
GigaScience, 10, 2021, 1–14

doi: 10.1093/gigascience/giab018
Technical Note

TE CHNICAL NO TE

Rapid development of cloud-native intelligent data
pipelines for scientific data streams using the HASTE
Toolkit
Ben Blamey 1,*, Salman Toor 1, Martin Dahlö 2,3, Håkan Wieslander 1,
Philip J. Harrison 2,3, Ida-Maria Sintorn 1,3,4, Alan Sabirsh 5,
Carolina Wählby 1,3, Ola Spjuth 2,3,† and Andreas Hellander 1,†

1Department of Information Technology, Uppsala University, Lägerhyddsvägen 2, 75237 Uppsala, Sweden;
2Department of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, 75237, Uppsala, Sweden;
3Science for Life Laboratory, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden; 4Vironova AB,
Gävlegatan 22, 11330 Stockholm, Sweden and 5Advanced Drug Delivery, Pharmaceutical Sciences, R&D,
AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
∗Correspondence address: Ben Blamey, Department of Information Technology, Uppsala University, Box 337, 75105 Uppsala, Sweden. E-mail:
ben.blamey@it.uu.se http://orcid.org/0000-0003-1206-1428
†Co–senior authors.

Abstract

Background Large streamed datasets, characteristic of life science applications, are often resource-intensive to process,
transport and store. We propose a pipeline model, a design pattern for scientific pipelines, where an incoming stream of
scientific data is organized into a tiered or ordered “data hierarchy”. We introduce the HASTE Toolkit, a proof-of-concept
cloud-native software toolkit based on this pipeline model, to partition and prioritize data streams to optimize use of
limited computing resources. Findings In our pipeline model, an “interestingness function” assigns an interestingness
score to data objects in the stream, inducing a data hierarchy. From this score, a “policy” guides decisions on how to
prioritize computational resource use for a given object. The HASTE Toolkit is a collection of tools to adopt this approach.
We evaluate with 2 microscopy imaging case studies. The first is a high content screening experiment, where images are
analyzed in an on-premise container cloud to prioritize storage and subsequent computation. The second considers edge
processing of images for upload into the public cloud for real-time control of a transmission electron microscope.
Conclusions Through our evaluation, we created smart data pipelines capable of effective use of storage, compute, and
network resources, enabling more efficient data-intensive experiments. We note a beneficial separation between scientific
concerns of data priority, and the implementation of this behaviour for different resources in different deployment
contexts. The toolkit allows intelligent prioritization to be `bolted on’ to new and existing systems – and is intended for use
with a range of technologies in different deployment scenarios.

Keywords: stream processing; interestingness functions; HASTE; tiered storage; image analysis

Received: 14 September 2020; Revised: 26 January 2021; Accepted: 23 February 2021

C© The Author(s) 2021. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any
medium, provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0003-1206-1428
http://orcid.org/0000-0003-0302-6276
http://orcid.org/0000-0001-5447-9465
http://orcid.org/0000-0002-6289-7285
http://orcid.org/0000-0003-4046-9017
http://orcid.org/0000-0002-8307-7411
http://orcid.org/0000-0001-5310-0281
http://orcid.org/0000-0002-4139-7003
http://orcid.org/0000-0002-8083-2864
http://orcid.org/0000-0001-7273-7923
mailto:ben.blamey@it.uu.se
http://orcid.org/0000-0003-1206-1428
http://orcid.org/0000-0003-1206-1428
http://creativecommons.org/licenses/by/4.0/

2 Rapid development of cloud-native intelligent data pipelines using the HASTE Toolkit

Introduction

Large datasets are both computationally and financially expen-
sive to process, transport, and store. Such datasets are ubiqui-
tous throughout the life sciences, including imaging, where dif-
ferent types of microscopy are used to, e.g., observe and quantify
effects of drugs on cell morphology. Modern imaging techniques
can generate image streams at rates of up to 1 TB/hour [1].
Clearly, the processing, storage, and communication of these
images can be slow, resource-intensive, and expensive, effec-
tively becoming a bottleneck to scale experiments in support
of data-driven life science. Another prominent example is hu-
man genome sequencing, where the global storage requirement
is predicted to be between 2 and 40 EB (1 exabyte = 1018 bytes) by
2025, and with modern techniques generating data at the order
of 60 GB/h [2]. Similarly, in large-scale modelling, a single com-
putational experiment in a systems biology context can gener-
ate terabytes of data [3].

This work is motivated by some of the most critical aspects of
scalable scientific discovery for spatial and temporal image data.
There are 2 primary concerns: (i) not all data are equally valu-
able. With datasets outgrowing resources, data storage should
be prioritized for data that are most relevant (or interesting) for
the study at hand and poor-quality, or uninteresting, data (e.g.,
out-of-focus images) should be discarded or archived; (ii) when
resources are limited or if decisions are required in real time,
we have to be smart about how the data are (pre)processed and
which subsets of the data are stored for more detailed (and po-
tentially computer-intensive) analysis, prioritizing more inter-
esting subsets of the data.

The general challenges of management and availability of
large datasets are often popularized and summarized through
the so-called “Vs of big data.” Initially, the focus was on the 3
Vs: velocity, volume, and variety, but this list has since grown
with the increasing number of new use cases to also include Vs
such as veracity, variability, virtualization, and value [4]. During
the past decade, a number of frameworks have been designed to
address these challenges, offering reliable, efficient, and secure
large-scale data management solutions. However, according to a
white paper published by IDC [5], only 30% of the generated data
is in the form that it can be efficiently analyzed. This highlights
the current gap between large-scale data management and ef-
ficient data analysis. To close this gap, it is essential to design
and develop intelligent data management frameworks that can
help organize the available datasets for efficient analyses. In this
work, we address this challenge by proposing a model that helps
a developer to create a data pipeline able to make online de-
cisions about individual data objects’ priority based in actual
information content, or interestingness, rather than traditional
metadata (we use the generic term “data object” but note that
analogous terms in various contexts include document, image,
message, and blob).

A range of existing work in life science applications has
discussed the challenges of transporting, storing, and an-
alyzing data, often advocating a streamed approach. Rine-
hart et al. [6] explicitly discuss the constraints of cloud up-
load bandwidth, and its effect on overall throughput for mass
spectrometry–based metabolomics. In their application, upload-
ing large datasets from the instrument to the cloud represents a
bottleneck and they advocate a stream-based approach with on-
line analysis where data is processed when it arrives, rather than
waiting for upload of the complete dataset. Hillman et al. [7] de-

veloped a stream-based pipeline with Apache Flink and Kafka
for processing proteomics data from liquid chromatography–
mass spectrometry. The authors note the advantages of a real-
time approach to analysis: “a scientist could see what is hap-
pening in real-time and possibly stop a problematic experiment
to save time.” Zhang et al. [8] developed a client/server applica-
tion for interactive visualization of mass spectrometry spectra,
adopting a stream-based approach to achieve better user inter-
activity. In genomics, Kelleher et al. [9] presented the htsget pro-
tocol to enable clients to download genomic data in a more fine-
grained fashion and allow for processing chunks as they come
from the sequencer. Cuenca-Alba et al. [10] note that a single
electron microscope can produce 1 TB of images per day, requir-
ing a minimum of 1,000 CPU hours for analysis. Adapting their
Scipion software [11] (intended for cryo-electron microscopy im-
age analysis) for use in the cloud, they discuss the challenges
of data transfer to/from the cloud, comparing transfer rates for
different providers. Wang et al. [12] propose excluding outliers
in streaming data, using an “Outlier Detection and Removal” al-
gorithm that they evaluate on 5 bioinformatics datasets.

