. They identified two loci, in
ADCY5 and near CCNL1, that are associated with birth
weight and explain 0.3% and 0.1% of the variance in
birth weight, respectively. Both loci were also associated
with smallness for gestational age. SNPs in ADCY5 have
recently been implicated in regulation of glucose levels
and susceptibility to type 2 diabetes [44], providing
further evidence that the association between lower
birth weight and/or SGA and subsequent type 2 diabetes
does indeed have a genetic component.

Conclusion
In conclusion, this study supports the concept that
genetic factors associated with obesity and/or risk of
type 2 diabetes are more prevalent in those born SGA
compared to those born AGA. We have previously
determined that maternal diet during pregnancy [15]
and other environmental factors [14] are associated

with differences in birthweight in the ABC study and
now we have demonstrated a significant genetic contri-
bution, suggesting that it is most likely that there is an
interaction between the genetic determinants of birth-
weight, childhood growth and risk of adult metabolic
diseases with both the intra- and extra-uterine
environments.
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