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Abstract
Background: Cardiac resynchronization therapy (CRT) has been shown to decrease mortality in
60-70% of advanced heart failure patients with left bundle branch block (LBBB) and QRS duration
> 120 ms. There have been intense efforts to find reproducible non-invasive parameters to predict
CRT response. We hypothesized that different left ventricular contraction patterns may exist in
LBBB patients with depressed systolic function and applied tagged cardiovascular magnetic
resonance (CMR) to assess circumferential strain in this population.

Methods: We determined myocardial circumferential strain at the basal, mid, and apical
ventricular level in 35 subjects (10 with ischemic cardiomyopathy, 15 with non-ischemic
cardiomyopathy, and 10 healthy controls). Patterns of circumferential strain were analyzed. Time
to peak systolic circumferential strain in each of the 6 segments in all three ventricular slices and
the standard deviation of time to peak strain in the basal and mid ventricular slices were
determined.

Results: Dyskinesis of the anterior septum and the inferior septum in at least two ventricular levels
was seen in 50% (5 out of 10) of LBBB patients while 30% had isolated dyskinesis of the
anteroseptum, and 20% had no dyskinesis in any segments, similar to all of the non-LBBB patients
and healthy controls. Peak circumferential strain shortening was significantly reduced in all
cardiomyopathy patients at the mid-ventricular level (LBBB 9 ± 6%, non-LBBB 10 ± 4% vs. healthy
19 ± 4%; both p < 0.0001 compared to healthy), but was similar among the LBBB and non-LBBB
groups (p = 0.20). The LBBB group had significantly greater dyssynchrony compared to the non-
LBBB group and healthy controls assessed by opposing wall delays and 12-segment standard
deviation (LBBB 164 ± 30 ms vs. non-LBBB 70 ± 17 ms (p < 0.0001), non-LBBB vs. healthy 65 ± 17
ms (p = 0.47)).

Conclusions: Septal dyskinesis exists in some patients with LBBB. Myocardial circumferential
strain analysis enables detailed characterization of contraction patterns, strengths, and timing in
cardiomyopathy patients with and without LBBB.
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Introduction
Cardiac resynchronization therapy (CRT) has been shown
to improve symptoms, increase exercise capacity, decrease
heart failure (HF) hospitalizations, and decrease mortality
in patients with New York Heart Association (NYHA)
Class III/IV HF with depressed systolic function, and a
prolonged QRS in left bundle branch block (LBBB) mor-
phology [1-3]. Recent data from patients with NYHA class
I/II HF also demonstrated reduced HF hospitalization and
reversal of left ventricular (LV) remodeling with CRT ther-
apy [4]. However, 30-40% of patients who receive CRT
therapy do not show significant clinical improvement [4-
6]. As a result, there has been intense investigation to
develop noninvasive parameters to predict CRT response
[7-9]. While mechanical dyssynchrony assessed in the
longitudinal axis of myocardial motion was shown to be
predicative in single center trials [7-10], the multi-center
PROSPECT trial failed to identify any echocardiographic
dyssynchrony criteria to predict responders better than the
clinical criteria [11].

Tagged cardiovascular magnetic resonance (CMR) is a
noninvasive technique for measuring local deformation
of the myocardium and quantitative assessment of
mechanical dyssynchrony [12-14]. An advantage of
tagged CMR circumferential strain (εcc) measurements is
the narrow and consistent normal range across different
centers [15,16]. In addition, εcc appears to be more sensi-
tive to dyssynchrony than longitudinal strain in animal
models [17]. εcc patterns in healthy patients have been
studied in detail [16,18]. We sought to examine εcc pat-
terns in patients with systolic dysfunction by applying
tagged CMR.

