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Mutations in several members of the dystrophin glycoprotein complex lead to skeletal and

cardiomyopathies. Cardiac care for these muscular dystrophies consists of management

of symptoms with standard heart medications after detection of reduced whole heart

function. Recent evidence from both Duchenne muscular dystrophy patients and animal

models suggests that myocardial dysfunction is present before myocardial damage or

deficiencies in whole heart function, and that treatment prior to heart failure symptoms

may be beneficial. To determine whether this same early myocardial dysfunction is

present in other muscular dystrophy cardiomyopathies, we conducted a physiological

assessment of cardiac function at the tissue level in the δ-sarcoglycan null mouse model

(Sgcd−/−) of Limb-girdle muscular dystrophy type 2F. Baseline cardiac contractile force

measurements using ex vivo intact linear muscle preparations, were severely depressed

in these mice without the presence of histopathology. Virotherapy withclaudin-5 prevents

the onset of cardiomyopathy in another muscular dystrophy model. After virotherapy with

claudin-5, the cardiac contractile force deficits in Sgcd−/− mice are no longer significant.

These studies suggest that screening Limb-girdle muscular dystrophy patients using

methods that detect earlier functional changes may provide a longer therapeutic window

for cardiac care.

Keywords: heart, muscular dystrophy, sarcoglycan, claudin-5, cardiac contractile force

INTRODUCTION

Mutations inmembers of the dystrophin-glycoprotein complex (DGC) account for several forms of
muscular dystrophy and cardiomyopathy (Heydemann and McNally, 2007). Duchenne muscular
dystrophy (DMD) is caused by mutations in the gene encoding dystrophin and four autosomal
recessive subtypes of limb-girdle muscular dystrophy (LGMD) are caused by mutations in the
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sarcoglycans. The DGC provides a mechano-signaling
link between laminin-2 in the extracellular matrix and
submembraneous cytoskeletal F-actin (Ervasti and Campbell,
1993; Lim and Campbell, 1998). A mutation in one sarcoglycan
gene leads to the destabilization of the entire sarcoglycan
complex at the plasma membrane resulting in membrane
instability and an inability to counteract mechanical stress
generated by contractile activity (Holt and Campbell, 1998; Hack
et al., 2000). Prevalence of primary sarcoglycanopathies has been
estimated to be one in 178,000 (Fanin et al., 1997). δ-sarcoglycan
(Sgcd) has been shown to play a primary role in the formation
of the sarcoglycan complex, and its absence is responsible for
LGMD2F with associated cardiomyopathy (Shi et al., 2004;
Blain and Straub, 2011). LGMD2F initially causes weakness
in the muscles of hip, thigh, and shoulder, and progressively
affects respiratory muscles and the heart. Patients ultimately lose
mobility and have respiratory and cardiac complications.

Murine models with primary deficiencies of Sgcd were
generated in two independent studies. In the first model, which is
now commercially available and was used for the present study,
cardiac muscle degeneration was present by 12 weeks-of-age,
and premature mortality was noted starting from 8 weeks-of-
age with 50% survival at 28 weeks (Hack et al., 2000). In the
second model, Sgcd−/− heart histology was nearly normal until 5
months-of-age when myocardial necrosis was first noted (Coral-
Vazquez et al., 1999). Both models are completely deficient for
Sgcd. In vivo studies on whole heart cardiac contractility of
the Sgcd−/− models have provided some contradictory results.
Ejection fraction, a commonly assessed parameter, has been
shown to be normal through 4 months-of-age in both of the
Sgcd−/− models (Townsend et al., 2011; Blain et al., 2013; Greally
et al., 2013). However, at 8 months-of-age, ejection fraction was
reduced under baseline conditions in some studies (Goehringer
et al., 2009; Wansapura et al., 2011) but not in others (Townsend
et al., 2011; Blain et al., 2013; Greally et al., 2013), and was not
dependent on the model used. Some of this variability may be
due to genetic modifiers of the disease pathology such as Ltbp4
and Annexin6 (Swaggart et al., 2011, 2014; Flanigan et al., 2013;
Ceco et al., 2014), since these mice have been crossed onto other
genetic backgrounds over the years since they were generated.
Despite the wealth of studies using Sgcd−/− models, none have
assessed myocardial function at the tissue level.

