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The liver has been proposed as an important “immune organ” of the body, as it

is critically involved in a variety of specific and unique immune tasks. It contains

a huge resident immune cell repertoire, which determines the balance

between tolerance and inflammation in the hepatic microenvironment. Liver-

resident immune cells, populating the sinusoids and the space of Disse, include

professional antigen-presenting cells, myeloid cells, as well as innate and

adaptive lymphoid cell populations. Machine perfusion (MP) has emerged as

an innovative technology to preserve organs ex vivo while testing for organ

quality and function prior to transplantation. As for the liver, hypothermic and

normothermic MP techniques have successfully been implemented in clinically

routine, especially for the use of marginal donor livers. Although there is

evidence that ischemia reperfusion injury-associated inflammation is

reduced in machine-perfused livers, little is known whether MP impacts the

quantity, activation state and function of the hepatic immune-cell repertoire,

and how this affects the inflammatory milieu during MP. At this point, it remains

even speculative if liver-resident immune cells primarily exert a pro-

inflammatory and hence destructive effect on machine-perfused organs, or

in part may be essential to induce liver regeneration and counteract liver

damage. This review discusses the role of hepatic immune cell subtypes

during inflammatory conditions and ischemia reperfusion injury in the

context of liver transplantation. We further highlight the possible impact of

MP on the modification of the immune cell repertoire and its potential for

future applications and immune modulation of the liver.
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Introduction

Liver transplantation (LT) still remains the only treatment

option for a variety of liver diseases eventually resulting in end-

stage organ failure. Extended criteria donors (ECD) are

increasingly used for transplantation to meet the high demand

of organs. However, this poses a risk of early allograft

dysfunction (EAD), primary non-function (PNF) and biliary

complications [1-6]. Moreover, ECD livers are more susceptible

to ischemia reperfusion injury (IRI), compared to standard

criteria donor grafts.

While hypothermic conditions reduce cellular activity and

metabolism during organ ischemia, accumulated toxins and

reactive oxygen species (ROS) are released upon reperfusion,

which initiates pro-inflammatory cascades, activates immune

cells, releases damage associated molecular patterns and

ultimately results in apoptosis and tissue necrosis (1–3). To

limit organ damage during organ preservation, machine

perfusion (MP) has emerged as an alternative to static cold

storage (SCS). Normothermic machine perfusion (NMP) keeps a

liver ex vivo in a complete functional state, close-to physiologic

conditions and allows for comprehensive graft viability

assessment before transplantation (4–9). An improved

metabolic function, reduced expression of key markers of IRI

and decreased activation of the immune response of NMP livers,

compared to SCS livers, was previously demonstrated (2, 3).

The liver is essentially involved in balancing the innate and

the adaptive immune system. Its anatomic position and

distinctive vascular system allow for its unique ability to

continuously exchange immunological information (Figure 1)

(10, 11). Upon inflammation, the innate immunity including the
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complement system, pre-formed antibodies, as well as hepatic

natural killer (NK) cells, macrophages and neutrophils, induces

the inflammatory cascade and further initiates the adaptive

immune response. Central to the hepatic adaptive immune

system are T and B lymphocytes, which are able to recognize

and reply to pathogens in an antigen-specific way, while natural

killer T (NKT) cells function as a bridge between innate and

adaptive immunity (12–15). To date, there is little evidence

whether MP alters the quantity, activation state and function of

hepatic immune-cells (16). The migration of donor passenger T

cells from the donor liver allograft into recipient circulation has

been demonstrated prior to the clinical use of NMP (17). A study

by Jassem et al. reports an anti-inflammatory effect of NMP of

donor livers and the promotion of liver regeneration (2).

Recently, changes of the intrinsic immune profile of donor

livers during NMP were confirmed. Specifically, it was

suggested that liver-resident T cells and neutrophils are

mobilized and released into the perfusate during NMP (18).

Moreover, hypothermic oxygenated perfusion (HOPE)

impressively reduced the number of liver-resident T cells and

decreased cytokine levels, resulting in downregulation of the

immune system and thereby preventing rejection and

cholangiopathy after LT (19, 20). At this point it also remains

speculative if liver-resident immune cells primarily exert a pro-

inflammatory effect on the machine perfused organ, or in part

may be essential to induce liver regeneration and counteract

liver damage.

