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abstract

PURPOSE To inform precision oncology, methods are needed to use electronic health records (EHRs) to identify
patients with cancer who are experiencing clinical inflection points, consistent with worsening prognosis or a
high propensity to change treatment, at specific time points. Such patients might benefit from real-time
screening for clinical trials.

METHODS Using serial unstructured imaging reports for patients with solid tumors or lymphoma participating in a
single-institution precision medicine study, we trained a deep neural network natural language processing (NLP)
model to dynamically predict patients’ prognoses and propensity to start new palliative-intent systemic therapy
within 30 days. Model performance was evaluated using Harrell’s c-index (for prognosis) and the area under
the receiver operating characteristic curve (AUC; for new treatment and new clinical trial enrollment). Associations
between model outputs and manual annotations of cancer progression were also evaluated using the AUC.

RESULTS A deep NLP model was trained and evaluated using 302,688 imaging reports for 16,780 patients. In a
held-out test set of 34,770 reports for 1,952 additional patients, the model predicted survival with a c-index of
0.76 and initiation of new treatment with an AUC of 0.77. Model-generated prognostic scores were associated
with annotation of cancer progression on the basis of manual EHR review (n = 1,488 reports for 110 patients with
lung or colorectal cancer) with an AUC of 0.78, and predictions of new treatment were associated with an-
notation of cancer progression on the basis of manual EHR review with an AUC of 0.84.

CONCLUSION Training a deep NLP model to identify clinical inflection points among patients with cancer is
feasible. This approach could identify patients who may benefit from real-time targeted clinical trial screening
interventions at health system scale.
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INTRODUCTION

There is increasing interest in leveraging electronic
health records (EHRs) at scale to generate real-world
evidence to optimize treatment for patients with
cancer.1 In particular, scalable methods for ascer-
taining outcomes from the EHR could inform tailored
care delivery.2 This could be particularly critical for
driving precision oncology3 at health system scale. A
key precision oncology task is to test novel therapies for
many individual genomic alterations, each of which
may be uncommon. To date, prospective studies of
precision oncology strategies have yielded relatively
low rates of enrollment in clinical trials, despite molec-
ular matches between trials and tumor characteristics.4,5

One barrier to enrollment in genomically matched trials
is that patients may not be ready for a clinical trial at any
given time. Clinical trials are generally available and
relevant to patients when they are experiencing clinical
inflection points—moments of progressive disease,

worsening prognosis, or a high propensity to change
therapy.

There is no structured EHR data field encoding these
components of clinical inflection points. This presents
a barrier to deployment of clinical decision support
tools to deliver real-time information about clinical
trials to patients and providers. One approach to
clinical inflection point detection could be to develop a
manually ascertained metric of cancer progression.
Trained human curators or clinicians could then re-
view medical records or clinical images and generate
structured outcomes according to this cancer pro-
gression metric. These annotations could be used to
train natural language processing (NLP) models to
recapitulate and automate this process.6-8 However,
simple supervised machine learning methods for
training these models require thousands of manually
curated gold standard records, the collection of which
may be challenging or even prohibitive. This could
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similarly limit the training of NLPmodels to ascertain cancer
progression per the RECIST,8,9 since such training requires
labeled data, and RECIST is not routinely applied to label
patients’ records outside of therapeutic clinical trials.
Furthermore, even if large quantities of labeled data were
available, cancer progression, per se, may be insufficient
for identifying clinical trial–ready patients. For example,
clear cancer progression may sometimes represent just
slight clinical worsening, insufficient for individual providers
to recommend a treatment change.

Clinical text exists in the context of other EHR data ele-
ments, which may be highly relevant to identifying clinical
inflection points that correlate with worsening cancer. In
particular, structured overall survival and treatment data
may be available to researchers working with retrospective
EHR data sets. If a clinical inflection point is defined as a
time when patients have a poor or worsening prognosis
and/or a high propensity to initiate a new treatment, a
machine learning model could be trained to identify such
moments using these existing structured data elements as
labels. This model could then be applied in real time to
clinical text for inflection point detection among future
patients who have not yet made a treatment change. Such
patients, and their oncologists, could receive targeted in-
formation about clinical trials or other cancer care delivery
interventions for which they may be eligible at a specific
time. The objective of this analysis was to train and evaluate
such a model.