Methods
Patient cohort
We studied twenty-five patients with systolic dysfunction
referred for assessment of LV function and imaged
between June 2006 and August 2009, including 10
patients with chronic ischemic cardiomyopathy (ICM)
(age 64 ± 8 years, 90% male, LV ejection fraction (EF) 30
± 6%) and 15 patients with non-ischemic dilated cardio-
myopathy (non-ICM) (age 59 ± 11 years, 73% male, LVEF
27 ± 8%). All patients diagnosed with ICM had history of
myocardial infarction and had coronary angiography
demonstrating significant coronary artery disease involv-
ing at least two vessels. Eleven of 15 (73%) patients with
non-ICM had coronary angiography demonstrating the
absence of epicardial coronary artery stenoses. Four
remaining patients were diagnosed as non-ICM with neg-
ative stress tests. Ten healthy adult subjects (age 38 ± 12
years, 50% male, EF 61 ± 4%) served as controls. The insti-
tutional Committee on Clinical Investigation approved
the study protocol. Written informed consent was

obtained from volunteers and was waived for existing
clinical data sets.

ECG analysis
All subjects had a standard 12-lead ECG performed within
a median of 15 days (with interquartile range of [5.5,
25.5] days) of the CMR with no intervening change in
clinical status. The QRS morphology was determined by
an experienced electrophysiologist (PJZ) according to
AHA/ACCF/HRS guidelines [19]. Briefly, LBBB was deter-
mined if the QRS duration was ≥120 ms, with presence of
a broad monophasic R wave in I, or V5 and V6, absence of
Q waves in leads I, V5, and V6, and the displacement of
the ST segment and T waves in a direction opposite to the
major deflection of the QRS complex. The QRS duration
was determined by automated computerized measure-
ments and confirmed manually.

CMR
CMR studies were performed on a 1.5 T Philips Achieva
MR scanner (Philips HealthCare, Best, NL), equipped
with a 5-element cardiac coil. Breath-hold short-axis cine
steady state free precession (SSFP) images covering the
entire LV and long axis SSFP cine images covering the LV
outflow tract were acquired as previously described [20].

Breath-hold ECG-gated tagged complementary spatial
modulation of magnetization (CSPAMM) cine images at
the basal, mid, and apical ventricular levels were obtained
[21,22]. The mid ventricular level was prescribed at the
mid-papillary muscle level. The center of the basal slice
and the center of the apical slice were acquired 20 mm
proximal and distal to the mid slice center, respectively.
Scan parameters include spiral readout with 8 interleaves,
9 ms acquisition window, repetition time (TR)/echo
time(TE)/flip angle(α) = 25 ms/3.6 ms/25°, field of view
(FOV) = 320 mm × 320 mm, 10 mm slice thickness with
5 mm tag spacing, temporal resolution 25-35 ms, spatial
resolution 2.5 × 2.5 × 10 mm.

Free-breathing, ECG-triggered phase contrast velocity
sequences for aortic flow oriented in the axial plane at the
level of the bifurcation of the pulmonary artery were
acquired as previously described [23]. Sequence parame-
ters were: TR/TE/α = 15 ms/6.5 ms/30°, FOV = 300 mm ×
210 mm, matrix = 128 × 128, slice thickness 6 mm. Respi-
ratory motion compensation was accomplished with the
use of three signal averages.

2D breath-hold ECG-triggered late gadolinium enhance-
ment (LGE) images were acquired in the same orientation
as SSFP short axis images and long axis 2-chamber and 4-
chamber orientations at 10-20 minutes post injection of
0.2 mmol/kg gadolinium-diethylenetriamine pentaacetic
acid (Magnevist, Schering, Germany). Imaging parameters
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were: 2D spoiled gradient echo inversion recovery, TR/TE/
α = 4.3 ms/1.5 ms/20°, FOV = 320 mm × 320 mm, matrix
= 160 × 160, 8 mm slices with 2 mm gaps, partial echo, fat
saturation, 1 RR between inversions, and two signal aver-
ages.