This review summarizes the function of various immune cell

populations during hepatic immune responses with particular

attention to inflammatory conditions in the context of LT. It

discusses the potential role of the hepatic immune cell
FIGURE 1

The distinctive anatomical vascular system allows for continuous exchange of immunological information. HC, hepatocyte; HSC, hepatic stellate
cell; KC, Kupffer cell; B, B cell; T, T cell, NK, natural killer cell; NKT, natural killer T cell; N, neutrophil; MAIT, mucosa associated invariant T cell;
mDC, myeloid dendritic cell; pDC, plasmacytoid dendritic cell; LSEC, liver sinusoidal endothelial cell.
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microenvironment during MP and if active modification of the

immune cell repertoire may be advantageous during MP.
Neutrophils are key players of
immune cell activation as well
as regeneration

Though initially considered a rather uniform, pro-

inflammatory immune type, advances in analytical techniques

suggest a variety of neutrophil subsets. The two most prominent

neutrophil subtypes are N1 and N2. Their function is quite

similar to their macrophage counterparts M1 and M2,

resembling a pro-inflammatory and an anti-inflammatory,

regenerative phenotype, respectively. In vitro, polarization of

neutrophils toward an N1-like phenotype can be conducted with

lipopolysaccharide (LPS), interferon gamma (IFNg), and

interferon beta (IFNb). N2 cells differentiate upon treatment

with L-lactate, adenosine, transforming growth factor beta

(TGF-b), interleukin 10 (IL-10), prostaglandin E2 (PGE2), and

granulocyte colony stimulating factor (G-CSF) (21). aged

neutrophils tend to overactivation (22), whereas chronical

exposure to pro-inflammatory conditions causes reduced

inflammatory effector functions. These exhausted neutrophils,

e.g., from patients with decompensated liver cirrhosis, reactivate

their effector functions upon stimulation with toll like receptors

(TLR) 7/8 and partially with TLR4 agonists (22, 23). Upon

reperfusion of an organ, danger- or death-associated molecular

patterns (DAMPs) released by ischemic tissue are detected by

Kupffer cells (KC) and endothelial cells, creating a CXCL1/

CXCL2 gradient to guide neutrophils chemotactically towards

the site of injury. Moreover, KC secret IL1b, which induces the

expression of intercellular adhesion molecule (ICAM)-1 in

endothelial cells. In the liver, ICAM-1 enables binding of

neutrophils to endothelia via MAC1 and subsequent

transepithelial migration. When reaching the site of injury,

neutrophils migrate towards DAMP signals, while disregarding

the CXCL1/CXCL2 gradient (24, 25). Additionally, activation of

the complement system has shown to promote neutrophil

recruitment and subsequent tissue injury (26). The effects of

complement on neutrophil migration in the context of liver MP

are still unexplored, but might be relevant, as complement is

produced in the liver itself and the organ is not perfused with

whole blood ex situ. A recent study on human livers

demonstrated that tissue neutrophil frequency significantly

decreased at end of NMP, while no significant change was

observed in the perfusate neutrophils (18). Thus, it was

supposed that tissue neutrophils were activated and mobilized

during NMP, based on a an augmented innate immune response

triggered by reperfusion, which is known to cause excessive

neutrophil influx to the liver from the vasculature (26). However,

in liver NMP, the observed paradoxical decrease in donor-liver
Frontiers in Immunology 03
tissue neutrophils and the contemporanely constant perfusate