METHODS

Overview

A neural network NLP model was trained to dynamically
predict a patient’s prognosis and propensity to start new
treatment, using the text from reports generated by radi-
ologists reviewing imaging studies, including plain films,
computed tomography, magnetic resonance imaging, and

nuclear medicine scans. This algorithm bases each pre-
diction on both a patient’s prior radiology reports and new
information introduced with each report to identify times at
which a patient has poor or worsening prognosis and/or
high propensity to initiate a new treatment.

Cohort

Because the primary motivation of this analysis was to
improve rates of enrollment to genomically matched on-
cology trials, the data for the study were derived from the
EHRs of patients with any malignant solid tumor or lym-
phoma, who had genomic profiling performed through the
Dana-Farber Cancer Institute (DFCI) PROFILE10,11 preci-
sion medicine effort from 2012 to 2019. PROFILE partic-
ipants consented to medical records review and genomic
profiling of their tumor tissue. PROFILE was approved by
the DFCI Institutional Review Board; this supplemental
retrospective analysis was declared exempt from review.
For model training, patients were divided randomly, at the
patient level, into training (80%), tuning or validation
(10%), and test (10%) subsets.12,13

Dynamic Prognostic Model Training

A neural network model was trained and applied on a per-
patient basis. Each patient’s data set included all imaging
reports performed at DFCI and affiliated sites, sorted in
chronologic order. Details of preprocessing, algorithm ar-
chitecture, and training are provided in the Data Supple-
ment. Training was performed using Pytorch.14 Model code
can be obtained from Github15; the underlying data constitute
protected health information and are not publicly available.
The model generated two output vectors per patient rep-
resenting (1) a vector of predicted instantaneous log hazard
of mortality per year following each report and (2) a vector
of predicted log odds of initiating new palliative-intent
anticancer systemic treatment within 30 days of each
report.

CONTEXT

Key Objective
Historically, a small fraction of adults with cancer has been enrolled in therapeutic clinical trials. Tools are in development to

match patients to clinical trials on the basis of their clinical and tumor molecular profiles. However, a major challenge in
deploying these tools has been that patients are generally only ready for clinical trials when they experience clinical
inflection points corresponding to worsening disease or a high propensity to change therapy. We developed a machine
learning natural language processing model to identify such inflection points in real time on the basis of serial imaging
reports for each patient.

Knowledge Generated
Our model was able to discriminate between better and worse prognoses, and high and low propensity to change treatment,

within a large pan-cancer single-institution precision medicine study.
Relevance
Deployment of our model to identify clinical inflection points at health system scale for patients with cancer could inform

targeted delivery of information about relevant clinical trials to patients and clinicians.

Clinical Inflection Point Detection on the Basis of EHR Data

JCO Clinical Cancer Informatics 623



Dynamic Prognostic Model Inference and Evaluation

This approach was evaluated by measuring the perfor-
mance of the two novel model outputs: (1) log hazard of
mortality per year and (2) log odds of new treatment at
30 days, calculated using the current model, and (3)
probability of manually annotated progression, calculated
among patients with lung cancer using a previously pub-
lished algorithm,6 at predicting three outcomes: (1) overall
survival, (2) new treatment at 30 days, and (3) new clinical

trial enrollment at 30 days. Evaluation was performed for
imaging reports before June 30, 2018, to ensure follow-up
for outcome ascertainment. Inference was performed by
leaving dropout on, which renders output nondeterministic,
generating predictions for each patient 10 times. The mean
prediction for each of the two outputs was then calculated
together with its standard deviation to yield a measure of
model uncertainty for each report.16

Initial model performance was evaluated in the validation
set by calculating Harrell’s c-index17 separately for each
output in predicting overall survival and by calculating the
area under the receiver operating characteristic curve
(AUC)18 for each log odds of initiating new treatment within
30 days output in predicting outcomes (2)-(3). Hyper-
parameters, including learning rate, dropout rate, network
depth, and network width, were then manually adjusted on
the basis of these metrics. These statistics and their 95%
CIs were calculated using a modified bootstrapping ap-
proach, in which one report for each patient was sampled
randomly and the statistic wsa calculated; this procedure
was then repeated 500 times. The reported statistic was
calculated as the mean of these samples; the lower bound
of a percentile CI was calculated as the 2.5th percentile of
the samples, and the upper bound was calculated as the
97.5th percentile of the samples.