Volumetric Analysis
Cardiac volumes were calculated in the standard fashion
as previously described with papillary muscle included in
the LV cavity volume [20]. Mitral regurgitation volume =
LV stroke volume - aortic forward flow volume.

Timing of systole
Systolic ejection begins when the aortic valve opens, as
seen from the cine long axis LV outflow tract images and

confirmed with phase contrast aortic flow curves. End of
systole is defined as the time of aortic valve closure.

CSPAMM image analysis
A customized software program (Cardiotool), written in
MATLAB (MathWorks, Natick, MA), was used for semi-
automated analysis of circumferential strain [24]. Endo-
cardial and epicardial borders were drawn manually on
the tagged images, and the right ventricular insertion sites
were marked to indicate the outer borders of the anter-
oseptum and inferoseptum (Figure 1). The remaining
myocardial slice was divided into anterior, anterolateral,
inferolateral, and inferior segments according to the AHA
17-segment model. Circumferential strain from the mid-
myocardial layer of each of the six segments of all three
ventricular slices was analyzed.

CSPAMM images of mid ventricular short axis slice and analysis modelFigure 1
CSPAMM images of mid ventricular short axis slice and analysis model. A. Tags at the beginning of systole after ECG 
triggering. B. Same slice at end systole. C. Same slice at diastole with good persistence of tags. D and E show an example of 
CSPAMM images with the analysis model. D. In early systole, the epicardial border was manually drawn in green, endocardial 
border in red, superior right ventricular insertion site marked with a yellow triangle, and inferior insertion site marked with a 
blue triangle. The red donut is the analysis model with the myocardium partitioned in epi-myocardial, mid-myocardial, and 
endo-myocardial thirds shown in early systole in D and end-systole in E. Magenta dot is the center of the epicardial contour.
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LGE image analysis
The presence of abnormal LGE in the myocardium was
determined by the presence of high signal intensity
(defined as 6 standard deviations higher than remote
myocardium) in the short axis images and confirmed in
the long axis images. The degree of LGE was determined
by <50%, 50-75%, and >75% of LGE transmurality.

Dyssynchrony assessment
Time to peak myocardial systolic strain in the mid-myo-
cardial layer was identified for each segment by identify-
ing the cardiac phase of peak systolic strain and
multiplying by the temporal resolution in milliseconds.
In myocardial segments with presystolic negative εcc and
systolic positive εcc, the peak time was taken at the pre-
systolic negative εcc. For other segments, the peak time was
taken at the maximal circumferential shortening, includ-
ing the post-systolic shortening period. The absolute time
difference between opposing walls (inferolateral wall to
anteroseptum (IL-AS), anterior wall to inferior wall (A-I),
and anterolateral wall to inferoseptum (AL-IS)) were
obtained. The standard deviation of time to peak systolic
strain in the basal and mid segments (T12SD) was deter-
mined.

Statistics
Data were analyzed using the two-tailed Student's t-test to
compare continuous variables and the Wilcoxon rank
sum test to compare categorical variables. A two tailed p-
value of < 0.05 was considered significant. In multiple
group comparisons, Bonferroni correction was applied.
All statistical analyses were performed with STATA Ver-
sion 10 (STATcorp, TX, USA).

Results
Patient characteristics
Patient clinical characteristics are presented in Table 1.
Twelve (48%) patients with ICM (n = 4) and non-ICM (n
= 8) had LBBB with a mean QRS duration of 161 ± 10 ms.
The thirteen non-LBBB patients had either normal QRS
duration (< 100 ms) (n = 6) of 81 ± 5 ms or interventricu-
lar conduction delay (IVCD) (n = 7) with a mean QRS
duration of 118 ± 14 ms. The healthy control subjects had
normal QRS morphology and a mean QRS duration of 88
± 12 ms.

The LBBB and non-LBBB patient groups had similar age,
gender, prevalence of hypertension, diabetes, hyperlipi-
demia, tobacco use, cardiac medication use, LVEF, LV vol-
umes, and mitral regurgitation volume, but differed in
their NYHA classification (Table 1).