Rather than handling 1 particular type of data or dealing
with a specific data pipeline, the aim of the present work is
to distill effective architectural patterns into a pipeline model
to allow for repeatable implementations of smart systems ca-
pable of online resource prioritization in scenarios involving
large-scale data production, such as from a scientific instru-
ment. Computers in the laboratory connected directly to such
an instrument, used together with cloud resources, are an ex-
ample of edge computing (see [13]). Under that paradigm, com-
putational resources outside the cloud (such as mobile devices,
and more conventional compute nodes) are used in conjunction
with cloud computing resources to deliver benefits to an applica-
tion such as reduced cost, better performance, or improved user
experience. General computer science challenges include secu-
rity, deployment, software complexity, and resource manage-
ment/workload allocation. In our context, the streams of large
data objects generated by scientific instruments create partic-
ular challenges within the edge computing paradigm because
the data often need to be uploaded to the cloud for process-
ing, storage, or wider distribution. Whilst limited compute re-
sources at the edge are often insufficient for low-latency pro-
cessing of these datasets, intelligent workload allocation can im-
prove throughput (as discussed in Case Study 2).

In this article we propose a pipeline model for partitioning
and prioritizing stream datasets into “data hierarchies” (DHs)
according to an “interestingness function” (IF) and accompany-
ing “policy,” applied to objects in the stream, for more effec-
tive use of hardware (in edge and cloud contexts). We present
this as a general approach to mitigating resource management
challenges, with a focus on image data. Our model allows for
autonomous decision making, while providing a clear model
for domain experts to manage the resources in distributed
systems—by encoding domain expertise via the IF. To that end,
this article introduces the HASTE Toolkit , intended for develop-
ing intelligent stream-processing pipelines based on this model.
Two case studies presented in this article document how mi-
croscopy pipelines can be adapted to the HASTE pipeline model.

Whilst the core ideas of intelligent data pipelines in HASTE
are generally applicable to many scenarios involving scientific
datasets, we here focus on case studies involving image streams,
in particular from microscopy.

Blamey et al. 3

Background: Stream Processing and Workflow
Management

A fundamental component to the pipelines presented in this
article is a stream-processing engine. Systems for stream pro-
cessing are generally concerned with high-frequency message
influx, and those objects can be small in size, such as a few
kilobytes. Examples of such data objects include sensor read-
ings from Internet of Things (IoT) devices (such as MQTT mes-
sages), those generated from telecoms, web, and cloud appli-
cations, e-commerce and financial applications, or the aggrega-
tion and analysis log entries. Well-known examples of mature,
enterprise-grade frameworks for cloud-based stream processing
in these contexts include Apache Flink, Apache Spark Stream-
ing, and Apache Log Flume. Resilience and fault tolerance are
key features of these frameworks (often achieved with various
forms of redundancy and replication). These frameworks are
commonly used in conjunction with various queuing applica-
tions, e.g., Apache Kafka, and vendor-specific products such as
AWS Kinesis; these also include basic processing functionality.

Whilst the maturity, support, documentation, features, and
performance (order of megahertz message-processing through-
put) boasted by these frameworks is attractive for scientific com-
puting applications, streamed scientific data (and their process-
ing) tend to have different characteristics: data objects used in
scientific computing applications (such as microscopy images,
and matrices from other scientific computing domains) can be
larger in size, which can create performance issues when inte-
grated with these enterprise frameworks described above [15].
For example, data object sizes in imaging applications could be
a few megabytes.

To address this gap, we have previously developed and re-
ported on a stream-processing framework focusing on scientific
computing applications, HarmonicIO [16]. HarmonicIO sacrifices
some of these features and is intended for lower-frequency ap-
plications (towards kilohertz, not megahertz), and was able to
achieve better streaming performance under some conditions
in 1 study for larger message sizes [15]. The HASTE Toolkit has
been developed with images as the primary use case, and for this
reason HarmonicIO is the default supported streaming frame-
work in the toolkit. However, we stress here that in principle any
streaming framework can be used.

Furthermore, under the emerging edge computing paradigm,
there are some stream-processing frameworks available, often
focusing on traditional IoT use cases. Being in their infancy, ef-
fective automated scheduling and operator placement in hy-
brid edge/cloud deployment scenarios remains an open research
challenge for this context. Within this area, there is significant
research effort concerning real-time video analysis, where im-
ages collected at the edge (from cameras) are streamed to the
cloud for analysis—some degree of lossy compression is typi-
cally used in such applications.

By contrast, “workflow” frameworks are a broad class of soft-
ware frameworks intended to facilitate the development of data-
processing pipelines. There are a large number of such frame-
works (>100 are listed in [17]). In such frameworks, one gen-
erally defines processing operations (often as the invocation of
external processes), which are triggered by events such as the
creation of a new file on disk, or a commit being pushed to a
Git repository. Such frameworks generally handle large num-
bers of files, of arbitrary size, and often include some degree
of fault tolerance. But in contrast to stream-processing frame-
works, they may lack functionality specific for streams, such as
window operations, more complex scheduling, and placing of

operators, and are generally intended for higher latency and/or
lower ingress rates (than the 100 kHz and up range of the stream-
processing frameworks described above), and are often file sys-
tem centric, with objects being written back to disk between
each processing step.

The HASTE Toolkit attempts to fill a gap between these 2
classes of software (stream-processing frameworks and work-
flow management systems): applications where latency and
high data object throughput are important (and use of a file sys-
tem as a queuing platform is perhaps unsuitable for that reason)
but not as high as in some enterprise stream-processing appli-
cations; whilst being flexible enough to accommodate a broad
range of integration approaches, processing steps with exter-
nal tools, and the large message sizes characteristic of scientific
computing applications.

The priority-driven approach of the HASTE pipeline
model reconciles the resource requirements of life science
pipelines (characterized by streams relatively of large mes-
sage, with expensive per-message processing steps) with
the requirements for low latency and high throughput, al-
lowing for real-time human supervision, inspection, and
interactive analysis—as well as real-time control of laboratory
equipment.

HASTE Pipeline Model

The key ideas of the HASTE pipeline model are the use of IFs
and a policy to autonomously induce DHs. These structures are
then used to manage and optimize different objectives such as
communication, processing, and storage of the datasets. The
HASTE Toolkit enables rapid constructions of smart pipelines
following this model. Central to the approach is that decisions
are made on the basis of actual data content rather than on
a priori metadata associated with the data objects. The fol-
lowing subsections introduce the components of the pipeline
model.

Overview

Figure 1 illustrates the proposed HASTE model and logical archi-
tecture. One or more streaming data sources generate streams of
data objects. The stream then undergoes feature extraction (rel-
evant to the context)—this data extraction can be performed in
parallel, as an idempotent function of a single object. The inten-
tion is that computationally cheap initial feature extraction can
be used to prioritize subsequent, more expensive, downstream
processing.

An IF computes an interestingness score for each object from
these extracted features. This computation can be a simple pro-
cedure, e.g., to nominate 1 of the extracted features as the inter-
estingness score associated with the data object. In more com-
plex cases it can also be a machine learning model trained ei-
ther before the experiment or online during the experiment that
generates the stream. Finally, a policy is applied that determines
where to store the object within a DH, or whether to send it for
further downstream processing, based on the interestingness
scores.