neutrophil cell frequency may be explained by the continuous

exposure of circulating neutrophils to non-endothelialized

surfaces of the perfusion circuit, causing a proinflammatory

state, resulting in adherence of neutrophils to circuits (2, 18). At

the site of injury, neutrophils are involved in enhancing tissue

damage and inflammation as well as tissue regeneration and

immune suppression. As primary functions, neutrophils

produce ROS and cytokines, perform formation of neutrophil

extracellular traps (NET)osis, phagocytosis, proteolysis, and

induce angiogenesis (Figure 2) (23, 24), which damage

hepatocytes and enhance local inflammation. Delaying

neutrophil exit in a Cathepsin-C (Ctsc) deficient mouse model

also delayed revascularization of thermal liver injury (27). As

NETs are extracellular structures, they act as DAMPs and

consequentially enhance immune reactions (24, 28). In lung

and kidney transplants, NETosis has been shown to be involved

in graft rejection (24). Moreover, they promote coagulation and

thereby disturb perfusion (24). Since, however, anti-coagulated

blood is used for MP the significance of this process during ex

vivo organ perfusion is questionable. On the other side,

neutrophils participate in the clearance of debris by

phagocytosis (24) (Figure 3). Thereby, they reduce the amount

of free DAMPs, which prevents subsequent inflammatory

reactions. In alcoholic liver disease, neutrophils are mediators

of liver damage, but they can diminish inflammation by clearing

necrotic debris and induce hepatocyte regeneration via HGF

(23). Similarly, antibody mediated depletion of neutrophils

resulted in reduced clearance of debris as well as delayed

vascularization and healing, in a model of thermal liver injury

(29). These findings also highlight the role of neutrophils for

tissue regeneration. Neutrophils participating in tissue

revascularization, might display a targetable subset during MP

(30). In a mouse model of pancreas transplantation, MMP9

turned out to be a key mediator for this process (27). This

indicates that protein degradation is a key player not only in

damaging hepatocytes, but also to induce revascularization and

subsequent wound healing, additional to growth factor secretion.

Further, neutrophils induce M2 polarization in macrophages.

Targeting neutrophils is not common in LT or to prevent IRI.

However, there have been efforts to reduce tissue damage by

preventing neutrophil invasion. Inhibition of CXCL1 or CXCR2

diminished neutrophil migration and tissue damage. Besides,

deactivation of matrix metalloprotease 9 (MMP9) demonstrated

tissue protective effects in a mouse model of hepatic IRI, which

has been attributed to impaired invasion (24, 26). On the other

hand, MMP9 has been identified as a key player in

revascularization (27). Hence, if MMP9 inhibition is beneficial

for minimizing IRI in LT, this effect might be restricted to

preventing neutrophil activity in the damaged tissue. As there is

no neutrophil recruitment from the blood compartment during

liver MP, it is questionable whether inhibition of neutrophil

recruitment can show significant effects in an ex vivo liver
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FIGURE 3

Neutrophil granulocytes detected during donor liver NMP, Light (LM) and Transmission electron microscopy (TEM). (A) LM. An overview of a liver
sinusoid (s) containing Kupffer cells (kc), neutrophil granulocytes (gnc) and erythrocytes (brackets) is shown. (B, C) TEM. The sinusoids harbor
mature as well as young neutrophilic granulocytes (ngc), both with a segmented nucleus. (D) TEM. A young neutrophil granulocyte (ngc) is seen
in the dense connective tissue (ct) surrounding the liver, scattered between bundles of collagen fibrils. hc, hepatocytes.
FIGURE 2

Role of neutrophils. DAMPs, danger- or death-associated molecular patterns; ROS, reactive oxygen species; NETs, neutrophil extracellular traps.
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perfusion setting. In analogy to preventing invasion, promoting

neutrophil evasion into the perfusate might diminish immune

mediated IRI. Both, intravascular and tissue resident neutrophils

may be recruited into the blood flow (31). Additionally,

neutrophils follow a chemotactic hierarchy, by which some

migratory signals overwrite others (24). Hence, baiting

neutrophils out of an organ prior to any in-tissue activities

might diminish IRI. Alternatively, inducing reverse migration,

for instance by treatment with LTB4 (30, 32), could reduce the

number of locally active neutrophils.

In general, it appears that a total absence of neutrophils is

not desirable to prevent IRI and tissue damage, also in MP.