Myocardial scar
Among the four ICM patients with LBBB, three had infe-
rior infarcts (two with LGE > 75%, one had LGE <50%)

and one patient had both inferior and anterior infarcts
(LGE = 50% of the septum, anterior and inferior walls).
Among the six ICM patients with non-LBBB, four had
anterior infarcts (3 subendocardial LGE, and one with >
75% of anteroseptum and anterior wall LGE) and two had
inferior infarcts (one subendocardial LGE, one >75%
LGE). No focal LGE was identified in patients with non-
ICM.

Circumferential strain patterns in LBBB
Three distinctive contractile patterns in LBBB patients
were observed in the septum.

Type I: An initial negative εcc in the septal segment before
systolic ejection (as determined above) was present as pre-
systolic contraction, followed by a positive εcc reflecting
stretching and dyskinesis of the septum. We further
divided this type into two subtypes:

Type Ia. When Type I pattern is only present in the anter-
oseptum (Figure 2A).

Type Ib. When Type I septal pattern is present in both
anteroseptum and inferoseptum (Figure 2C).

Type II. Decreased amplitude but no stretching in either of
the septal segments (Figure 2E).

One LBBB patient had no basal or apical ventricular
CSPAMM imaging. One patient was excluded from pat-
tern analysis due to poor basal slice image quality. For the
remaining 10 patients, 6 patients had fully concordant
contractile pattern in the septum in all three slices. Two
had basal and mid slice concordance and two had mid
and apical slice concordance. Type II pattern was more
prevalent in apical slices (50%) compared to 20% of mid
slices and 10% of basal slices. Overall, the mid ventricular
slice was the most representative of septal contraction pat-
tern with 100% concordance with either the basal or api-
cal slice or both. Among LBBB patients, 30% of had Type
Ia, 50% of had Type Ib while 20% had Type II in the mid
ventricular slice. These two Type II patients had QRS dura-
tions of 156 ms and 180 ms respectively. The different
strain patterns cannot be predicted from ECG pattern or
QRS duration in these LBBB patients (Figure 2B, D and
2F).

In addition, Type I pattern was present in the anterior seg-
ment in the mid slice in two of the three Type Ia patients
and two of the five Type Ib patients. All remaining seg-
ments in all three slices had negative εcc during systole.
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Circumferential strain pattern in patients without LBBB 
and healthy subjects
All patients without LBBB and all healthy subjects showed
εcc shortening in all segments throughout systolic contrac-
tion (Figure 3) in all slices at the basal, mid, and apical
ventricular levels. The septal contractile pattern was simi-
lar in these subjects.

Circumferential shortening patterns in ischemic vs. non-
ischemic groups
We found no difference in time to peak εcc in ischemic and
non-ischemic patients stratified by LBBB and non-LBBB.

In three out of four patients with evidence for > 75% scar
in the infarcted walls, there was no circumferential con-
traction (εcc ≈ 0). These three segments were excluded
from timing analysis due to the absence of peak circum-
ferential shortening. All remaining infarct segments were
included in the analysis. One patient with ICM and non-
LBBB had > 75% scar in the anteroseptum, but the εcc in
that segment was not near 0. In Figure 4, we show side by
side the εcc in the anteroseptum and inferoseptum of ICM
and non-ICM patients with Type Ia, Type Ib, and Type II
LBBB patterns.