After all training was complete, model performance was
evaluated for the test set in the samemanner. Performance
was evaluated both among all patients in the test set and
separately among patients with lung, breast, prostate, and
colorectal cancer. To facilitate visual evaluation of perfor-
mance, the distribution of predicted log hazards and
predicted new treatments was also calculated and plotted
for patients who died within 6 months of an imaging report
and for those who did not, and for those who started new
treatment within 30 days of a report versus those who did
not.

Evaluation of Clinical Inflection Point Detection:

Measurement of the Association Between Model Outputs

and Manually Curated Cancer Progression

A subset of cohort of patients who had lung or colorectal
cancer was identified, and their imaging reports were
manually annotated in an REDCap database19 according to
the PRISSMM framework.7 The PRISSMM abstraction
process has been described previously.6 Briefly, for each
imaging report following a patient’s pathologic diagnosis,
abstractors reviewed the report for a description of active
cancer. If cancer was present, abstractors recorded whether
it was improving or responding, progressing or worsening,
both (mixed), neither (stable) nor indeterminate.

For the current analysis, a binary variable was derived from
these manual annotations, representing whether the ra-
diology report contained a description of progressing or
worsening disease, versus any other category. Next, a
predicted log hazard of mortality per year and a predicted

TABLE 1. Patient Characteristics
Characteristics Patients, No. (%) Reports, No. (%)

All 20,916 (100) 377,221 (100)

Cancer primary site

Lung 3,238 (15) 68,927 (18)

Colorectal 2,095 (10) 31,615 (8)

Breast 2,054 (10) 44,697 (12)

Pancreatic 758 (4) 11,568 (3)

Urothelial 664 (3) 11,919 (3)

Prostate 602 (3) 9,327 (2)

Others 11,505 (55) 199,168 (53)

Age, years

, 40 2,173 (10) 32,945 (9)

40-49 2,451 (12) 46,231 (12)

50-59 5,196 (25) 95,683 (25)

60-69 6,271 (30) 114,586 (30)

70-79 3,768 (18) 69,199 (18)

80+ 1,057 (5) 18,577 (5)

Sex

Male 9,273 (44) 150,948 (40)

Female 11,643 (56) 226,273 (60)

Race

Asian 609 (3) 11,506 (3)

Black or African American 661 (3) 13,658 (4)

Native American 22 (0) 343 (0)

Pacific Islander 7 (0) 99 (0)

White 18,887 (90) 339,498 (90)

More than one race 51 (0) 590 (0)

Others or unknown 679 (3) 11,527 (3)

Year of first genomic sequencing report

2012 592 (3) 15,117 (4)

2013 2,628 (13) 58,090 (15)

2014 2,779 (13) 58,441 (15)

2015 4,609 (22) 88,147 (23)

2016 4,837 (23) 81,858 (22)

2017 3,071 (15) 44,511 (12)

2018 1,936 (9) 24,222 (6)

2019 464 (2) 6,835 (2)

Kehl et al

624 © 2021 by American Society of Clinical Oncology



TABLE 2. Utility of Model Outputs for Predicting Survival, New Treatment, and Clinical Trial Enrollment (Held-Out Test Set)

Cohort
No. of
Patients

No. of
Reports

Outcome: Overall Survival, C-index (95% CI)
Outcome: New Treatment Within 30 Days,

AUC (95% CI)
Outcome: New Clinical Trial Within 30 Days,

AUC (95% CI)