Instead, some activity is necessary for clearing debris, healing

and regeneration. To provide a regenerative immune

environment in general, ex vivo conditioning of donor livers

and organs might be beneficial. Besides, elimination of excessive

neutrophils may lead to reduction of liver injury and

inflammation following LT (33).
Kupffer cells are specialized hepatic
antigen-presenting cells

In 1876, von Kupffer identified liver-resident macrophages

for the first time (34). These macrophages comprise about 90%

of the total population of fixed macrophages in human body and

form a third of the non-parenchymal liver cells (35). They are

co-localized with sinusoidal endothelial cells, hepatic stellate

cells and NK cells in the hepatic sinusoids (14) (Figure 4).

Depending on their distinct location, the function,

morphology and number of KC changes (36). They have been

described as the immunological sentinels of the liver and,

depending on their surface marker phenotype or cellular

functions, they are distinguished as having inflammatory as

well as immunoregulatory properties.
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The main role of KC is to clear the portal circulation from

foreign materials and pathogens. In addition to their utility as

antigen presenting cells (APCs), they are able to scavenge gut-

derived pathogens, damaged erythrocytes and regulate iron and

lipid metabolism (37). When doing so, KC release a battery pro-

inflammatory cytokines such as IL-1, IL-6, IL-12, IL-18, tumor

necrosis factor-alpha (TNF-a) and IFN-g (14). With regard to

LT, KC play a relevant mediating role in IRI, converting the liver

into a highly inflammatory micromilieu and leading to PNF and

EAD (3). During hepatic hypoxia, the resulting cellular stress

triggers the release of endogenous DAMP molecules, which

subsequently induces KC activation, release of cytokines and

inflammatory mediators, in order to attract neutrophils and

produce ROS (38). During IRI, the activation of TLR4 on KC

enhances TNF secretion, which is further associated with

hepatocyte apoptosis (39). Moreover, the activation of the

complement system during IRI is responsible for KC-induced

oxidative stress, triggering the formation of ROS and neutrophil

recruitment to the ischemic liver (40). In the early state of

hepatic IRI, KC produce inducible nitric oxide synthase (iNOS),

which leads to reduced capillary perfusion and increased liver

injury (41). On the other side, KC contribute to immune

regulation, tissue repair and liver regeneration (42). After LT,

KC act as APCs by increasing the expression of MHC class II

and identifying recipient T cells migrating to the liver, which

leads to T cell apoptosis and therefore play an important role

during graft tolerance and survival (43, 44). In case of bacterial

infection, KC produce anti-inflammatory cytokines such as IL-

10, preventing activation of CD4+ T cells and limiting the

adaptive immune response (45). Moreover, presentation of

specific antigens by KC, induce IL-10 producing regulatory T

cells, promoting antigen-specific tolerance. Contrarily, during

acute liver injury, KC produce pro-inflammatory cytokines like

IL-1, IL-6 and TNF-a as well as chemokines such as MIP-1a and

RANTES (46). Human liver scRNAseq studies from three
FIGURE 4

Kupffer Cells, Transmission electron microscopy (TEM). (A, B) Liver sinusoids with Kupffer cells (kc), lymphocytes (lc) and erythrocytes are shown.
The damaged erythrocytes (brackets) are phagocytosed by a Kupffer cell, and in the Disse space (asterisks), an ito cell (highlighted in light red) is
visible storing lipid droplets. The boxed area is shown in higher magnification in (C). A portion of the Kupffer cell (kc) penetrates the fenestrated
endothelium (e and brackets), thus gaining accesses to the Disse space (asterisks). hc, hepatocytes.
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different groups have defined human KC facilitating the spatial

mapping of these cells in human liver (47–49). Through

identification of several markers, two distinct populations were

distinguished, seeming to segregate into pro-inflammatory and

immunoregulatory phenotypes. Specifically, MARCO

(MAcrophage Receptor with COllagenous structure) is only

expressed in non-inflammatory KC, while an inflammatory

character was suggested by enriched expression of LYZ, CSTA

and CD7454 (47).