Interestingess functions

The IF is a user-provided function, to be applied to the extracted
features from the data objects in the stream. The purpose of the
IF is to associate an interestingness score with each object. Ex-
amples of IFs in image analysis contexts could be features re-

4 Rapid development of cloud-native intelligent data pipelines using the HASTE Toolkit

Figure 1: Logical architecture for the HASTE pipeline model. A stream of data objects is generated by 1 or more streaming sources (such as a microscope). These objects

undergo online, automated feature extraction, and an IF is applied with the extracted features as input. This associates an interestingness score with each object in
the stream. A user-defined policy is then used to organize the data objects into a data hierarchy to be used for optimizing subsequent communication, storage, and
downstream processing.

lating to image quality, detected phenomena in images, and so
forth.

The computed IF score is used for determining priority for
subsequent processing, communication, and/or storage of that
object. In this sense, IFs have some similarities to the con-
cept of document (data object) “hotness” in tiered storage con-
texts, where a more recently accessed “hot” document would
be stored in a high-performance tier. Whilst much of that line
of work uses only file system information, other work takes
some consideration of the application itself; e.g., Chan and
Tobagi [18] model access as a Zipf distribution (for a review
see [3]).

Our present work generalizes the concept of hotness in a
number of ways: (i) our IFs always take consideration of se-
mantics at the level of the scientific application—in the case
of microscopy imaging this could be image focus or quality
features—perhaps combined with business logic for particular
color channels, etc.—rather than file system semantics (such
as file access history). This approach allows an immediate,
online decision about the object’s interestingness rather then
inferring it from subsequent access patterns. (ii) Tiered stor-
age is just 1 potential application of HASTE: we use IFs to
prioritize data objects for storage, compute, and communica-
tion. (iii) With HASTE, the intention is that users configure IFs
themselves, together with the associated policy. Currently, the
output of the IF is scalar valued. This is intended to ensure
smooth integration in cases where the IF is a machine learnt
model, outputting a probability, rank, or some other statistical
measure.

Furthermore, we propose general software abstractions for
these ideas and demonstrate the potential benefits of online
interestingness-based prioritization in 2 case studies: both in
terms of the optimization of various resources (compute, com-
munication, storage), but also from an experimental and scien-
tific viewpoint—selecting the best data (or outliers) for inspec-
tion and further analysis.

Policies for inducing data hierarchies

In applications using tiered storage, more interesting data ob-
jects would be saved in higher performance, more expensive
tiers—readily accessible for downstream processing (while less
interesting objects could be cheaply archived)—explored in Case
Study 1. Whereas, in edge computing contexts, we may want
to prioritize data objects for computation at the cloud edge,
to make more effective use of that resource—explored in Case
Study 2. In both cases we refer to these structures as DHs. In
a HASTE pipeline DHs are “induced” within the source data by
the IF and a policy. The policy takes the interestingness score as
input and applies a set of rules to determine how an object is
placed within the DH, e.g., its allocation within a tiered storage
system; or where it should be stored or processed downstream.
Listing 1 shows how a user can define a policy, a simple dic-
tionary mapping intervals of interestingness scores to the tiers
(which are configured separately). In this article we demonstrate
2 forms of policy: the aforementioned interval model (in which
the tier is determined directly from the interestingness score,
Case Study 1) and a priority-based policy, in which data objects
are queued (according to their interestingness) for upload and
processing (as in Case Study 2).

A benefit of the HASTE pipeline model is the clear role
separation—all the domain-specific knowledge is effectively en-
capsulated within the IF whilst the choice of how to form DHs
and optimize storage tier allocation is encapsulated entirely
within the policy. This allows the scientific question of what
constitutes an interesting data object, and the computing infras-
tructure, or indeed, budgetary, concerns of how to make best use
of computing resources (including storage), to be separated and
worked on by team members with different expertise. Impor-
tantly, this decoupling allows the possibility for IFs to be reused
among scientists, and between contexts where the data may be
similar but the dataset size, and available computing infrastruc-
ture, may be different.

Blamey et al. 5

The HASTE Toolkit

The HASTE Toolkit implements the core functionality needed
for rapidly constructing smart pipelines based on the proposed
model.

HASTE Storage Client

The HASTE Storage Client (HSC) serves as the main entry point
for the user. It is configured with the IF, the policy, and the con-
figuration associated with the tiers, and processes each data ob-
ject arriving in the stream. It can be installed as a stand-alone
Python module (see https://github.com/HASTE-project/HasteSt
orageClient, version 0.13 was used for this study). It allows a DH
to be realized within HASTE as tiered storage. It is a library with
the core prioritization functionality: it invokes the IF on incom-
ing data objects and applies the policy to form the data hierar-
chy. The extracted features are used to compute interestingness
scores, which, along with other metadata and logging informa-
tion, are saved in a database by the HSC. It is intended to be
adopted within the Python-based stream-processing framework
of choice; an example can be found at https://github.com/HAS
TE-project/HasteStorageClient/blob/master/example.py. An ex-
isting pipeline can be adapted to use HASTE according to the
following steps:

� Install the HSC from PyPI pip install

haste-storage-client or from source.
� Configure 1 or more storage tiers (on a HASTE-compatible

storage platform; at the time of writing, supported platforms
are OpenStack Swift, Pachyderm [19], and POSIX-compatible
filesystems).

� Define an IF for the context—it can use spatial, temporal, or
other metadata associated with the data object.

� Run feature extraction on the object prior to invoking the
HSC.

� Deploy a MongoDB instance. The scripts https://github.com
/HASTE-project/k8s-deployments/ can be adapted for this
purpose.

Other key components of the HASTE Toolkit

This section lists other various components in the HASTE Toolkit
and describes how they relate to the key ideas of IFs, DHs, and
policies.

The HASTE Agent. A command line application (developed
for the microscopy use case in Case Study 2), which uploads new
documents on disk to the cloud, whilst performing intelligently
prioritized pre-processing of objects waiting to be uploaded, to
minimize the overall upload duration (see https://github.com
/HASTE-project/haste-agent; v0.1 was used for this study). The
functionality of this tool is discussed in detail in Case Study 2.

The HASTE Gateway. Cloud gateway service, which receives
data objects in the cloud and forwards them for further process-
ing. it is deployed as a Docker container (see https://github.com
/HASTE-project/haste-gateway; v0.10 was used in this study).

The HASTE Report Generator. An auxiliary command line
tool for exporting data from the Extracted Features Database (see
https://github.com/HASTE-project/haste-report-generator).

The Extracted Features Database. MongoDB is used by the
HSC to hold a variety of the metadata: extracted features, inter-
estingness scores, and tier/DH allocation.

Tiered Storage. Tiered storage is 1 way that a DH can be re-
alized. The HSC allows existing storage to be organized into a

tiered storage system, where tiers using various drivers built
into the HSC can be configured. In Case Study 2 the tiers are file
system directories, into which image files are binned according
to the user-defined policy. In other deployments, less expensive
disks/cloud storage could be used for less interesting data. Note
that the policy can also send data deemed unusable (e.g., qual-
ity below a certain threshold) directly to trash. Tiered storage
drivers are managed by the HASTE storage client.

Our GitHub project page (https://github.com/HASTE-proje
ct) showcases other components relating to various example
pipelines developed within the HASTE project, including IFs de-
veloped for specific use cases, as well as scripts for automated
deployment.