Predictor: Log Hazard of
Mortality per Year

Predictor: Log Odds of
New Treatment in the Next

30 Days
Predictor: Log Hazard of

Mortality per Year

Predictor: Log Odds of
New Treatment in the Next

30 Days
Predictor: Log Hazard of

Mortality per Year

Predictor: Log Odds of
New Treatment in the Next

30 Days

All patients 1,952 34,770 0.76 (0.74 to 0.77) 0.75 (0.74 to 0.76) 0.64 (0.61 to 0.68) 0.77 (0.74 to 0.81) 0.61 (0.55 to 0.68) 0.78 (0.70 to 0.86)

Cancer type

Lung 320 6,211 0.76 (0.73 to 0.78) 0.77 (0.74 to 0.80) 0.73 (0.64 to 0.81) 0.81 (0.71 to 0.89) 0.73 (0.52 to 0.97) 0.83 (0.60 to 0.99)

Colorectal 175 2,288 0.73 (0.69 to 0.77) 0.75 (0.71 to 0.79) 0.53 (0.43 to 0.65) 0.71 (0.40 to 0.86) 0.60 (0.39 to 0.97) 0.90 (0.66 to 1.0)

Breast 190 4,343 0.79 (0.76 to 0.82) 0.78 (0.74 to 0.81) 0.61 (0.54 to 0.69) 0.75 (0.63 to 0.85) 0.57 (0.48 to 0.69) 0.72 (0.45 to 0.89)

Pancreatic 52 950 0.74 (0.68 to 0.79) 0.72 (0.64 to 0.79) 0.61 (0.47 to 0.82) 0.71 (0.47 to 0.93) 0.56 (0.51 to 0.63) 0.92 (0.78 to 0.98)

Prostate 62 905 0.78 (0.68 to 0.86) 0.81 (0.73 to 0.88) 0.68 (0.48 to 0.85) 0.81 (0.52 to 1.0) 0.68 (0.48 to 0.87) 0.78 (0.52 to 0.98)

Urothelial 68 1,115 0.76 (0.68 to 0.82) 0.78 (0.70 to 0.85) 0.64 (0.47 to 0.81) 0.79 (0.57 to 0.96) 0.65 (0.49 to 0.94) 0.80 (0.54 to 1.0)

Other solid
tumors or
lymphomas

1,077 18,879 0.75 (0.74 to 0.77) 0.74 (0.72 to 0.75) 0.65 (0.60 to 0.70) 0.78 (0.72 to 0.83) 0.63 (0.53 to 0.72) 0.78 (0.67 to 0.88)

Under-represented
subgroups

Non-White
patients

161 2,018 0.78 (0.74 to 0.81) 0.75 (0.71 to 0.79) 0.67 (0.55 to 0.77) 0.76 (0.65 to 0.87) 0.67 (0.50 to 0.98) 0.78 (0.51 to 0.98)

Black patients 56 991 0.79 (0.73 to 0.84) 0.77 (0.72 to 0.83) 0.71 (0.45 to 0.95) 0.76 (0.54 to 0.93) 0.61 (0.51 to 0.87) 0.66 (0.51 to 0.95)

NOTE. Test set, restricted to imaging reports at least 6 months before the cohort censoring date of December 31, 2018.
Abbreviations: AUC, area under the receiver operating characteristic curve; C-index, Harrell’s concordance index.
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log odds of initiating new treatment within 30 days were
assigned to each report by applying the trained neural
network model to the report text. Finally, associations be-
tween each output and manually annotated cancer pro-
gression were calculated using the AUC in the same
bootstrapped manner described above.

Model Interpretability

To generate simple human-interpretable approximations of
how our neural network generated predictions globally
across the data set, we fit linear regression models with
LASSO regularization to predict the outputs of the neural
network at each time point within the validation set. This
approach was chosen because available local interpret-
ability methods20,21 are not readily applicable to a model
architecture that treats each patient as a sequence of
observations or reports. In these explanatory models, input
text was converted into vectors consisting of sequences 1-2
words, which were encoded using term frequency-inverse
document frequency vectorization.