We have previously characterized myocardial contraction at
the tissue level in models of DMD including the genotypic
dystrophin-deficientmdxmodel and the more severemdxmouse
also deficient for the partially compensating utrophin protein
(utrn−/−;mdx) (Janssen et al., 2005).Mdxmice show significantly
reduced cardiac contractile force compared with wild-type mice,
and utrn−/−;mdx mice show further force reductions compared
with mdx littermates. Since mdx mice have a milder phenotype
than DMD patients, likely due to upregulation of utrophin, we
have used utrn−/−;mdx mice as a more phenotypically accurate
model of DMD cardiomyopathy. Contractile force dysfunction
in both of these dystrophic models is the first detectable cardiac
phenotype, and is present prior to histopathological damage and
reduced whole heart function (Hainsey et al., 2003; Janssen et al.,
2005; Delfín et al., 2011, 2012). We have used the more severe

utrn−/−;mdx model to test potential therapeutic approaches
for cardiomyopathy by employing an adeno-associated virus to
sustain expression of claudin-5 (Delfín et al., 2012). Claudins are
a family of four transmembrane proteins which play important
roles in the structure and function of cell junctions (Morita et al.,
1999; Matter and Balda, 2003). Claudin-5 is transcriptionally
down-regulated in hearts from utrn−/−;mdx mice (Delfín et al.,
2012). By sustaining levels of this protein, cardiac dysfunction
measured at the tissue level is preventable in this model (Delfín
et al., 2012).

Recent studies suggest that early indicators of cardiac
dysfunction can be detected in DMD patients by cardiac
magnetic resonance imaging, and that treatment prior to heart
failure symptoms may be beneficial in both patients and animal
models (Duboc et al., 2007; Hor et al., 2009; Rafael-Fortney
et al., 2011; Verhaert et al., 2011). In order to improve patient
cardiac care, it is crucial to understand whether the same
pathological events seen in DMD are present in other forms
of muscular dystrophy. In the current study, we tested cardiac
contractile function at the tissue level in Sgcd−/− mice (generated
by Hack et al., 2000) to define the early cardiomyopathic
events associated with this deficiency. In addition, we used this
model to test whether claudin-5 may represent a therapeutic
target for additional forms of muscular dystrophy associated
cardiomyopathy.

MATERIALS AND METHODS

Ethics Statement
All mouse experiments were performed under approved
protocols from The Ohio State University Institutional Animal
Care and Use Committee (IACUC), Animal Welfare Assurance
Number A3261-01.

Mouse Breeding and Genotyping
TwoB6.129-Sgcdtm1Mcn/J female mice were obtained from
Jackson Laboratories and paired with C57BL/6 males producing
a heterozygous F1 generation (Hack et al., 2000). Genotypes
were confirmed at 3 weeks-of-age by DNA extraction from tails
and PCR with the following primers 5′-CCTGCTTCCTTTCAG
ATGCCTC-3′ and 5′-CTTGCCCCAAACTGGAGAT-TG-3′ to
detect the wild-type allele; and 5′-GTGGGGTGGGATTAGAAT
AAATGC-3′ and 5′TAGAGTCGTCAGAAGGTGGGGATG-3′

to detect the knockout allele. Via heterozygote interbreeding, a
colony carrying the Sgcd null allele was established producing
wild-type (WT), heterozygotes, and Sgcd−/− progeny in a 1:2:1
ratio. Heterozygotes were saved for breeding, and WT littermate
controls and Sgcd−/− mice were used for experiments. No
premature mortality was observed in Sgcd−/− mice by 20 weeks-
of-age in this colony. Since LGMD is not sex-linked, sex-specific
differences in cardiac force measurements at the tissue level in
other models have not been previously observed (Monasky et al.,
2008), and each genotype is generated at a 1:4 ratio, we used both
male and female mice in this study as a time and cost saving
measure, and as per IACUC requirements for animal use.
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AAV6-Claudin-5 Treatment
At 4 weeks of age, Sgcd−/− mice (n = 6, 5M, 1F) were injected
intravenously with 1 × 1012 vector genomes of a recombinant
adeno-associated virus serotype 6 (AAV6) carrying a mouse
claudin-5 cDNA expressed from a 658 bp cytomegalovirus
(CMV) promoter as previously described (Delfín et al., 2012).
AAV6-Cldn5 was generated by the viral vector core facility at
the University of Washington and prepared and quantitated
as described previously (Blankinship et al., 2004). The same
amount of vector genome units from the same batch of AAV6-
Cldn5 as previously shown to be efficacious in ameliorating
the cardiomyopathy in utrn−/−;mdx mice was used in the
current study (Delfín et al., 2012). This gene delivery system
has previously been used in many studies in dystrophic mice to
achieve high-level expression of the inserted cDNA in cardiac
muscle within 2 weeks of administration that persists for at
least 1 year (Gregorevic et al., 2004, 2006; Townsend et al.,
2007; Odom et al., 2008). The expression vector containing non-
therapeutic cDNAs, such as reporter genes, have repeatedly been
demonstrated not to show beneficial effects in striated muscles,
so the carrier solution is typically used as the negative control.
An AAV-GFP control vector was previously shown not to have
any effect on cardiac function of Sgcd−/− mice (Goehringer
et al., 2009). An equal volume of the carrier solution, phosphate-
buffered saline (PBS 100µl), was administered to a control group
of Sgcd−/− mice (n = 10, 4M, 6F) as well as WT littermates (n
= 7, 3M, 4F). Sgcd−/− mice were randomized into treatment or
control groups. All analyses were performed after 16 weeks in 20
week-old mice.