Table 1: LBBB and non-LBBB patient characteristics:

LBBB (n = 12) Non-LBBB (n = 13) p value

Age (years) 60 ± 10 62 ± 11 0.729

Sex (% male) 83% 77% 0.702

% ICM 33% 46% 0.532

LVEF (%) 27 ± 7 30 ± 7 0.327

LVEDV (ml) 307 ± 60 264 ± 60 0.086

LVESV (ml) 228 ± 56 189 ± 62 0.115

Mitral Regurgitation (ml) 7 ± 12 8 ± 8 0.817

QRS Duration (ms) 161 ± 10 106 ± 16* < 0.0001

NYHA class (median) 2.5 1* 0.003

Hypertension 67% 85% 0.320

Diabetes 25% 31% 0.760

Hyperlipidemia 33% 69% 0.078

Tobacco Use 42% 46% 0.830

ACEI/ARB 100% 92% 0.337

Beta-blocker 100% 85% 0.165

Diuretic 67% 31% 0.078

Aspirin 67% 77% 0.589

Digoxin 42% 8% 0.059

Spironolactone 25% 15% 0.571

± standard deviation. ICM = ischemic cardiomyopathy. LVEF = left ventricular ejection fraction. LVEDV = left ventricular end-diastolic volume. 
LVESV = left ventricular end-systolic volume. NYHA = New York Heart Association Classification. ACEI/ARB = angiotensin converting enzyme 
inhibitor/angiotensin receptor blocker. *p < 0.05.
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Three different septal circumferential strain patterns in patients with LBBBFigure 2
Three different septal circumferential strain patterns in patients with LBBB. AVO marks the opening of aortic valve 
and AVC marks the closure of aortic valve. A. Type Ia. Dyskinesis of the anteroseptum. Inferoseptum εcc shortening is reduced. 
B. Corresponding ECG, QRS = 154 ms. C. Type Ib. Dyskinesis of the entire septum. D. Corresponding ECG, QRS = 150 ms. E. 
Type II. No dyskinesis but reduced septal εcc. F. Corresponding ECG, QRS = 156 ms. Arrows point to presystolic contraction. 
AS = anteroseptum, IS = inferoseptum, and IL = inferolateral wall. AVO = aortic valve opening. AVC = aortic valve closure.
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Septal circumferential strain pattern in patients with non-LBBB (A, B) and healthy (C) subjectsFigure 3
Septal circumferential strain pattern in patients with non-LBBB (A, B) and healthy (C) subjects. All subjects had 
normal contraction patterns with maximum negative circumferential strain reached in the septum earlier than in the inferola-
teral wall. A. Patient with interventricular conduction delay and QRS duration of 146 ms. B. Patient with a normal QRS dura-
tion of 98 ms. C. Healthy subject with a normal QRS duration of 98 ms. AS = anteroseptum, IS = inferoseptum, IL = 
inferolateral wall. AVO = aortic valve opening. AVC = aortic valve closure.

���

���

���

���

��

�

�

� �� ��� ���

���

���

���

���

��

�

�

� �� ��� ���

���

���

���

���

��

�

�

� �� ��� ���

��
	�
	


��
	�
	


��
	�
	


� ! � �

� ! � �

� ! � �

�
��
��

��
�
��
��
���
��
��
���

�

���������

�
��
��

��
�
��
��
���
��
��
���

�
�
��
��

��
�
��
��
���
��
��
���

�

���������

���������

��

��

��



Journal of Cardiovascular Magnetic Resonance 2010, 12:2 http://www.jcmr-online.com/content/12/1/2
Circumferential shortening
A total of 24 of 618 segments (4%) from all subjects and
all slices were excluded from analysis due to poor image
quality. Cardiomyopathy patients showed reduced overall
circumferential shortening (%S) in the mid slice (LBBB 9
± 6%, non-LBBB 10 ± 4% vs. healthy 19 ± 4%) (both p <
0.0001 compared to healthy) and apical slice (LBBB 8 ±
6%, non-LBBB 10 ± 5% vs. healthy 19 ± 5%) (both p <
0.0001 compared to healthy) (Figure 5). Within the mid
slice, in the non-LBBB group, %S was reduced in all seg-
ments compared to healthy controls (all p < 0.0001);
while in the LBBB group, %S was reduced in all segments
except the anterolateral wall as compared to controls. The
LBBB patients had a significant reduction in %S of εcc in
the anteroseptum (3 ± 2% vs. 9 ± 4%) (p = 0.001) and
anterior segment (6 ± 4% vs. 10 ± 2%) (p = 0.009) com-
pared to non-LBBB patients, but not overall (p = 0.20)
(Table 2).