Liver HOPE, which was shown to protect from IRI,

downregulates activation of KC in a rat model (19). In

contrast, increased levels of cytokines associated with KC

activation (CCL-2, GM-CSF, IL-10, IFN-g) were detected

during human NMP together with the induction of an overall

proinflammatory state (18). Based on the evidence that KC are

key regulators of homeostasis, immune activation, tolerance

induction (50), and that NMP triggers KC activation in

human livers (18), targeting myeloid inflammation may help

to improve organ function upon LT.
Natural killer cells as early source of
immunoregulatory cytokines

NK cells were initially described in 1975 based on their

ability to kill tumor cells without prior sensitization (51).

Following activation, NK cells offer a bridge between innate

and adaptive immune system by augmenting early adaptive

immune responses through the production of TNF-a and

IFN-g (52). The liver contains two NK cell subsets:

conventional NK cells which circulate freely and liver resident

NK cells (53). According to their surface markers, NK cells are

divided into CD56bright and CD56dim subsets, where nearly to

90% are CD56dim, characterized by a high cytotoxicity.

CD56bright NK cells, expressing a distinctive panel of

chemokine receptors, are particularly enriched in the liver

where they constitute over 50% of the total hepatic NK

population, compared with 10–15% in peripheral blood [6].

They are located primarily in the sinusoids, produce a great

amount of cytokines, but display low natural cytotoxicity

(54, 55).

In the landscape of LT, NK cells have classically been

described as proinflammatory, due to the increased expression

of the activation marker CD69 and the natural cytotoxicity

receptor NKp44, contributing to the release of inflammatory

cytokines and cytolysis of donor cells. Hepatic NK cells express

tumor necrosis factor-related apoptosis-inducing ligand

(TRAIL), which is a potent inducer of hepatocyte cell death.

The effect of TRAIL expression on NK cells during hepatic IRI

was investigated and confirmed. Mice lacking TRAIL displayed
Frontiers in Immunology 06
significantly higher levels of liver injury and neutrophil

infiltration (56). Additionally, it was assumed liver resident

NK cells are responsible for the innate immune response in

the early phase of IRI through self/non-self-recognition (57).

Previous studies have demonstrated that viral infections induce

NK cell accumulation and activation in the liver (58–60).

Activated NK cells also work against biliary epithelial cells and

contribute to hinder fibrosis through killing of hepatic stellate

cells (61). A relative loss of a subpopulation of CD56+CD16−

NK cells was observed in fibrotic human liver tissue using

scRNAseq [24]. The interaction between liver NK cells and

KC might trigger the production of IFN-g and TNF-a,
contributing to the development of fulminant hepatitis [87].

Furthermore, TRAIL+ NK cells could eliminate immature DC

(62) thereby impact the advancing of certain liver diseases.

There is also evidence that NK cell populations have

important immunoregulatory functions (58). A high

proportion of hepatic NK cells express the inhibitory receptor

NKG2A. In contrast to their peripheral blood counterparts, they

are capable of twice the cytotoxicity level, resulting in depleted

activation of T cells and tolerance induction after LT (63).

During hepatitis C virus (HCV) infection, they can inhibit DC

activation by producing the suppressive factors transforming

growth factor-beta (TGF-ß) and IL-10. Subsequently, the

resulting tolerogenic DC trigger the expansion of regulatory T

cells, contributing to the induction of an immunotolerant state

(64). Diverse studies have investigated the role of NK cells

during graft rejection (14, 65). The absence of recipient-

derived NK cells or the decrease in IFN-g production after LT

has been shown to be advantageous during both allograft

rejection and tolerance induction in a rat model (66). In

addition, 13 genes that are highly expressed in NK cells were

found to be present in LT recipients with graft tolerance, which

further indicates/provides further evidence that NK cells are

involved in tolerance induction (67). The conflicting role of NK

cells is still not fully understood; however, it is likely that NK

cells play a role in the development of tolerance, thus providing a

novel rationale for minimizing immunosuppression in recipients

of livers with greater proportions of NK cells (52). A fist analysis

on human liver NMP, showed that the composition of

leukocytes within the perfusate after organ procurement and

cold flush consisted mainly of neutrophils (about 55%) and NK

cells (about 13%). While no significant changes regarding the

NK cell compartments within the tissue were observed, duration

of NMP was associated with significant decreases in

frequencies of NK cells when serial perfusate was analyzed

(18). In the light of the growing use of MP in routine LT,

future studies focusing on immune interactions at the time of LT

and during rejection episodes, combined with cell dynamics

during MP, should clarify the role of NK cells in rejection

and tolerance.
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Dendritic cells are key players
in induction and regulation of
immune responses