Electrocardiography (ECG) Measurements
Resting, non-anesthetized, and non-invasive
electrocardiographic recordings using the ECGenie system
(Mouse Specifics, Inc.) were made and analyzed by an
investigator blinded to genotypes and treatment groups.
Mice were placed on the ECG platform in a quiet room and
sufficient time was allowed for them to become accustomed
to the environment (roughly 5–10min). A red plastic shield
surrounds the platform, isolating the mouse from potential
stresses. ECG tracings were continuously recorded for 30min
and analyzed using ECG e-Mouse 9 software (Mouse Specifics,
Inc.). Time intervals when the paws were in contact with
the electrodes (typically 10–15 s), during a period when HR
remained consistent, were used for analysis.

Myocardial Force Measurements
All experiments were performed on isolated linear cardiac
trabeculae by an investigator blinded to genotypes and
treatment groups. Following ECG measurements, mice were
heparinized (500 units) intraperitoneally and euthanized by
cervical dislocation. The thorax was opened and the heart was
quickly placed in a modified Krebs-Henseleit (K-H) containing
in mM 137 NaCl, 5 KCl, 20 NaHCO3, 1.2 MgSO4, 1.2 NaH2PO4,
0.25 CaCl2, 10 glucose, and 20 2,3-butanedione monoxime
(BDM). This solution was bubbled with 95%O2/5%CO2 resulting
in pH of 7.4. The right ventricle was exposed and right ventricular
papillary and/or trabeculae muscles were excised at room

temperature as previously described (Xu et al., 2011). Average
muscle thickness was <180µm in order to avoid problems
associated with a potential hypoxic core (Raman et al., 2006),
and muscle dimensions were not different between the groups.
Muscles (n = 12 WT, n = 10 Sgcd−/−, and n = 13 Sgcd−/−

AAV6-Cldn5) isolated from 7, 7, and 6 mice, respectively, were
placed in a custom made setup consisting of a basket attached
to a force-transducer (KG4, SI Heidelberg) at one end, and a
hook to a stimulator at the other. All functional assessments of
thesemuscles were done at 37◦C tomaximize extrapolation of the
data to in vivo prevailing temperature. Time-dependent decline
of twitch tension (Milani-Nejad et al., 2014) was minimized by
typically collecting the entire data set of one muscle in about 1 h.

Muscles were bathed in K-H solution (37◦C) without
BDM, containing 2 mM CaCl2, and continuously bubbled
with 95%O2/5%CO2. Muscles were stimulated at 4 Hz and
optimal length was determined by gradually stretching until
an increase in resting tension was not matched by a similar
increase in developed tension. This procedure leads the muscle
to perform at optimal length, and was used identically for all
groups. This optimal length has been shown to represent an
approximate sarcomere length of ∼2.2 um (Rodriguez et al.,
1992), which is close, or at, the end-diastolic length in vivo.
The length-tension relationship, force-frequency relationship,
and β-adrenergic response with the agonist isoproterenol, were
then determined. Cardiac contraction data were recorded and
analyzed with a custom-made LabView program (National
Instruments). All force measurements were normalized to the
cross-sectional area, which was calculated by assessment of
the width and thickness of the trabeculae under a dissection
microscope, and assuming an oval shape. Muscles with forces of
<5 mN/mm2 at optimal length, indicative of dissection damage,
were excluded from the final analysis. Fifteen percent of the
muscles were discarded from further inclusion in the analysis (6
out of 39), with no difference in failing rates between groups.
Multiple muscles from each mouse (if available) were averaged
and used in the final analysis.