Dyssynchrony
In patients with LBBB compared to non-LBBB or healthy
subjects, there was significantly greater dyssynchrony of
contraction as indicated by greater delays in the opposing

walls IL-AS and AL-IS at all three ventricular levels, and
T12SD (p ≤ 0.002) (Table 3). When comparing non-LBBB
to healthy subjects, only basal IL-AS delay and mid AL-IS
delay were significantly lengthened (p ≤ 0.002). The A-I
time to peak strain had no significant delays in all three
groups.

Interobserver and intraobserver variability
In six randomly selected subjects with 35 evaluable seg-
ments in the mid-ventricular slice, intraobserver variabil-
ity and interobserver variability for peak systolic εcc timing
were 3 ± 7% and 7 ± 11%, respectively. The intraobserver
variability and interobserver variability for systolic εcc %S
were 9 ± 8%, 9 ± 9%, respectively. Both observers on
repeated analysis identified the same contractile patterns.

Discussion
In our study of patients with LBBB pattern and depressed
LV function, we found three types of septal myocardial cir-
cumferential strain patterns. Some patients with LBBB had
severe mechanical dyssynchrony manifested as a specific
contractile pattern with initial presystolic septal contrac-
tion during isovolumic contraction period followed by

All three types of septal contraction pattern can be observed in both ischemic (ICM) and non-ischemic (non-ICM) cardiomyop-athy patientsFigure 4
All three types of septal contraction pattern can be observed in both ischemic (ICM) and non-ischemic (non-
ICM) cardiomyopathy patients. In LBBB Type Ia, only the anteroseptum is dyskinetic. In LBBB Type Ib, both anteroseptum 
and inferoseptum are dyskinetic. In LBBB Type II, neither anteroseptum nor inferoseptum is dyskinetic. AS = anteroseptum, IS 
= inferoseptum.
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dyskinesis (positive εcc) of the interventricular septum
during the entire systole. This pattern was present in the
anteroseptum (Type Ia) in 30% of patients, and in the
entire septum in 50% of patients (Type Ib). The remaining
20% of LBBB patients had a normal contractile pattern,
similar to non-LBBB cardiomyopathy patients and
healthy controls, although the magnitude of contraction
is significantly reduced in both groups of cardiomyopathy
patients compared to healthy controls. All non-septal seg-
ments except four anterior segments in LBBB patients
demonstrated εcc shortening. Our finding of εcc of 16-24%
in normal healthy controls is consistent with literature
findings in the mid-myocardial layer [15].

Detailed studies of healthy human subjects have demon-
strated that the normal mechanical activation pattern
starts at the septum and extends to the inferolateral wall
[18]. We found presystolic mid-myocardial circumferen-
tial shortening (negative εcc) during isovolumic contrac-
tion phase in part or the entire septum in patients with
LBBB, followed by circumferential lengthening (positive
εcc) during systole. This altered pattern with early pre-
systolic contraction and systolic dyskinesis contribute to
increased severity of dyssynchrony. In our cohort of ICM
and non-ICM patients, the presence or absence of LBBB
had a dominating impact on the contractile pattern
regardless of the etiology of the cardiomyopathy. In ICM

Table 2: Comparison of circumferential myocardial strain percent shortening of all three ventricular slices in patients with and without 
LBBB, and healthy subjects.