In 1973 Cohn and Steinman discovered a specific type of

immune cell, the dendritic cell (DC) (68), which plays an

important role as sentinel of the immune system, as they are

deployed throughout the body and monitor their surroundings

for antigens and danger signals derived from pathogens or tissue

damage. DC can be categorized into two separate lineages:

conventional/myeloid DC (mDC) are specialized APCs

capable of beginning and driving specific T cell immune

responses, whereas plasmacytoid DC (pDC) are able to rapidly

produce type 1 interferons and regulate inflammatory responses

(12). All populations of DC have now been identified in human

liver tissue using flow cytometry (69) and scRNAseq, with

markers such as LILRA4, XCR1 and CD1c in order to

distinguish them (12). Human mDC express high levels of

CD11c and are classified according to their expression of

CD1a (also known as blood dendritic cell antigen [BDCA] 1)

versus CD141 (also known as BDCA3) (70). The BDCA1+ DC

differentiate under the influence of interferon regulatory factor 4

(IRF4), express high levels of CD1b, CD14, and SIRP-a and

promote T helper (Th) 2 responses. BDCA3+ DC develop under

IRF8, express XCR1, CLEC9F, BTLA4 and secrete IL12-

promoting Th1 responses in CD4+ T cells (71). In the healthy

liver 70% are BDCA1+, while 30% are BDCA3+ (69). On the

other side, pDC display an accentuate response to viral pathogen

associated molecular patterns (PAMPs) and the synthetize IFNa
(72). They express CD123, CD14 and CD303 (also known as

BDCA2), besides initiating antiviral immune response and

secreting IFNa/b (72, 73).

In the healthy liver, DC are mainly immature cells, capable to

capture and process antigens (12). In the context of LT, mDC and

pDC have been explored as key players of graft rejection and

immune tolerance. This was also observed in a transgenic murine

model, in which depletion of DC resulted in loss of liver tolerance

and allograft rejection (74). Simultaneously, DC can also promote

liver graft rejection, according to studies where donors were

treated with Fms-like tyrosine kinase receptor 3 (Flt3)-ligand,

causing not only increased DC numbers, but also augmented

CD80 and CD86 expression (75, 76). Although mDC can induce

graft rejection, their baseline state is likely to promote liver

tolerance, as a consequence of several mechanisms driving a

close interaction with hepatic stellate cells (HSCs) (72). There is

less evidence concerning the role of liver DC in IRI, but it was

shown that this innate immune pathology follows very different

rules from the T cell tolerance experienced in LT. In this context,

pDC appear to be key players of the immunopathology. Their

expression of TLR4 and TLR9 renders them highly responsive to

DAMPs released by ischemia-injured cells, and their response is to
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secrete IFNa, IL6, and TNF-a, which further augment

tissue injury. Contrarily, mDC suppress IRI, through the

secretion of anti-inflammatory cytokines (72). Future research

should examine how these populations differ functionally in

regulating hepatic immunity, how they contribute to liver

disease development (37) and which role they may assume in

the context of liver MP. Dendritic cell–derived extracellular

vesicles (DC-EVs) have emerged as a novel immunomodulatory

agent in LT. DC therapies are able to induce a tolerogenic

immune environment through secretion of anti-inflammatory

cytokines and induction of T cell anergy, nearly to attenuating

hypoxic injury and promoting allograft survival (77–79). The

administration of EVs directly to the liver during NMP may

guarantee their targeted delivery, providing time for modulation

of the immune environment prior to LT and maximizing the

therapeutic potential (77, 80).
The liver adaptive immune system:
the specific role of
lymphocyte subtypes in hepatic
immune activation

The highly specialized liver adaptive immunity, consisting of

humoral and cellular immunity, is able to provide long-term

protection with immunological memory, while promoting self-

tolerance (12). The liver possess an immunosuppressive

microenvironment, which means that hepatic adaptive

immune cells become readily tolerogenic, endorsing the death

of effector cells and the “education” of regulatory cells (81).