Histology
Unfixed samples of hearts and quadriceps were embedded
in optimal cutting-temperature medium (OCT), and frozen
on liquid-nitrogen-cooled isopentane. Eight micrometer thick
cross sections were cut from these samples to assess overall
histopathology by staining with hematoxylin and eosin or
an AlexaFluor488-conjugated goat-anti-mouse IgG secondary
antibody (Invitrogen Molecular Probes A11029) (1:100). As
muscle proteins leak out of myocytes with compromised
membranes into the serum and serve as a diagnostic marker of
cardiac damage, serum protein leak into myocytes with damaged
membranes and allow identification of single damaged myocytes
in a histological section. It has been previously shown that
anti-mouse IgG secondary antibodies show the same pattern
of myocyte membrane damage as Evan’s Blue Dye (Straub
et al., 1997). Fibrosis and claudin-5 localization were assessed
by incubating heart sections with rabbit polyclonal antibodies
against collagen I (Abcam ab292 at 1:150) or claudin-5 (Acris
AP15490PU-N at 1:300), followed by an Alexa555-conjugated
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goat anti-rabbit secondary antibody (Life Technologies A11029
at 1:200). Non-specific staining of this Alexa555-conjugated
antibody is not observed (not shown). Immunostained sections
were photographed on a Nikon Eclipse 800epifluorescence
microscope through 4Xor20X objectives using a SPOT RT slider
digital camera and software. Confocal images were taken using
an Olympus FV1000 Spectral Confocal microscope under a 60X
oil-immersion objective with 2X optical zoom and a 0.39µM
step-size. Heart images were composited using Adobe Photoshop
CS6.

Data Analysis and Statistics
KaleidaGraph (version 3.6) was used for the determination of
statistical significance (P < 0.05) for ANOVA and Bonferroni
post-hoc analysis, as well as graphing.

RESULTS

Heart rates were lower for the Sgcd−/− AAV6-Cldn5 vs. WT
(P < 0.05) but not vs. Sgcd−/− (P = 0.0576) as detected by a
Bonferroni post-hoc analysis after ANOVA detected differences
between groups (P = 0.015) (Table 1). The PR and QT intervals
were not significantly different in the Sgcd−/− AAV6-Cldn5mice.
Each of these differences between groups correlated with sex
(Supplemental Figure 1 and Supplemental Table 1). Corrected
QT intervals (QTc), which account for the differences in heart
rates, were similar across all the groups.

The heart weights were similar across all three groups while
the body weights were higher in Sgcd−/− AAV6-Cldn5 than
eitherWT or Sgcd−/−. This observation may be due to the higher
number ofmalemice in this group (5 out of 6) than theWT (3 out
of 7) and Sgcd−/− (4 out of 10). The calculated ratio of heart
weight to body weight was lower in the Sgcd−/− AAV6-Cldn5
group (Table 2).

We analyzed the cardiac contractile function in isolated
muscles from all 3 groups under the 3 main regulatory
mechanisms for cardiac contractile function: different lengths,
stimulation frequencies, and concentrations of the β-adrenergic
agonist isoproterenol (Figure 1). The developed forces were
overall lower in the Sgcd−/− group while they were very similar
between the WT and Sgcd−/− AAV6-Cldn5 groups. Statistically

TABLE 1 | ECG parameters while conscious and at rest.

Parameter WT Sgcd−/− Sgcd−/− AAV6-Cldn5 ANOVA

(n = 8) (n = 10) (n = 6)

Heart Rate (bpm) 684± 33 648±30 529±41$ 0.015

HRV (bpm) 145± 33 126±26 65±17 0.20

PR Interval (ms) 27.7± 1.5 30.1±1.1 33.7±2.3 0.082

QRS (ms) 10.4± 0.4 11.2±0.6 11.7±1.0 0.51

QT (ms) 45.9± 2.1 48.1±2.7 55.9±4.1 0.087

QTc (ms) 48.1± 1.1 48.8±1.3 51.3±2.1 0.33

HRV, Heart rate variability; QTc, QT interval corrected for heart rate.
$ Indicates P < 0.05

vs. WT. Statistical analysis performed with ANOVA followed with Bonferroni post-hoc.

significant differences (P < 0.05) between groups for each
experimental parameter are shown in Figure 1. Although the
numbers of males and females differed between groups, sex
did not significantly contribute (P = 0.21) to the differences
observed in contractile function between WT, Sgcd−/−, and
Sgcd−/− AAV6-Cldn5mice (Supplemental Figure 2). If at all, the
higher number of males, that trended to have lower force in
general, in the Sgcd−/− AAV6-Cldn5 group may have slightly
underestimated the beneficial impact of AAV6-Cldn5.