LBBB (%S) Non-LBBB (%S) Healthy (%S) p(LBBB vs. non LBBB)* p(LBBB vs. healthy)* p(non-LBBB vs. healthy)*

Basal AS 3 ± 2 6 ± 3 13 ± 4 0.005* < 0.0001* 0.0009*

A 9 ± 4 8 ± 4 11 ± 5 0.624 0.285 0.115

AL 17 ± 3 15 ± 2 14 ± 3 0.121 0.066 0.502

IL 16 ± 6 11 ± 4 11 ± 3 0.046 0.027 0.683

I 9 ± 6 7 ± 3 8 ± 2 0.371 0.806 0.296

IS 4 ± 2 6 ± 4 8 ± 3 0.177 0.003* 0.191

Mid AS 3 ± 2 9 ± 4 18 ± 2 0.001* < 0.0001* < 0.0001*

A 6 ± 4 10 ± 2 20 ± 3 0.009* < 0.0001* < 0.0001*

AL 17 ± 4 14 ± 2 20 ± 3 0.071 0.047 = 0.0004*

IL 16 ± 4 12 ± 4 24 ± 3 0.026 < 0.0001* < 0.0001*

I 7 ± 3 7 ± 5 16 ± 4 0.823 < 0.0001* 0.0003*

IS 4 ± 3 7 ± 4 17 ± 3 0.036 < 0.0001* < 0.0001*

Apical AS 5 ± 4 9 ± 4 18 ± 3 0.012* < 0.0001* < 0.0001*

A 6 ± 5 12 ± 5 18 ± 4 0.007* < 0.0001* 0.004*

AL 14 ± 4 14 ± 3 23 ± 5 0.891 0.0003* 0.0003*

IL 16 ± 4 13 ± 4 22 ± 7 0.096 0.022 0.002*

I 6 ± 3 7 ± 5 17 ± 3 0.565 < 0.0001* < 0.0001*

IS 5 ± 4 8 ± 5 16 ± 2 0.095 < 0.0001* 0.0001*

± standard deviation. *with Bonferroni correction for multiple comparisons, p < 0.017 was considered significant. AS = anteroseptum. A = anterior 
wall. AL = anterolateral wall. IL = inferolateral wall. I = inferior wall. IS = inferoseptum.
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patients, the only difference was the presence of akinesis
in regions of transmural infarction in 3 segments. Our
data for circumferential strain demonstrate that there are
significant timing differences in opposing walls (IL-AS,
AL-IS), and T12SD in patients with low EF and LBBB as
compared to the patients with low EF but normal QRS or
IVCD. The prognostic clinical significance of these dyssyn-
chrony patterns to CRT remains to be determined.

In a 2D longitudinal strain by speckle-tracking study by
Carasso et al, dyssynchrony timing was not the only pre-
dictor for CRT success [25]. In their cohort, the majority of
non-responders to CRT had ≥1 segment of "holosystolic
stretching" (dyskinesis) while all except one responder
had no such segments [25]. In a non-responder, the holo-
systolic dyskinetic segment remained dyskinetic after
CRT; in a responder, the early systolic dyskinetic segment
had normal contractile pattern after CRT therapy [25].
Our study also demonstrates the existence of different pat-
tern of contraction within LBBB, which may be as impor-
tant as timing in the assessment of dyssynchrony in
patients with systolic dysfunction. Further investigation is
needed to determine whether the septal contractile pat-
terns impact response to CRT.

This study has several limitations. We did not study
patients with normal EF and LBBB, low EF and RBBB, or a
low EF and narrow LBBB (120-149 ms). In a 2D speckle

tracking study by Miyazaki et al, patients with LBBB and
normal EF had increased opposing wall delays and
increased standard deviation of time to peak longitudinal
strain as compared to normal controls, but the increase
was less than patients with reduced EF and normal QRS
[26]. The patients with reduced EF < 35% and LBBB had
the longest delays [26]. Our findings on circumferential
strain in low EF and LBBB vs. non-LBBB patients are con-
sistent with their results. Patients with different conduc-
tion abnormalities would be important to study in order
to further define and understand the different mechanical
contractile patterns associated with conduction abnor-
malities.