Based on different functions and phenotypes, the most

relevant T lymphocytes implicated in adaptive immunity

include CD4 T cells and CD8 T cells , additionally

characterized into several subgroups. CD4 T cells counted

various functional categories. While helper T (Th)1, Th2,

Th17 and follicular helper T (Tfh) cells, mostly support innate

and adaptive immune responses, the regulatory T (Treg) cells

(CD4+, CD25high, CD127low, FoxP3+), usually overrule the

augmented inflammatory reaction resulting from innate and

adaptive immunity and restore immune homeostasis. Multiple

immunosuppressive mechanisms have been attributed to Tregs

such as the secretion of anti-inflammatory cytokines, depletion

of crucial growth factors, and direct cytotoxic killing of effector

cells (13). The liver immune response is mostly associated with a

strong CD4 and CD8 T cell reaction. CD8 T cells play a key role

in this context, because they recognize peptides from

intracellular pathogens in the context of MHC I. Subsequently

they initiate diverse effector mechanisms, including the

production of cytokines, such as IFN-g and TNF-a, and

further cytolytic mechanisms, by releasing granule contents
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like perforin and granzyme and by triggering Fas-mediated

apoptosis (12, 82). Jassem et al. observed reduced numbers of

proinflammatory cytokines IFN-g and IL-17 producing CD4 and
CD8 T cells on human livers subjected to NMP (2).

A main characteristic of the adaptive immune system is to

form a pool of memory T cells, enabling an effective immune

response after pathogen re-exposition. The liver displays

intrahepatic tissue resident memory (TRM) cells, which

require a different cytokine milieu and have diverse

phenotypes compared to their counterparts in the blood (83,

84). While in mice the non-circulating liver TRM account for

40–60% of the liver-resident T cells, this amount is significantly

higher in humans, where it ranges between 60 and 80%. In order

to infiltrate the liver, memory T cells express liver-specific

homing markers like CD103, LFA-1, CXCR6 or CXCR3.

However, TRM have the ability to return back into the

bloodstream by upregulating CCR7 and S1PR1 (83). After

activation, CD8+ TRM cells produce TNF-a and IFN-g,
acquiring the ability to directly lyse target cells. The

proinflammatory cytokine expression on TRM cells is elevated

in comparison to the circulating memory T cells, denoting an

efficient effector function at the tissue-site of infection.

Additionally, CD8 TRM cells recruit other immune cells by

chemokine production after antigen recognition (85). In

comparison to CD8 TRM cells, the CD4 TRM cell amount in

the human liver is low, potentially due to a reversed CD8/CD4

ratio compared to the blood (86). T cells are highly involved in

the pathogenesis of IRI, which includes not only CD4 T cells, but

also CD8 and gd T cells. Recently, it was demonstrated that NMP

significantly increased the proportion of T cells in the perfusate

throughout the course of perfusion. This may suggest that donor

tissue T cells are mobilized into the perfusate during NMP (18).

However, tissue T cell frequency remains mostly unchanged

throughout the course of NMP. It was suggested that perfusate T

cells permanently migrate back into the liver tissue, generating a

dynamic T cell trafficking loop between perfusate and tissue

compartments (18).

B cells have been considered a main component of the

adaptive immune response, also contributing to mediate graft

injury. They comprise about 5% of the liver lymphocytes. While

immature, chronically activated B cells are effective APCs,

thought to augment T cell-mediated rejection, mature, late

lineage B cells produce donor-specific antibodies and

contribute to both acute and chronic allograft injury (87). B

cells additionally produce cytokines and chemokines modulating

the extent of the alloimmune response. As described for T cells,

also B cells should also be capable of both augmenting and

suppressing immune responses (88). B cell dysfunction has been

implicated in the pathogenesis of numerous immune mediated

liver diseases, such as autoimmune hepatitis (AIH), IgG4-related

hepatobiliary disease (IgG4-HBD), primary biliary cholangitis

(PBC) and primary sclerosing cholangitis (PSC) (87, 89, 90). The
Frontiers in Immunology 08
role of regulatory B cells (Breg) has been established in the

context of autoimmunity (88), however, the lack of molecular

markers is still a limiting factor for their further characterization.