Increasing muscle length from less than to optimal length
resulted in an increase in the developed force in all three
groups (Figure 1B). Although, the Sgcd−/− had lower forces,
the shape of the length-tension relationship itself was not
affected (Figure 1C). The force-frequency relationship was flat-
to-negative from 4 to 14 Hz in all three groups (Figure 1D).
Similarly, despite the lower forces in the Sgcd−/− mice, the
relative changes in force in response to frequency were similar
across the three groups (Figure 1E).

The developed forces increased in all three groups
with increasing isoproterenol concentrations (Figure 1F).
Interestingly, high isoproterenol concentrations were able to
increase the force to a greater extent over baseline in the Sgcd−/−

group (Figure 1G). The isoproterenol EC50 was similar across
all three groups indicating no change in β-adrenergic receptor
sensitivity (Figure 1H).

We also analyzed the kinetics of contraction and relaxation
in these muscles at optimal length and 4 Hz (Figure 2). The
time it takes for the muscle to reach its peak force (TTP) and
the time it takes for the muscle to relax from peak force to
50% of the force (RT50) were similar across all three groups
(Figure 2B). The peak maximal rate of force rise (+dF/dt) and
peak maximal rate of decline (−dF/dt) were lower in the Sgcd−/−

group as compared to either their WT or Sgcd−/− AAV6-Cldn5
counterparts (Figure 2C, ANOVA Bonferroni P < 0.05). These
parameters are determined by two factors: (1) contractile and
relaxation kinetics and (2) the amplitude of the developed force
(Janssen, 2010; Milani-Nejad et al., 2013). Since the Sgcd−/−

group had lower forces, we normalized +dF/dt and −dF/dt
of each muscle to its developed force yielding +dF/dt/Force
and −dF/dt/Force, respectively. There were no differences in
+dF/dt/Force and −dF/dt/Force parameters indicating that the
kinetic rates themselves are similar (Figure 2D).

To determine whether the detected contractile abnormalities
are present concurrent with cardiac damage, we assessed

TABLE 2 | Heart and body weights.

Parameter WT Sgcd−/− Sgcd−/− AAV6-Cldn5 ANOVA

(n = 7) (n = 10) (n = 6)

HW (mg) 179± 8 170±13 171± 18 0.84

BW (g) 23.1± 0.9 24.7±0.9 29.0± 2.5$,‡ 0.0081

HW/BW (mg/g) 7.8± 0.3 6.9±0.4 5.9± 0.2$ 0.018

BW, Body weight; HW, heart weight; HW/BW, heart weight to body weight ratio.
$,
‡
Indicate P < 0.05 vs. WT and Sgcd−/−, respectively. Statistical analysis performed

with ANOVA followed with Bonferroni post-hoc.
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FIGURE 1 | Contractility of isolated cardiac trabeculae from 20 week-old wild-type (WT), Sgcd−/−, and Sgcd−/− mice treated with AAV6-Cldn5

(Sgcd−/− AAV6-Cldn5). (A) Tracings of cardiac trabeculae contracting at stimulation frequency of 4 Hz. (B) Sgcd−/− cardiac muscles had significantly lower forces

than the two other groups at several muscle lengths. (C) Normalized length-tension relationship shows that increasing muscle length increases developed forces to a

similar relative extent in all three groups. (D) Force-frequency relationship was similar and flat-to-negative in all three groups. (E) Normalized relationship between force

and frequency is preserved across all three groups. (F) Sgcd−/− muscles had overall lower forces at all isoproterenol concentrations as compared to the two other

groups. (G) Isoproterenol enhanced developed forces in all three groups. (H) The isoproterenol EC50 was not statistically different across the three groups. *Signifies P

< 0.05 among the three groups as assessed with ANOVA. #, Signify P < 0.05 Sgcd−/− vs. WT and Sgcd−/− vs. Sgcd−/− AAV6-Cldn5, as assessed with

Bonferroni post-hoc, respectively. The numbers of mice of each group from which muscles were measured and included in the analysis were: WT (n = 7, 3M, 4F);

Sgcd−/− (n = 7, 2M, 5F); Sgcd−/− AAV6-Cldn5 (n = 6, 5M, 1F).

overall histology and the presence of myocytes with damaged
membranes in Sgcd−/− mice. Hearts from both Sgcd−/− and
Sgcd−/− AAV6-Cldn5 mice did not appear different from those
ofWT littermates (Figure 3). No evidence of myocyte membrane
damage (Figure 3) or fibrosis by staining for Collagen I (not
shown) was evident in Sgcd−/− or Sgcd−/− AV6-Cldn5 hearts.
These data support that contractile dysfunction in Sgcd−/− mice
precedes myocyte membrane damage, similar to what is observed
in mouse models of DMD (Hainsey et al., 2003; Janssen et al.,
2005; Delfín et al., 2012).