Whilst the supporting services (MongoDB, RabbitMQ) are
proven industry-grade applications, we acknowledge that the
HASTE components lack some features for reliable use in pro-
duction settings, e.g., the business logic for the generation of a
new HASTE Stream ID (which would be perhaps integrated with
laboratory automation software) and more control over what
happens to images that are corrupt or otherwise cannot be pro-
cessed.

Experiments and Results

In this section we illustrate the utility of the toolkit in 2 real-
world case studies chosen to demonstrate how the HASTE
pipeline model can be realized in practice to optimize resource
usage in 2 very different infrastructure and deployment scenar-
ios. Table 1 summarizes the objectives of the case studies.

Case Study 1 concerns data management for a high-content
screening experiment in a scientific laboratory at Uppsala Uni-
versity, Sweden. A small on-premises compute cluster running
Kubernetes [20] provides the necessary infrastructure to handle
the immediate data flow from the experiment, but both storage
capacity and manual downstream analysis are concerns. We use
the HASTE Toolkit to build a pipeline that captures the input data
as an image stream and bins images into tiers according to im-
age quality. The overall goal is to organize the images into tiers
for subsequent processing, both to ensure that the best images
are allocated to high-performance storage for high-performance
analysis and to help the scientist prioritize manual work to ap-
propriate subsets of data.

Case Study 2 concerns processing an image stream from
a transmission electron microscope (TEM). During streaming,
there is an opportunity to pre-process images using a desktop
PC co-located with the microscope, before being uploaded for
stream processing in the cloud. This is an example of an edge
computing [13] scenario, where very limited but low-latency lo-
cal infrastructure is leveraged together with a large cloud infras-
tructure. The ultimate goal is real-time control of the microscope
(see Fig. 6), and consequently end-to-end latency is a key con-
cern. This latency is constrained by image upload time. Here we
develop a pipeline using the HASTE tools with an IF that predicts
the effectiveness of pre-processing individual images at the edge
prior to cloud upload. See Table 1 for an overview of the case
studies.

Case Study 1—Smart data management for
high-content imaging experiments

This case study focuses on adoption of the HASTE Toolkit in a
high-content microscopy setting—the input is a stream of im-
ages arriving from an automated microscope. This deployment
uses an on-premises compute cluster running Kubernetes with

https://github.com/HASTE-project/HasteStorageClient
https://github.com/HASTE-project/HasteStorageClient/blob/master/example.py
https://github.com/HASTE-project/k8s-deployments/
https://github.com/HASTE-project/haste-agent
https://github.com/HASTE-project/haste-gateway
https://github.com/HASTE-project/haste-report-generator
https://github.com/HASTE-project

6 Rapid development of cloud-native intelligent data pipelines using the HASTE Toolkit

Table 1: Overview of the 2 case studies used in this article

Parameter Case Study 1—Cell profiling Case Study 2—Real-time processing with a TEM

Application High-content imaging Real-time control of microscopy
Priorities Storage Communication and compute
Goal Tiered storage allocation Reduce end-to-end latency for cloud upload
Deployment setting On-premises cloud, Kubernetes Cloud edge & public cloud (SNIC)
Interestingness function (IF) CellProfiler Pipeline—image quality Estimation of size reduction (sampling, splines)
Policy Fixed interestingness thresholds Dynamic interestingness rank

a local NAS. While we want online analysis, we consider this a
“high-latency” application—images can remain unprocessed for
some seconds or minutes until compute resources are available.
This is a contrast to Case Study 2, where low-latency processing
is a goal.

Image quality is an issue in microscopy: images can have de-
bris, can be out of focus, or can be unusable for some other rea-
son relating to the experimental set-up. Such images can disrupt
subsequent automated analysis and are distracting for human
inspection. Furthermore, their storage, computation, and trans-
portation have avoidable performance and financial costs.

For this case study, the HASTE Toolkit is used to prioritize
storage. The developed IF is a CellProfiler pipeline performing
“out of focus” prediction using the imagequality plugin [21]. The
policy is a fixed threshold used to bin images into a DH according
to image quality.

Figure 2 illustrates the key components of the architecture:

� Client—monitors the source directory for new image
files, adding the name of each file to the queue (see
https://github.com/HASTE-project/cellprofiler-pipeline/tree
/master/client; v3 was used for this study).

� Queue—a RabbitMQ queue to store filenames (and associated
metadata). Version 3.7.15 was used for this study.

� Worker—waits for a filename message (on the queue), runs
a CellProfiler pipeline on it, and computes an interesting-
ness score from the CellProfiler features (according to a user-
defined function) (see https://github.com/HASTE-project/cel
lprofiler-pipeline/tree/master/worker; v3 was used for this
study).

The deployment scripts for Kubernetes and Helm used to de-
ploy these services for this study are available at https://github
.com/HASTE-project/k8s-deployments. To replicate the results,
follow the steps in the readme file.

The image, together with its interestingness score and meta-
data, is passed to the HASTE Storage Client, which allocates
the images to Tiered Storage/DH and saves metadata in the
Extracted Feature Database. Each image is processed indepen-
dently, which simplifies scaling.

The HASTE Toolkit simplifies the development, deployment,
and configuration of this pipeline—in particular, the interac-
tion between the file systems used in the input image stream
and archive of the processed images. When using our image-
processing pipeline, user effort is focused on (i) defining a suit-
able IF and (ii) defining a policy that determines how the out-
put of that function relates to DH allocation (storage tiers). Both
of these are declared within the Kubernetes deployment script.
When developing the pipeline itself, one is able to provide the
interestingness score (the output of the IF) and the policy as ar-
guments to the HASTE tools, and delegate responsibility to ap-
plying the policy (with respect to the storage tiers), recording all
associated metadata to the Extracted Feature Database.

In this case study, the client, queue, and workers are all de-
ployed from Docker images. However, use of neither Docker or
Kubernetes is required for HASTE. Auto-scaling is configured for
the workers: they are scaled up when processing images and
scaled back down again when idle. A message containing the im-
age filenames (and other metadata) is queued, but the file con-
tent is read from the NAS for processing and tiering.

The code for the worker is an extension of Distributed-
CellProfiler (released as part of CellProfiler v3.0; version 3.1.8 was
used for this study) [22], which runs within AWS [23]. The key
benefit of our containerized system is that because it runs in
Docker and is not dependent on AWS services, it can be used
for local deployments in laboratory settings, so that images do
not need to be uploaded to the public cloud for processing. Al-
ternatively, our system can be used with any cloud comput-
ing provider able to host Docker containers. We use the open-
source message broker RabbitMQ in place of Amazon SQS (sim-
ple queue service). Our Kubernetes deployment scripts handle
the necessary configuration, and a benefit of RabbitMQ is that it
has a built-in management web GUI. A helper script is provided
to configure the credentials for the management GUI.

Evaluation
For validation of this case study we simulated analysis and tier-
ing using a high-content screening dataset previously collected
in the laboratory, consisting of 2,699 images of cortical neuronal
cells, imaged with an ImageXpress XLS; the dataset is avail-
able at [24]. In doing so, we demonstrate that our system is
able to handle a large number of images. To simulate the mi-
croscope, the images were copied into the source directory, trig-
gering messages from the client, which were read by workers
to analyze the images (with CellProfiler) to extract the relevant
features from the results, apply the IF, and allocate them to
the tiers according to the policy. Running in our laboratory Ku-
bernetes environment, 17 workers were able to process images
simultaneously.