They are often identified by the production of IL-10. Moreover,

there is evidence that Breg and Treg may collaborate in order to

promote tolerance, through the mediating effect of IL-10 (88). In

the context of liver NMP, continuously increasing frequencies of

B cells were detectable within the perfusate over the entire NMP

course (18). The authors concluded that this could probably be

explained by the controlled oxygenated rewarming after

substantial cold ischemia time. Likewise, NMP with controlled

oxygenated rewarming of liver after cold storage resulted in

significantly improved recovery upon reperfusion associated

with cold-stored only grafts (91).
Perspective and conclusion

To date there is conflicting data whether MP exerts a pro- or

an anti-inflammatory effect on donor livers prior to LT. While

there is evidence that a great amount of leukocytes is mobilized

into the perfusate during liver MP and an increase in

proinflammatory cytokines are found with prolonged

perfusion in some studies, also upregulation of regenerative

pathways and primarily anti-inflammatory mediators in the

course of human liver NMP are observed. Previously, refining

the perfusate composition with anti-inflammatory agents, as

prostaglandin E1, antiplatelet and fibrinolytic factors during ex

vivo warm liver MP improved the outcome after LT in a pig

model (92). Further, liver-resident immune cells gained an

activated phenotype during NMP on gene and protein levels

in a rat model, which could be reduced through therapeutic

intervention with anti-inflammatory IL-10 and TGF-b (93).

Moreover, a time-dependent increase in DAMPs levels and

inflammatory cytokines during MP, particularly pronounced

at higher preservation temperatures, was shown in another

rat model (94). In the past, differential centrifugation,

sedimentation, cell washing, freezing and thawing, and

filtration have been used to leukodeplete the perfusate used for

MP (95). The efficacy of leukocyte depletion filters (LDFs) was

previously evaluated in the context of normothermic ex vivo

lung perfusion (96) and in LT for oncological disease, where

some types of LDFs could reduce the risk for reintroducing

tumor cells (97). While in human organ perfusion, leukocyte-

depleted packed red blood cells are immediately available from

blood banks, controlling white blood cells-mediated damage, the

use of whole blood-based perfusate still remains a limiting factor

in experimental animal models of MP (98). Active mobilization

and elimination of hepatic immune cells using leukocyte

depletion filters (LDFs) during liver MP is an option and may

seem reasonable as this reduces the antigenic load of the organ,

hence diminishing acute rejection after LT. On the other hand,
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specific subtypes of immune cells have been shown to be

critically involved in regenerative, healing and tolerogenic

processes and hence indiscriminate withdrawal may be contra

productive. However, how much elimination is needed to

balance destructive versus regenerative processes in the liver

while on the perfusion device? In this context it might be

advisable to specifically and actively promote migration and

trafficking of highly proinflammatory immune cells by strongly

activating the inflammatory cascade. The high levels of

proinflammatory cytokines could then be filtered from the

perfusate together with the correspondingly acting cells. Future

investigations should consider the possible application of

leucocyte filtering during MP as therapeutic strategy.

With the development of prolonged organ perfusion, and

the possibility of the MP systems to add substances and

therapeutics directly into the perfusate which then circulate

directly through the liver, it may also be an option to

administer factors affecting the maturation state of immune

cells or inducing a regulatory and/or regenerative phenotype.

Moreover, ex vivo expanded subtypes of immune cells exerting

an advantageous effect during liver MP may be administered

into the perfusate for therapeutic purposes in the future.

To take the next steps it is of uttermost importance to

elucidate and understand (i) the role of hepatic immune cells

during MP (ii) how MP influences the immune cell repertoire,

and (iii) how this affects the immune microenvironment and

milieu. This should lay the groundwork for active immune

modulation and induction of regeneration during liver MP as

a future goal.
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