To confirm that Sgcd−/− mice displayed skeletal muscle
pathology at this time-point, we performed histological analysis
of quadriceps skeletal muscles. Quadriceps muscles are the most
commonly clinically biopsied muscles in muscular dystrophy
patients and are used to assess skeletal myopathies in animal
models. Sgcd−/− mice showed typical dystrophic pathology
consisting of necrosis, fibers that have degenerated and
regenerated (indicated by centrally-located nuclei), and fibrosis
(Figure 4). Intracellular serum IgG, identifying myofibers with
compromised membranes, was present in some myofibers
throughout quadriceps muscles of Sgcd−/− mice. Wild-type
skeletal muscles showed no dystrophic pathology or evidence of
myofiber damage.

To determine whether there are any gross differences between
claudin-5 localization in Sgcd−/− and Sgcd−/− AAV6-Cldn5
hearts, we immunostained sections from the same hearts

used to determine function. Both epifluorescence and higher
magnification confocal images show no major differences in
claudin-5 localization between Sgcd−/− and Sgcd−/− AAV6-
Cldn5 hearts (Figure 5).

DISCUSSION

We show for the first time that isolated Sgcd−/− cardiac
muscles have reduced ability to generate force compared to
their wild-type littermates. Although in vivo studies are essential
and the cornerstone of investigating cardiac contractility, they
are confounded by effects of pre-load, after-load, autonomic
nervous system activity, and use of anesthetics. Sgcd−/− mice
have reduced mean blood pressure, reduced arterial elastance,
autonomic nervous system dysregulation, and increased pre-load
(Bauer et al., 2008, 2010; Sabharwal et al., 2014). Isolated cardiac
muscle preparations allow for direct investigation of cardiac
contractility without the effects of these compounding factors.

The reduced cardiac contractility in Sgcd−/− mice of our study
is in agreement with previous in vivo reports showing reduced
systolic-elastance despite compensated normal and decreased
ejection fractions (Bauer et al., 2008, 2010; Goehringer et al.,
2009; Wansapura et al., 2011). However, our results differ from
a previous study that did not find any reduction in shortening
of isolated single Sgcd−/− cardiomyocytes (Townsend et al.,
2011). This apparent discrepancy might be attributed to the use
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FIGURE 2 | Kinetics of contraction and relaxation are not affected by

δ-sarcoglycan deficiency or claudin-5 gene therapy. (A) Schematic

representation of the kinetic parameters assessed in cardiac trabeculae. TTP:

time to peak tension, time from stimulation to peak force, RT50: relaxation time

from peak force to 50% relaxation. +dF/dt, maximal velocity of contraction;

−dF/dt, maximal velocity of relaxation. (B) TTP and RT50 are similar in muscles

from wild-type (WT), Sgcd−/−, and Sgcd−/− mice treated with AAV6-Cldn5

(Sgcd−/− AAV6-Cldn5). (C) +dF/dt and −dF/dt are lower in the Sgcd−/−

compared with both WT and Sgcd−/− AAV6-Cldn5 groups. (D) Normalizing

the +dF/dt and −dF/dt to the developed force reveals that the kinetics of

contraction and relaxation themselves are preserved across all three groups.
#, Signify P < 0.05 Sgcd−/− vs. WT and Sgcd−/− vs. Sgcd−/− AAV6-Cldn5

as assessed with Bonferroni post-hoc, respectively. All measurements made at

optimal length, 4 Hz, and 37◦C. The numbers of mice of each group from

which muscles were measured and included in the analysis were: WT (n = 7,

3M, 4F); Sgcd−/− (n = 7, 2M, 5F); Sgcd−/− AAV6-Cldn5 (n = 6, 5M, 1F).

of unloaded single cardiomyocytes compared with the loaded
multi-cellular preparations used in the current study (Janssen and
Periasamy, 2007). These two different loading conditions cannot
directly be compared in a quantitative manner. Alternatively,
or in addition, it may be explained by differences in sarcomere
length: where the ∼2.2 µm sarcomere length used in the current
study was close to the in vivo physiological range (Rodriguez
et al., 1992), and in cardiomyocyte studies (Townsend et al., 2011)
in unloaded shortening mode operate only at sarcomere lengths
well below those present in vivo.