Conclusions
We have demonstrated LBBB in some patients with systo-
lic dysfunction is associated with dyskinesis of the anter-
oseptum or the entire septum, resulting in severe
mechanical dyssynchrony. The strength of myocardial
contraction is significantly reduced in cardiomyopathic
patients regardless of conduction patterns. The recogni-
tion of the presence of different mechanical contraction
patterns within the same conduction abnormality may be
important for the selection of patients for CRT.

List of abbreviations
CMR: cardiovascular magnetic resonance; CRT: Cardiac
resynchronization therapy; HF: heart failure; LV: left ven-

Circumferential shortening magnitude in three ventricular slicesFigure 5
Circumferential shortening magnitude in three ventricular slices. Compared to healthy controls, both the LBBB and 
non-LBBB patients have overall significantly reduced εcc %S in mid and apical ventricular slices. In the basal slice, non-LBBB 
patients had significantly reduced εcc %S compared to healthy controls but not the LBBB patients. %S = % shortening.
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tricle; LBBB: left bundle branch block; NYHA: New York
Heart Association; ICM: ischemic cardiomyopathy; SSFP:
steady state free precession; TE: echo time; TR: repetition
time; FOV: field of view; LGE: late gadolinium enhance-
ment; CSPAMM: complementary spatial modulation of
magnetization; IL-AS: inferolateral to anteroseptal; AL-IS:
anterolateral to inferoseptal; A-I: anterior to inferior;
IVCD: interventricular conduction delay; T12SD: Stand-
ard deviation of time to peak systole circumferential strain
in the 12 segments of basal and mid ventricular slices; %S:
percent shortening.
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Table 3: Comparison of dyssynchrony measurements in three ventricular slices in patients with and without LBBB, and healthy 
subjects.

LBBB Non-LBBB Healthy p(LBBB vs. non LBBB)* p(LBBB vs. healthy)* p(non-LBBB vs. healthy)*

Basal IL-AS (ms)
(range)

391 ± 37 (325-425) 136 ± 79
(0-325)

45 ± 23
(0-75)

< 0.0001* < 0.0001* 0.001*

AL-IS (ms)
(range)

284 ± 119 (150-425) 106 ± 54
(0-200)

68 ± 64
(0-175)

0.001* 0.0002* 0.171

A-I (ms)
(range)

122 ± 145 (0-400) 83 ± 85
(0-225)

68 ± 32
(0-100)

0.478 0.272 0.594

Mid IL-AS (ms)
(range)

353 ± 79 (245-425) 82 ± 44
(25-140)

69 ± 39
(0-125)

< 0.0001* < 0.0001* 0.451

AL-IS (ms)
(range)

283 ± 108 (125-400) 114 ± 37
(25-175)

50 ± 46
(0-125)

0.0002* < 0.0001* 0.002*

A-I (ms)
(range)

168 ± 164 (0-475) 69 ± 46
(0-175)

64 ± 55
(0-150)

0.097 0.084 0.791

Apical IL-AS (ms)
(range)

278 ± 118 (140-425) 61 ± 47
(0-325)

38 ± 41
(0-75)

< 0.0001* < 0.0001* 0.260

AL-IS (ms)
(range)

224 ± 118 (150-425) 70 ± 63
(0-200)

54 ± 24
(0-175)

0.002* 0.001* 0.437

A-I (ms)
(range)

96 ± 110 (0-300) 48 ± 43
(0-150)

34 ± 20
(0-75)

0.200 0.093 0.601

T12SD (ms) 164 ± 30 (131-207) 70 ± 17
(51-103)

65 ± 17
(44-97)

< 0.0001* < 0.0001* 0.467

Data presented as absolute time difference between the two walls ± standard deviation. *with Bonferroni correction for multiple comparisons, p < 
0.017 was considered significant. IL-AS = inferolateral wall to anteroseptal wall. AL-IS = anterolateral wall to inferoseptal wall. A-I = Anterior wall to 
inferior wall.
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