We use the PLLS (Power Log Log Slope) feature as the basis
of our interestingness score because it has been shown to be a
robust measure of image focus [25]. In this case study, we use
the logistic function f as an IF, applying it to the PLLS feature x,
to compute the interestingness score. The logistic function has
output in the range (0,1):

f (x) = 1
1 + e−k(x−x0)

.

The PLLS values will depend on a number of factors (such
as magnification, number of cells, stainings, and exposure
times). The parameters of this IF can be chosen to fit the
modality, based on a sample of pre-images for calibration. In
this case, we chose (k = 4.5, x0 = −1.4). The policy is de-
fined to map the interestingness score in the intervals (i/4, (i

https://github.com/HASTE-project/cellprofiler-pipeline/tree/master/client
https://github.com/HASTE-project/cellprofiler-pipeline/tree/master/worker
https://github.com/HASTE-project/k8s-deployments

Blamey et al. 7

Figure 2: Architecture for Case Study 1. In this case study, the DH is realized as storage tiers. Images streamed from the microscope are saved to disk (network attached

storage [NAS]). This disk is polled by the “client,” which pushes a message about the new file to RabbitMQ. Workers pop these messages from the queue, analyze the
image, and move it to the storage tiers configured in the data hierarchy, using the HASTE Storage Client, configured with an appropriate IF and policy. Icons indicate
the components running as Kubernetes “pods.”

+ 1)/4) for i ∈ (0, 1, 2, 3) to the respective storage tiers. Fig-
ure 3 shows histograms of the PLLS feature and interestingness
score.

For this evaluation, these tiers were simply directories on
disk. Any storage system compatible with the HSC could be used;
the key idea is that different storage platforms (with different
performance and cost) can be used for the different tiers. In this
case, we simply use the tiers as a convenient way to partition
the dataset for further analysis and inspection. Figure 4 shows
examples of the images according to tiers, and Table 2 shows the
results.

interestingness function(features):

plls = features[’PLLS’]

int score = 1/(1 + exp(-(4.5) ∗ (plls - (-1.4))))

return int score

See: https://github.com/HASTE-project/cellprofiler-

pipeline/blob/master/worker/haste/pipeline/worker/Logi

sticInterestingnessModel.py

storage policy:

[[0., 0.25, tierD],

[0.25, 0.50, tierC],

[0.50, 0.75, tierB],

[0.75, 1.00, tierA]]

See: https://github.com/HASTE-project/k8s-deploymen

ts/blob/master/pipeline worker.yaml

Listing 1: Pseudocode for image tier placement (Case Study
1). The IF is the logistic function, applied to the previously ex-
tracted PLLS feature. The policy shows thresholds for the differ-
ent tiers.

Case Study 2—Prioritizing analysis of TEM images at
the cloud edge

This case study is concerned with the prioritized processing of
a stream of images from a microscope (according to an IF), ap-
plied to a hybrid edge/cloud stream-processing deployment con-
text. In this example, we show how the HASTE tools can facili-
tate better use of constrained upload bandwidth and edge com-
pute resources. The image stream comes from MiniTEMTM, a
25-keV TEM [26] (Vironova, Sweden), connected to a desktop PC
from which the microscope is operated and the image stream re-
ceived, via proprietary driver software. The stream-processing
application pre-processes the TEM images locally (i.e., at the
cloud edge), to reduce their image size, with the effect of re-
ducing their upload time to the cloud and hence the end-to-end
processing latency.

The purpose of the pipeline is to automate a typical workflow
for TEM analysis, which proceeds as follows: a sample is loaded
into the microscope (in this case a tissue sample), and the oper-
ator performs an “initial sweep” over the sample at low magni-
fication to locate target (i.e., interesting) regions of the sample.
In the conventional workflow, the search for target areas of the
sample is done by human inspection. The operator then images
identified target areas of the sample at higher magnification for
subsequent visual/digital analysis.

Automating this process entails the detection of target re-
gions of the sample using an automated image-processing
pipeline, based on a set of images from the initial sweep. Such
a pipeline would output machine-readable instructions to di-
rect the microscope to perform the high-magnification imaging,
reducing the need for human supervision of sample imaging.
The image-processing pipeline used to detect target regions can
be costly and slow and could hence preferably be performed in

https://github.com/HASTE-project/cellprofiler-pipeline/blob/master/worker/haste/pipeline/worker/LogisticInterestingnessModel.py
https://github.com/HASTE-project/cellprofiler-pipeline/blob/
https://github.com/HASTE-project/k8s-deployments/blob/master/pipeline_worker.yaml

8 Rapid development of cloud-native intelligent data pipelines using the HASTE Toolkit

Figure 3: Histograms of the PLLS feature scores (top), and when converted to an interestingness score (bottom), by application of the Logistic Function (the IF for Case
Study 1, middle). The vertical lines on the bottom plot indicate tier boundaries configured in the policy; cf. example images in Fig. 4.

Table 2: Image allocation for Case Study 1

Tier Image count Data (MB)

A 726 6,789
B 731 6,836
C 606 5,667
D 636 5,947
Total 2,699 25,239

Blamey et al. 9

Figure 4: Example images from the high-content screening dataset (Case Study 1), according to automatically assigned tier. Tier A is the most in-focus, with the highest
PLLS feature values and interestingness scores.

the cloud. Performing image processing in the cloud has sev-
eral advantages: it allows short-term rental of computing re-
sources without incurring the costs associated with up-front
hardware investment and on-premises management of hard-
ware. Machines with GPUs for deep learning, as well as secure,
backed-up storage of images in the cloud, are available accord-
ing to a pay-per-use model. With our overall aim of supporting
a real-time control loop, and given the expense of the equip-
ment, sample throughput is important. Despite images being
compressed as PNGs, upload bandwidth is a bottleneck. Note
that PNG compression is lossless, so as not to interfere with sub-
sequent image analysis. Consequently, we wish to upload all the
images from the initial sweep into the cloud as quickly as pos-
sible, and this is what is targeted here.

A pre-processing operator would reduce the compressed im-
age size to an extent depending on the image content. However,
this operator itself has a computational cost, but because of the
temporary backlog of images waiting to be uploaded, there is
an opportunity to pre-process some of the waiting images to re-
duce their size (see Fig. 5). The available upload bandwidth with
respect to the computational cost of the pre-processing opera-
tor means that (in our experiment) there is insufficient time to
pre-process all images prior to upload. In fact, to pre-process all
of them would actually increase end-to-end latency, due to the

computational cost of the pre-processing operation and limited
file size reduction for some images (content dependent). The so-
lution is to prioritize images for upload and pre-processing, re-
spectively, whilst both processes, as well as the enqueuing of
new images from the microscope, are occurring concurrently.

Feature extraction, the interestingness function, and policy
Samples for TEM analysis are typically supported by a metal grid,
which then obscures (blocks) regions of the sample in (in this
case) a honeycomb pattern. The blocked regions appear black in
the images. As the sample holder moves under the camera, a se-
quence of images are captured. These images can be indexed ac-
cording their position in this sequence. The extent to which the
sample is obscured in a particular image is a piecewise smooth
(but irregular) function of image index. This irregularity is de-
pendent on the particular magnification level and on the speed
and direction of the sample holder movement. Images can be
pre-processed to remove noise from blocked regions of the im-
age, reducing the size of the image under PNG compression. The
extent of file size reduction (under our pre-processing operator)
is related to the extent to which the grid obscures the image.