The heart utilizes multiple mechanisms to adjust its
pumping activity in order to meet the demands of the body.
These mechanisms include length-tension relationship, force-
frequency relationship, and β-adrenergic stimulation (Janssen,
2010). Despite deficits in force development, these regulatory
mechanisms themselves are preserved in Sgcd−/− myocardium.
Furthermore, AAV6-claudin-5 gene therapy did not affect the
ability of the myocardium to use and recruit these regulatory
mechanisms.

In addition to myocardial contraction, the kinetics of
relaxation must be preserved to allow proper pumping of the

FIGURE 3 | Representative transverse heart sections from WT,

Sgcd−/−, and Sgcd−/− AAV6-Cldn5 mice stained with hematoxylin

and eosin (H&E) (left) or for IgG (right). No cardiac damage or fibrosis was

observed in any of the three groups of mice at 20 weeks-of-age as assessed

by the uptake of serum IgG into myocytes or overall histology. Bar = 500 µm.

blood (Janssen, 2010; Biesiadecki et al., 2014). A therapy that
can improve force of contraction but compromises the kinetics
of contraction and relaxation, is problematic as it can prevent
adequate ventricular filling during diastole and ejection of blood
during systole. The improvement of force generation as well as
the preservation of kinetics and cardiac regulatory mechanisms
with AAV6-claudin-5 treatment, likely translates into the ability
of δ-sarcoglycan deficient hearts at later stages not only to
increase cardiac output during rest, but also arguably during
stress and exercise.

Surprisingly, unlike our previous studies in utrn−/−;mdx
mice, which exhibit claudin-5 down-regulation in myocardium,
claudin-5 protein levels do not appear to be significantly
reduced or mislocalized in Sgcd−/− myocardium compared
to wild-type controls by immunolocalization or western blot
(data not shown). We also did not observe any overt over-
expression in Sgcd−/− AAV6-Cldn5 hearts compared to Sgcd−/−

hearts (Figure 5). This observation is in agreement with
our previous studies in which exogenous claudin-5 does not
lead to levels significantly above wild-type controls (Delfín
et al., 2012). We also did not observe any reduced levels
or cardiomyocyte localization in Sgcd−/− hearts compared to
wild-type (not shown). Combined, the seemingly normal levels
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FIGURE 4 | Representative sections of quadriceps muscles from WT

and Sgcd−/− mice stained with hematoxylin and eosin (left) or for IgG

(right). IgG serves as a marker of muscle membrane damage. Severely

dystrophic skeletal muscles are observed in 20 week-old Sgcd−/− mice as

observed by myofibers with intracellular serum proteins, centrally located

nuclei indicating previous degeneration and regeneration of the fiber, and a

wide variation in fiber size, as well as interstitial cellular infiltrate and fibrosis.

Bar = 100 µm.

of claudin-5 combined with the significant levels on non-
myocyte claudin-5 expression unfortunately prevents detection
of small or even modest changes in myocyte-localized claudin-
5 in Sgcd−/− myocardium. We have previously demonstrated
that claudin-5 protein is reduced in the majority of end-
stage human heart failure samples (Mays et al., 2008; Swager
et al., 2015). Claudin-5 has also been shown in an unbiased
screen to be one of only four genes down-regulated and
hyper-methylated in human dilated cardiomyopathy (Koczor
et al., 2013). Therefore, it is likely, as we have no other
explanation for the improved function, that detectable claudin-
5 reductions may occur at a later time-point than studied
here in Sgcd−/− mice and only minor, undetectable increases
were able to sustain myocardial contractile force at the
time-point in this study. Claudin-5 localizes to the lateral
membranes of cardiomyocytes where the DGC resides (Swager
et al., 2015), and may be able to partially compensate for
the lost DGC connection that normally acts to protect this
membrane in striated muscles. Higher resolution localization
studies would be required to determine whether exogenous
claudin-5 is present in membrane micro-domains typically
occupied by the DGC. Overall, as holds true for most skeletal
myopathies, membrane instability largely contributes to the
dysfunctional contractile phenotype. Loss of one component
involved in membrane stability may be partially, or perhaps fully,
compensated by another possible component (such as claudin-
5), and exogenously increasing this component may even be
beneficial if this other component is already present at normal
levels.