RESULTS

Patients

Our cohort inclusion criteria identified 20,916 patients with
434 distinct types of cancer; these patients had a total of
377,221 imaging reports for analysis. There was a median
of 12 reports per patient (interquartile range, 4-26). Ad-
ditional cohort characteristics are provided in Table 1.

Model Performance

Prognostication. Within the test set, the estimated log
hazards were generated by the model predicted overall
survival with a c-index of 0.76 (95% CI, 0.74 to 0.77).
Performance among patients with specific types of cancer
is provided in Table 2. In a sensitivity analysis restricted to
imaging reports generated after tumor genomic profiling,
which represented a cohort eligibility criterion, the c-index
was 0.82 (95% CI, 0.81 to 0.82). In another sensitivity
analysis in which the model was re-trained using only re-
ports before the end of 2017 and evaluated on test set
reports from 2018, to evaluate the ability of this technique
to yield models useful for future patients, the results were
similar (Data Supplement). The distribution of predictions
by actual 6-month survival following each report is illus-
trated in Figure 1. The second model output variable,
corresponding to predicted log odds of new treatment
within 30 days, was also itself prognostic, with a c-index of
0.75 (95% CI, 0.74 to 0.76; Table 2). For comparison,
among a subset of patients with lung cancer (n = 30,377
reports for 2,276 patients), the output of a prior algorithm
trained to recapitulate manual annotations of cancer
progression6 yielded a c-index of 0.67 (95% CI, 0.65 to
0.68) for survival prediction.
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FIG 1. Distribution of predicted log hazard of mortality by actual
subsequent 6-month mortality (n = 34,770 imaging reports for
1,952 patients). Histogram of model output 1 (predicted log hazard
of mortality per year), by actual 6-month survival, following each
imaging report, demonstrating that patients with worse predicted
prognoses at any given time point have a lower rate of 6-month
survival following that time point. Test set, restricted to imaging
reports at least 6 months before the cohort censoring date of
December 31, 2018.
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FIG 2. Distribution of predicted log odds of new treatment in 30
days versus actual subsequent treatment in 30 days (n = 34,770
imaging reports for 1,952 patients). Histogram of model output 2
(predicted log odds of new treatment within 30 days), by actual rate
of new treatment within 30 days, following each imaging report,
demonstrating that patients with higher predicted odds of initiating
new treatment after any given time point had a higher actual rate of
initiating new treatment. Test set, restricted to imaging reports at
least 6 months before the cohort censoring date of December 31,
2018.
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Predicting new treatment and clinical trial enrollment. In
the full test set, the estimated log odds of new treatment
within 30 days predicted actual new treatment within
30 days with an AUC of 0.77 (95% CI, 0.74 to 0.81). In a
sensitivity analysis restricted to imaging reports generated
after tumor genomic profiling, the AUC was 0.81 (95% CI,
0.77 to 0.85). The results were similar in another sensitivity
analysis in which the model was re-trained using only re-
ports through 2017 and evaluated on test set reports from
2018 (Data Supplement). The distribution of predictions by
actual initiation of new palliative intent systemic therapy
within 30 days is illustrated in Figure 2. Performance
among patients with specific types of cancer is provided in
Table 2. The alternate model output, corresponding to the
predicted log hazard of mortality per year, was also itself
associated with new treatment within 30 days (AUC 0.64;
95% CI, 0.61 to 0.68; Table 2). For comparison, the output
of our prior algorithm trained to recapitulate manual an-
notations of cancer progression among patients with lung
cancer6 (n = 30,377 reports for 2,276 patients) yielded an
AUC of 0.71 (0.67 to 0.74) for predicting new treatment.
Performance of each model for predicting new clinical trial
enrollment was similar to performance for predicting any
new treatment, as expected, since new clinical trials were a
subset of new treatments (Table 2).