Consequently, the predicted extent of file size reduction can
be modelled with linear spline interpolation, based on the actual
file size reduction of images sampled from the queue, described

10 Rapid development of cloud-native intelligent data pipelines using the HASTE Toolkit

Figure 5: Architecture for Case Study 2, showing internal functionality of the HASTE Desktop Agent at the cloud edge. Images streamed from the microscope are
queued at the edge for uploading after (potential) pre-processing. The DH is realized as a priority queue. Images are prioritized in this queue depending on the IF,

which estimates the extent of their size reduction under this pre-processing operator: those with a greater estimated reduction are prioritized for processing (vice
versa for upload). This estimate is calculated by interpolating the reduction achieved in nearby images (see Fig. 7). This estimated spline is the IF for this case study.

in more detail in [27]. The file size reduction corresponds to fea-
ture extraction in the HASTE pipeline model, and the spline es-
timate (the estimate of message size reduction) can be encap-
sulated as an IF (see Fig. 1). The HASTE tools, specifically the
HASTE Agent, allow that IF to be used as a scheduling heuristic
to prioritize upload and local (pre-)processing, respectively (i.e.,
corresponding to the policy inducing the DH in HASTE).

Available compute resources at the cloud edge are prioritized
on those images expected to yield the greatest reduction in file
size (normalized by the compute cost, i.e., CPU time, incurred in
doing so). Conversely, upload bandwidth is prioritized on (i) im-
ages that have been processed in this way, followed by (ii) those
images for which the extent of file size reduction is expected to
be the least—under the aim of minimizing the overall upload
time.

An important distinction between this setting and that in
Case Study 1 is that the IF and DH are dynamic in this case study.

The HASTE Agent manages the 3 processes occurring simul-
taneously: new images are arriving from the microscope, images
are being pre-processed, and images are being uploaded.

Evaluation
When evaluated on a set of kidney tissue sample images [28] our
edge-based processing approach was, naturally, able to signif-
icantly reduce the end-to-end latency, when compared to per-
forming no edge processing at all. However, our splines-based
prioritization approach was able to further reduce the end-to-
end latency when compared to a baseline approach for prioriti-
zation [27]. This improvement was obtained with relative ease
due to the HASTE Toolkit. To reproduce this case study, follow
the step-by-step guide at https://github.com/HASTE-project/has
te-agent/blob/master/readme.md.

To verify the pre-processing operator, it was applied to all im-
ages after the live test was performed. Figure 7 shows how the
image size reduction (y-axis–normalized with computational

cost) can be modelled as a smooth function of the document
index (x-axis). The colors and symbols show which images were
processed prior to upload either on the basis of searching (black
crosses) or on the basis of the IF and those selected for pre-
processing (blue dots) and those that were not (orange crosses).
As can be seen and expected there is 1 peak (the central one)
where more images should optimally have been scheduled for
pre-processing prior to upload. That they were not is a combina-
tion of the heuristics in the sampling strategy, and the uploading
speed; i.e., they were simply uploaded before the IF (the spline
estimate) was a sufficiently good estimate to schedule them for
timely pre-processing. The blue line in Fig. 7 corresponds to the
final spline.

Discussion

This article has discussed an approach to the design and devel-
opment of smart systems for processing large data streams. The
key idea of a HASTE pipeline is based on prioritization with an
IF and the application of a policy. We demonstrated in 2 distinct
case studies that this simple model can yield significant per-
formance gains for data-intensive experiments. We argue that
IFs (and the prioritization and binning that they achieve) should
be considered more a “first-class citizen” in the next generation
of workflow management systems and that the prioritization of
data using IFs and policies are useful concepts for designing and
developing such systems.

The ability to express informative IFs is critical to the effi-
ciency of a HASTE pipeline. IFs are chosen by the domain expert
to quantify aspects of the data to determine online prioritiza-
tion. In this work we provide 2 examples of increasing complex-
ity. In Case Study 1, the IF is a static, idempotent function of
a single image, which can be checked against a static thresh-
old to determine a priority “bin” or tier to store the image. In
Case Study 2, the prioritization of the queue of images wait-

https://github.com/HASTE-project/haste-agent/blob/master/readme.md

Blamey et al. 11

Figure 6: Architecture of the intended application: full control loop for the MiniTEM, with automatic imaging of target areas identified in initial scan. Control of
microscope acquisition is future work. The internals of the HASTE Desktop Agent (where the HASTE model is applied) are shown in Fig. 5.

Figure 7: Image size reduction (normalized by CPU cost) over index, showing which images are processed at the edge. Those marked ”processed” were processed at
the cloud edge prior to upload (and vice versa)—selected either to search for new areas of high/low reduction or to exploit known areas (using the IF). The line shows

the final revision of the splines estimation of the message size reduction (the IF). Note how this deviates from the true value (measured independently for illustration
purposes on the same hardware) in regions of low reduction. Note the oscillating pattern, which is an artifact of movement over the grid in the miniTEM. Adapted
from [27].

ing to be uploaded is revised online, as the underlying model
is revised. The strength of our proposed model is that, having
defined an IF, by making small changes to the policy, the user
is able to reconfigure the pipeline for different deployment sce-
narios and datasets, with different resulting resource allocation.
The HASTE Toolkit is an initial implementation of this vision. An
avenue for future work will explore the creation of IFs through
training in real time, using active learning and potentially also
reinforcement learning.

The policy-driven approach of resource prioritization pro-
posed under the HASTE pipeline model can be generalized to
optimize utilization of different forms of constrained computa-
tional resources. In some contexts (such as Case Study 1) we are

concerned with processing data streams for long-term storage,
so storage requirements (and associated costs) are the key con-
cern. In other contexts, with a focus on real-time control, au-
tomation, and robotics, the priority can be more about achieving
complex analysis with low latency. In Case Study 2 this is man-
ifest as a need to achieve edge-to-cloud upload in the shortest
possible time.

The different policies for the 2 case studies reflect this: in
Case Study 1, the user defines a policy to bin images accord-
ing their interestingness score (i.e., image quality); these thresh-
olds are pre-defined by the user. That is to say, the user decides
explicit interestingness thresholds, and this determines the re-
sources (in this case, storage) that are allocated and the final

12 Rapid development of cloud-native intelligent data pipelines using the HASTE Toolkit

cost. In similar deployment scenarios where cloud storage is
used (especially blob storage) costs would depend on the num-
ber of images within each interestingness bound. Whereas in
Case Study 2, by modelling the predicted extent of message size
reduction as an IF within the HASTE tools, we can define a policy
to prioritize image processing and upload with the goal of min-
imizing the total upload time for the next step in the pipeline.

These policies induce 2 forms of DH: in Case Study 2, the DH
is manifest as a priority queue, updated in real time as new im-
ages arrive, are pre-processed, and eventually removed, whereas
the available resources (CPU, network) are fixed. By contrast, the
data hierarchy in Case Study 1 is static, defined by fixed thresh-
olds on interestingness score; in this case, it is the resources (in
this case, storage and consequent processing) that are variable,
determined by how many images end up in each tier of the hi-
erarchy.