FIGURE 5 | Claudin-5 localization in Sgcd−/− hearts. Representative

epifluorescence widefield (top) and confocal (bottom) images of claudin-5

immunofluorescence staining of transverse heart sections from Sgcd−/− and

Sgcd−/− AAV6-Cldn5 treated mice. Bright claudin-5 staining of endothelial

cells can be observed in hearts from both groups of mice (arrows). Claudin-5

localization in cardiomyocytes can be observed in a typical normal pattern of

longitudinal striations in hearts from both groups of mice (ovals). Bars = 100

µm (top) and 20 µm (bottom).

Although the most important aspect of any therapy directed
at muscle dysfunction is improving the contractile strength,
of interest are the mechanisms via which this improvement
manifests. Future experiments could be directed toward a further
mechanistic understanding of whether improved contractile
force is due to enhanced EC coupling (i.e., larger intracellular
calcium transients), or from effects further downstream, such
as an increase in myofilament calcium sensitivity or altered
cross-bridge cycling kinetics (Janssen, 2010; Biesiadecki et al.,
2014). In future studies, it will also be important to test whether
ectopic claudin-5 expression increases myocardial twitch force in
normal controls. However, our only conclusion at this point is
that therapeutic approaches delivered early have the potential to
prevent the reduction of myocardial contractile force observed in
Sgcd−/− mice without treatment.

As shown in previous studies, cardiomyopathic features do
not tend to appear prior to 12 weeks-of-age in δ-sarcoglycan
deficient mice (Coral-Vazquez et al., 1999; Hack et al., 2000;
Goehringer et al., 2009). In accordance with this observation,
a small scale preliminary study conducted by our group
did not demonstrate contractile dysfunction in 12 week-old
Sgcd−/− mice (data not shown). Histology from the 20 week-
old experimental mice in this study did not show the myocardial
damage or cardiac fibrosis that has been previously reported to
start between 3 and 8 months-of-age (Coral-Vazquez et al., 1999;
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Hack et al., 2000; Goehringer et al., 2009), possibly due to genetic
modifying effects (Swaggart et al., 2011, 2014; Flanigan et al.,
2013; Ceco et al., 2014). Ltbp4 has recently been found to modify
the phenotype of sarcoglycanopathies in mice (Swaggart et al.,
2011; Ceco et al., 2014). Ltbp4 alleles also correlate with the length
of ambulation in DMD patients (Flanigan et al., 2013). Annexin-
6 has also recently been demonstrated to be a strong genetic
modifier of muscle membrane repair in sarcoglyan knockout
mice (Swaggart et al., 2014).

Although the present study did not measure whole heart
function, all previous studies show that no deficits exist until
at least 8 months-of-age (Goehringer et al., 2009; Wansapura
et al., 2011). In addition, myocardial damage and fibrosis has
been well documented to precede whole heart dysfunction in
both mice and patients with muscular dystrophy associated
cardiomyopathies (Verhaert et al., 2011). Longer-term studies
will be required to determine the lasting efficacy of AAV-claudin-
5 treatment on later stages of disease progression.

The observation of myocardial contractile dysfunction prior
to myocardial damage and whole heart dysfunction in δ-
sarcoglycan deficient mice supports the use of improved
screening methods for cardiomyopathy to detect earlier changes
in LGMD2F patients. These data suggest the possibility that
cardiac care implemented prior to reduced ejection fraction,
or even MRI detectable myocardial damage, may be able to
slow disease progression and should be directly tested in future
preclinical studies.
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Supplemental Figure 1 | Heart rate (HR) of the mice correlated with body

weight, as expected. In addition, female mice (as indicated by + under the

symbols) generally have a lower body weight than male mice. Due to the uneven

group distribution of sexes because of randomization of the animals into groups,

several ECG parameters such as heart rate were lower in the AAV-treated group.

However, these data were a result of group gender distribution, and not the results

of the treatment itself (i.e., the deviation from the overall correlation is not different

for any of the three groups). The solid line indicates the linear correlation (R =

0.72) of all data regardless of group.

Supplemental Figure 2 | Dot plot showing contractile force by sex for WT,

Sgcd−/−, and Sgcd−/− AAV6-Cldn5 mice. We do not observe significant

differences in mean contractile force between males and females in each group,

thus showing that a mixed number of mice does not impact contractile force

experimental results. The data shown are for baseline contractions at optimal

length, which represents the largest difference between groups.

Supplemental Table 1 | Sex, Body weight, and ECG parameters for

individual mice making up the composite data contained in Tables 1, 2.

BW, body weight; HW, heart weight; HRV, heart rate variability; PR, QRS, and QT

refer to ECG intervals; QTc, QT interval corrected for heart rate.
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