Predicting manual annotations of cancer progression.
Among 1,488 imaging reports for 110 test set patients with
colorectal cancer or non–small-cell lung cancer whose
records were manually reviewed, the predicted log hazard
of mortality generated by the trained model yielded an AUC
of 0.78 (95% CI, 0.69 to 0.86), and the predicted log odds
of new treatment yielded an AUC of 0.84 (95% CI, 0.75 to
0.90), for identifying manually annotated cancer progres-
sion (Table 3). The distribution of predicted log hazard of
mortality by actual progression annotations is illustrated in
Figure 3, and the distribution of predicted log odds of new
treatment by actual progression annotations is illustrated in
Figure 4.

Model Performance in Under-Represented Subgroups

Within our cohort, 2018 patients (9.6%) were non-White
and 661 (3.2%) were Black. Model performance in these
subgroups was similar to that in the full cohort (Table 2).

Model Interpretability

Individual words associated with themost positive andmost
negative coefficients in linear models trained to use imaging
report text to predict deep NLP model output are provided
in Table 4. Similar words were associated with higher
predicted log hazard of mortality and log odds of new
treatment, including metastatic and increase (likely rep-
resenting radiologists’ descriptions of increasing tumor
burden).

Model Uncertainty

The distribution of model outputs vs the standard deviation
of the outputs is illustrated in the Data Supplement. The
standard deviation, which might be interpreted as a metric

TABLE 3. Utility of Model Output for Identifying Manually Annotated Cancer Progression (Held-Out Test Set)

Cohort
No. of
Patients

No. of
Reports

Outcome: Manually Annotated Cancer Progression, AUC (95% CI)

Predictor: Log Hazard of
Mortality per Year

Predictor: Log Odds of New Treatment
in the Next 30 Days

Non–small-cell lung cancer 69 937 0.79 (0.67 to 0.88) 0.86 (0.75 to 0.95)

Colorectal cancer 41 551 0.76 (0.60 to 0.91) 0.80 (0.65 to 0.93)

Non–small-cell lung cancer plus
colorectal cancer

110 1,488 0.78 (0.69 to 0.86) 0.84 (0.75 to 0.90)

NOTE. Test set.
Abbreviation: AUC, area under the receiver operating characteristic curve.
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FIG 3. Distribution of predicted log hazards of mortality versus
manually annotated cancer progression among patients with
non–small-cell lung cancer or colorectal cancer (n = 1,488 imaging
reports for 110 patients). Histogram of model output 1 (predicted log
hazards of mortality per year), by manual annotation of the presence
or absence of cancer progression on each imaging report, dem-
onstrating that patients with higher predicted log hazards of mortality
at any given time point were more likely to have cancer progression
manually annotated at that time point. Test set, restricted to imaging
reports at least 6 months before the cohort censoring date of
December 31, 2018.
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of model uncertainty at any given time point, was highest
near the middle of the distribution of each model output.

DISCUSSION

A deep learning model trained to use radiology report text to
identify clinical inflection points was reliably able to predict
prognosis and changes in systemic therapy among patients
with cancer. This approach could be used to identify pa-
tients experiencing such inflection points and then carefully
match them to clinical trials for which theymight be eligible.
Algorithm outputs were correlated with human abstraction
of cancer progression from EHRs, but they were equally or
more predictive of prognosis and treatment changes than
such curation.

Although this method could inform cancer care delivery
strategies in general, a key use case will be to inform
targeted delivery of clinical trials options to patients at
specific moments in time. This could overcome a critical
barrier to enrollment in precision oncology clinical trials in
practice: Patients experience periods of improvement and
worsening over the course of their disease trajectories. Even
if it is clear that patients’ tumor characteristics might render
them eligible for a specific clinical trial, patients may ac-
tually be candidates for trials only during times when their
disease is worsening. From a practical perspective, it is no

longer feasible for community-based physicians to track all
potential investigational trials for their patients. Even on-
cologists practicing at major cancer centers, whose prac-
tice focuses on a particular cancer type, struggle to identify
the right trial for the right patient at the right time. This
analysis demonstrates the potential for harnessing deep
learning methods to facilitate streamlined procedures for
clinical trial matching. A model-detected inflection point
could serve as a trigger for oncologists and research staff to
review patients for clinical trials.