Finally we note that the IF and policy could also be used to
prioritize data based on some measure of confidence. In many
scientific analyses there exists a significant amount of uncer-
tainty in several steps of the modelling process. For example in
a classification setting the class labels predicted can be highly
uncertain. If in the top tier of the hierarchy we would place only
those data points for which we are confident in the predicted la-
bel, downstream analysis would see a reduction in noise and an
increased separability of the (biological) effects under study, as
discussed in [29].

Conclusion

In this article we have proposed a new model for creating intelli-
gent data pipelines, and presented a software implementation,
the HASTE Toolkit. We have shown how these tools can be lever-
aged in imaging experiments to organize datasets into DHs. We
have shown benefits in terms of cost reduction and performance
improvement, in terms of compute resources of various kinds.
In our case studies, we have studied some typical deployment
scenarios and shown how prioritization can be achieved in these
scenarios. Conceptualizing data analysis pipelines around IFs al-
lows better use of various computing resources and provides a
conceptual structure for us to think about the involvement of
humans in such pipelines (and their monitoring), as well as a
means of managing scientific experimentation—either with in-
struments or through simulation.

The proposed HASTE pipeline model is intended as a means
of bringing structure to large scientific datasets—a means of cu-
rating a “data lake” [30] whilst avoiding creating a “data swamp”
[31, 32]. It is effectively a design pattern creating a data hierarchy
from “runtime knowledge” about the dataset—extracted in real
time. The HASTE Toolkit is intended to help scientists achieve
this. Our contribution is 2-fold: both the HASTE pipeline model
as a concept, and a Python implementation. It would be possi-
ble to re-implement the design pattern in other programming
languages as needed.

A key contribution made by the HASTE Toolkit is the design
of an API that allows the user to express how they would like
their data to be prioritized whilst hiding from them the com-
plexity of implementing this behaviour for different constrained
resources in different deployment contexts. The toolkit should
allow intelligent prioritization to be ”bolted on” to new and ex-
isting systems and is consequently intended to be usable with a
range of technologies in different deployment scenarios.

In the general context of big data, the HASTE Toolkit should
be seen as an effort to address challenges related to data streams

and efficient placement and management of data. It provides
the technical foundation for automatically organizing incoming
datasets in a way that makes them self-explanatory and easy
to use based on the features of data objects rather than tra-
ditional metadata. It also enables efficient data management
and storage based on data hierarchies using dynamic policies.
This lays the foundation for domain experts to efficiently se-
lect the best-suited data from a massive dataset for downstream
analysis.

Future work will focus on further improving the reliability,
testing, and robustness of the software and its documentation.
We also plan to investigate how the cloud function-as-a-service
functionality (e.g., OpenFaaS, or AWS Lambda) could be used
to further decouple IFs and allow them to be adjusted more
readily.

Availability of Supporting Source Code and
Requirements

The HASTE Toolkit:

� Project home page: https://github.com/HASTE-Project
� Operating systems: Linux, MacOSX
� Programming languages: Python 3
� Licence: BSD 3
� RRID:SCR 020932, https://scicrunch.org/browse/resources/S

CR 020932
� biotools ID: haste toolkit

Pipeline Example Application (Case Study 1):

� Source Code: https://github.com/HASTE-project/cellprofiler
-pipeline

� Version 3, Licence: BSD 3.
� Client App, (Docker Image: benblamey/haste pipeline

client:v1 Based on python:3.7.2 parent Docker image.)
� Worker App, (Docker Image: benblamey/haste pipeline

worker:v3. Based on ubuntu:16.04 parent Docker image. Cell-
Profiler v3.1.8, OpenJDK 8, Numpy 1.16.3)

� Deployment Scripts and Documentation: https://github.com
/HASTE-project/k8s-deployments

Components of the HASTE Toolkit (and other dependencies)
used in this article:

� HASTE Storage Client, v0.13 (BSD 3), https://github.com/HAS
TE-project/HasteStorageClient

� HASTE Gateway - v0.10, Python 3, (BSD 3)
benblamey/haste-gateway:latest, https://github.com/HASTE
-project/haste-gateway

� HASTE Agent, v0.1, Python 3, (BSD 3)
https://github.com/HASTE-project/haste-agent

� RabbitMQ, Version 3.7.15, Erlang 22.0, https://www.rabbitmq
.com/

� MongoDB, Version 4.0.9, https://www.mongodb.com/

Data Availability

An archival copy of the code (HASTE toolkit and pipeline exam-
ple applications) is available via the GigaScience repository, Gi-
gaDB [33].

Abbreviations

API: application programming interface; AWS: Amazon Web Ser-
vices; CPU: central processing unit; DH: data hierarchy; GPU:

https://github.com/HASTE-Project
https://scicrunch.org/browse/resources/SCR_020932
https://github.com/HASTE-project/cellprofiler-pipeline
https://github.com/HASTE-project/k8s-deployments
https://github.com/HASTE-project/HasteStorageClient
https://github.com/HASTE-project/haste-gateway
https://www.rabbitmq.com/
https://www.mongodb.com/

Blamey et al. 13

graphics processing unit; GUI: graphical user interface; HASTE:
Hierarchical Analysis of Spatial Temporal Data; HSC: HASTE
Storage Client; IF: interestingness function; IoT: Internet of
Things; MQTT: Message Queuing Telemetry Transport; NAS:
network-attached storage; PLLS: Power Log Log Slope; SNIC:
Swedish National Infrastructure for Computing; TEM: transmis-
sion electron microscope.

Competing Interests

The authors declare that they have no competing interests.

Funding

The HASTE Project (Hierarchical Analysis of Spatial and Tem-
poral Image Data, http://haste.research.it.uu.se/) is funded by
the Swedish Foundation for Strategic Research (SSF) under
award No. BD15-0008 and the eSSENCE strategic collaboration
for eScience.

Authors’ Contributions

B.B.: Conceptualization, Project Administration, Investigation,
Formal Analysis, Software, Methodology, Validation, Data Cura-
tion, Writing - Original Draft, Writing - Review & Editing, Visual-
ization.
S.T.: Conceptualization, Methodology, Writing - Original Draft,
Writing - Review & Editing, Funding Acquisition.
M.D.: Software, Methodology.
H.W.: Methodology, Writing - Review & Editing
P.H.: Methodology, Writing - Review & Editing.
I.M.S.: Conceptualization, Investigation, Software, Methodology,
Resources, Writing - Original Draft, Writing - Review & Editing,
Visualization.
A.S.: Conceptualization, Supervision, Methodology, Writing -
Original Draft, Writing - Review & Editing.
C.W.: Conceptualization, Supervision, Project Administration,
Methodology, Validation, Funding Acquisition, Writing - Origi-
nal Draft, Writing - Review & Editing, Visualization.
O.S.: Conceptualization, Supervision, Project Administration,
Methodology, Validation, Resources, Funding Acquisition, Writ-
ing - Original Draft, Writing - Review & Editing, Visualization.
A.H.: Conceptualization, Supervision, Project Administration,
Software, Methodology, Validation, Funding Acquisition, Writ-
ing - Original Draft, Writing - Review & Editing, Visualization.

Acknowledgments

Thanks to Anders Larsson and Oliver Stein for help with soft-
ware deployment and testing for Case Study 1. Thanks to Polina
Georgiev for providing the images used in the evaluation of Case
Study 1. Resources from The Swedish National Infrastructure for
Computing (SNIC) [34] were used for Case Study 2.

References

1. Ouyang W, Zimmer C. The imaging tsunami: computa-
tional opportunities and challenges. Curr Opin Syst Biol
2017;4:105–13.

2. Stephens ZD, Lee SY, Faghri F, et al. Big data: astronomical
or genomical?. PLoS Biol 2015;13(7):e1002195.

3. Blamey B, Wrede F, Karlsson J, et al. Adapting the secretary
hiring problem for optimal hot-cold tier placement under

top-K workloads. In: 2019 19th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGRID) Lar-
naca, Cyprus; 2019:576–583.

4. Sivarajah U, Kamal MM, Irani Z, et al. Critical analysis
of big data challenges and analytical methods. J Bus Res
2017;70:263–86.

5. Reinsel D, Gantz J, Rydning J. Data Age 2025: The Digiti-
zation of the World from Edge to Core (Seagate White Pa-
per); 2018. https://www.seagate.com/www-content/our-stor
y/trends/files/idc-seagate-dataage-whitepaper.pdf. An IDC
White Paper – #US44413318. Accessed: April 2020

6. Rinehart D, Johnson CH, Nguyen T, et al. Metabolomic
data streaming for biology-dependent data acquisition. Nat
Biotechnol 2014;32(6):524–7.

7. Hillman C, Petrie K, Cobley A, et al. Real-time processing of
proteomics data: the internet of things and the connected
laboratory. In: 2016 IEEE International Conference on Big
Data; 2016:2392–9.

8. Zhang Y, Bhamber R, Riba-Garcia I, et al. Streaming vi-
sualisation of quantitative mass spectrometry data based
on a novel raw signal decomposition method. Proteomics
2015;15(8):1419–27.

9. Kelleher J, Lin M, Albach CH, et al. Htsget: a proto-
col for securely streaming genomic data. Bioinformatics
2019;35(1):119–21.

10. Cuenca-Alba J, del Cano L, Gómez Blanco J, et al. Scipi-
onCloud: an integrative and interactive gateway for large
scale cryo electron microscopy image processing on com-
mercial and academic clouds. J Struct Biol 2017;200(1):20–7.

11. de la Rosa-Trevı́n JM, Quintana A, del Cano L, et al. Scip-
ion: a software framework toward integration, reproducibil-
ity and validation in 3D electron microscopy. J Struct Biol
2016;195(1):93–9.

12. Wang D, Fong S, Wong RK, et al. Robust high-dimensional
bioinformatics data streams mining by ODR-ioVFDT. Sci Rep
2017;7(1):43167.

13. Shi W, Dustdar S. The promise of edge computing. Computer
2016;49(5):78–81.

15. Blamey B, Hellander A, Toor S. Apache Spark Stream-
ing, Kafka and HarmonicIO: a performance bench-
mark and architecture comparison for enterprise
and scientific computing. In: Gao W, Zhan J, Fox G ,
et al., eds. Benchmarking, Measuring, and Optimizing:
Bench 2019, Denver, CO, USA. Cham: Springer; 2019,
doi:10.1007/978-3-030-49556-5˙30.

16. Torruangwatthana P, Wieslander H, Blamey B, et al. Har-
monicIO: scalable data stream processing for scientific
datasets. In: 2018 IEEE 11th International Conference on
Cloud Computing (CLOUD), San Francisco, CA, USA. IEEE;
2018:879–82.

17. Awesome Pipeline. https://github.com/pditommaso/awes
ome-pipeline.Accessed: March 2020

18. Chan SG, Tobagi FA. Modeling and dimensioning hierarchi-
cal storage systems for low-delay video services. IEEE Trans
Comput 2003;52(7):907–19.

19. Novella JA, Emami Khoonsari P, Herman S, et al. Container-
based bioinformatics with Pachyderm. Bioinformatics
2019;35(5):839–46.

20. Kubernetes. Kubernetes Documentation. https://kubernetes
.io/docs/home/. Accessed May 2020

21. Bray MA, Carpenter AE. Quality control for high-throughput
imaging experiments using machine learning in Cellpro-
filer. In: Johnston PA, Trask OJ . High Content Screening: A
Powerful Approach to Systems Cell Biology and Phenotypic

http://haste.research.it.uu.se/
https://www.seagate.com/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://github.com/pditommaso/awesome-pipeline
https://kubernetes.io/docs/home/

14 Rapid development of cloud-native intelligent data pipelines using the HASTE Toolkit

Drug Discovery Methods in Molecular Biology. New York, NY:
Springer; 2018:89–112.

22. McQuin C, Goodman A, Chernyshev V, et al. CellProfiler
3.0: next-generation image processing for biology. PLoS Biol
2018;16(7), doi:10.1371/journal.pbio.2005970.

23. Distributed-CellProfiler. https://github.com/CellProfiler/Dis
tributed-CellProfiler. Accessed May 2020

24. Polina G, Blamey B, Ola S. Snat10 Knockout Mice Cortical
Neuronal Cells (ImageXpress XLS Example Images). 2020.
http://doi.org/10.17044/scilifelab.12811997.v1.

25. Bray MA, Fraser AN, Hasaka TP, et al. Workflow and metrics
for image quality control in large-scale high-content screens.
J Biomol Screen 2012;17(2):266–74.

26. Vironova AB. MiniTEM: Automated Transmission Electron
Microscopy Analysis. https://www.vironova.com/our-offer
ing/minitem/. Accessed June 2020

27. Blamey B, Sintorn IM, Hellander A, et al. Resource- and
message size-aware scheduling of stream processing at
the edge with application to realtime microscopy. arXiv
2019:1912.09088.

28. Blamey B, Ida-Maria S. HASTE miniTEM Example
Images (Dataset). 2020. https://doi.org/10.17044/scilifela
b.12771614.v1.

29. Wieslander H, Harrison PJ, Skogberg G, et al. Deep learning
and conformal prediction for hierarchical analysis of large-

scale whole-slide tissue images. IEEE J Biomed Health Inform
2021;25(2):371–80.

30. Dixon J. Pentaho, Hadoop, and Data Lakes. 2010.
https://jamesdixon.wordpress.com/2010/10/14/pentaho-
hadoop-and-data-lakes/. Accessed February 2020

31. Brackenbury W, Liu R, Mondal M, et al. Draining the
data swamp: a similarity-based approach. In: Proceed-
ings of the Workshop on Human-In-the-Loop Data Ana-
lytics HILDA’18, Houston, TX, USA. New York: ACM; 2018,
doi:10.1145/3209900.3209911.

32. Hai R, Geisler S, Quix C. Constance: an intelligent
data lake system. In: Proceedings of the 2016 Inter-
national Conference on Management of Data SIGMOD
’16, San Francisco, CA, USA. New York: ACM; 2016:
2097–100.

33. Blamey B, Salman T, Martin D, et al. Supporting data
for “Rapid development of cloud-native intelligent data
pipelines for scientific data streams using the HASTE
Toolkit.” GigaScience Database 2021. http://dx.doi.org/10.55
24/100872.

34. Toor S, Lindberg M, Falman I, et al. SNIC Science Cloud
(SSC): a national-scale cloud infrastructure for Swedish
Academia. In: E-Science (e-Science), 2017 IEEE 13th In-
ternational Conference On IEEE, Auckland. IEEE; 2017:
219–27.

https://github.com/CellProfiler/Distributed-CellProfiler
http://doi.org/10.17044/scilifelab.12811997.v1
https://www.vironova.com/our-offering/minitem/
https://doi.org/10.17044/scilifelab.12771614.v1
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
http://dx.doi.org/10.5524/100872