Strengths of this analysis include its derivation from a large
number of patients with multiple different types of cancer.
As demonstrated in evaluations of performance by cancer
type and on the basis of explanatory linear models, the
algorithm focused particularly on terms consistent with
worsening cancer across cancer types, rather than simply
learning, for example, that patients with pancreatic cancer
generally have worse prognoses than those with colorectal
cancer. It also generated estimates of prediction uncer-
tainty, which could be relevant to any cancer care delivery
intervention. By simultaneously predicting prognosis and
changes in treatment, it could further facilitate filtering of
interventions on the basis of prognostic criteria. However,
we would not propose using the prognostic estimates
generated by our model to exclude patients from trials. On
the contrary, these estimates appear to capture concepts
associated with worsening disease (Table 4), such that poor

0.0

0.2

0.4

−4 −3 −2 −1

Predicted Log Odds of New Treatment
Within 30 Days

De
ns

ity

Progression

No

Yes

FIG 4. Distribution of predicted log odds of new treatment within 30
days versus manually annotated cancer progression among patients
with non–small-cell lung cancer or colorectal cancer (n = 1,488
imaging reports for 110 patients). Histogram of model output 2
(predicted log odds of new palliative-intent systemic therapy within
30 days), by manual annotation of the presence or absence of
cancer progression on each imaging report, demonstrating that
patients with a higher predicted log odds of new treatment at any
given time point were more likely to have cancer progression
manually annotated at that time point. Test set, restricted to imaging
reports at least 6 months before the cohort censoring date of De-
cember 31, 2018.

TABLE 4. Words Associated With Model Output

Association with
Model Output

Model Output: Log
Hazard of Mortality

per Year

Model Output: Log Odds
of New Palliative-Intent
Systemic Treatment in

the Next 30 Days

Most associated Metastatic Metastatic

ˆ Ascites Metastases

| Metastases Increased

| Pleural Metastasis

| Increased Increase

| Signed by Ascites

…

| Nodule Signatures

| Cyst Exam

| Resection Resection

| No pleural No new

| No new Status

V No No

Least associated cc cc

NOTE. Each row represents a coefficient in a linear regressionmodel
with LASSO regularization trained to predict the outputs of the clinical
inflection point detection within the validation set.
Abbreviation: LASSO, Least Absolute Shrinkage and Selection

Operator.
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prognoses might best constitute a potential criterion for
clinical trial readiness in implementation studies.

Limitations include a single-institution cohort of patients
participating in a precision medicine study for which tumor
genomic profiling was an eligibility criterion, given the intent
to apply this approach to inform matching to clinical
trials of targeted therapy. In such a context, complex dy-
namics involving selection bias and temporal selection
bias22—cohort entry specifically because of clinical
worsening—may apply. In this analysis, however, model
performance was similar after restricting to imaging reports
collected after genomic testing. Additionally, the need to
apply algorithms fairly is always a concern when imple-
menting machine learning in clinical practice,23 although
we found that performance was similar in under-
represented subgroups. We applied a surrogate linear re-
gression model to identify words and short phrases asso-
ciated with the output of our deep learning models. Further
work would be needed to apply more granular model ex-
planation frameworks20,21 to the temporal deep neural
network architecture over text documents in this study to

understand the contribution of nonlinear interactions
among phrases and across time to individual predic-
tions. Finally, our model may detect not just changes in
cancer status but also decisions that have already been
made to change treatment (phrases such as restaging
before initiation of new therapy or descriptions of in-
travenous access placement), to the extent that such
decisions might be reflected in the text of imaging re-
ports. Nevertheless, such reports might still reflect
clinical inflection points, identification of which could
remain useful for prompt targeted delivery of clinical trial
information.

In conclusion, a deep NLP model can be trained to identify
clinical inflection points, at which patients with cancer may
benefit from access to information about clinical trial op-
tions, using unstructured EHR data. This could be a
generalizable approach to clinical inflection point detection
across institutions. Next steps at our center will include
piloting incorporation of this algorithm into an institutional
clinical trials matching tool.24
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