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ABSTRACT 

Nearly all living species comprise of host defense peptides called defensins, that are crucial for innate immunity. 

These peptides work by activating the immune system which kills the microbes directly or indirectly, thus provi-

ding protection to the host. Thus far, numerous preclinical and clinical trials for peptide-based drugs are currently 

being evaluated. Although, experimental methods can help to precisely identify the defensin peptide family and 

subfamily, these approaches are often time-consuming and cost-ineffective. On the other hand, machine learning 

(ML) methods are able to effectively employ protein sequence information without the knowledge of a protein’s 

three-dimensional structure, thus highlighting their predictive ability for the large-scale identification. To date, 

several ML methods have been developed for the in silico identification of the defensin peptide family and subfa-

mily. Therefore, summarizing the advantages and disadvantages of the existing methods is urgently needed in 

order to provide useful suggestions for the development and improvement of new computational models for the 

identification of the defensin peptide family and subfamily. With this goal in mind, we first provide a comprehen-

sive survey on a collection of six state-of-the-art computational approaches for predicting the defensin peptide 

family and subfamily. Herein, we cover different important aspects, including the dataset quality, feature encoding 

methods, feature selection schemes, ML algorithms, cross-validation methods and web server availability/usabi-

lity. Moreover, we provide our thoughts on the limitations of existing methods and future perspectives for impro-

ving the prediction performance and model interpretability. The insights and suggestions gained from this review 

are anticipated to serve as a valuable guidance for researchers for the development of more robust and useful 

predictors. 
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INTRODUCTION 

Nearly all living species comprise of host 

defense peptides called defensins, that are 

crucial for innate immunity. Defensins are 

considered as a part of the antimicrobial pro-

tein family and are rich in cysteine. Further-

more, defensins offer assistance to cells in 

combating bacterial (Menendez and Finlay, 
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2007), viral (Wilson et al., 2013) and fungal 

infections (Parisi et al., 2019; Sathoff and 

Samac, 2019) by destroying the structural in-

tegrity of bacterial cell membranes (Bun Ng 

et al., 2013; De Coninck et al., 2013; de 

Oliveira Dias and Franco, 2015). Precisely, 

defensins bind to the microbial cell membrane 

forming a pore-like channel in the membrane 

which cause ions and nutrients to leak through 

biphasic permeabilization (Jarczak et al., 

2013). Further evidence suggests that a pre-

disposition to diseases (Kim et al., 2015) may 

be caused by an imbalance or reduction 

(Albrethsen et al., 2005) of defensins in vari-

ous organisms.  

In addition, defensins are shown to exhibit 

a wide range of key applications in various in-

dustries thus, highlighting the importance of 

their design to fit specific needs (Whiston et 

al., 2017). Nevertheless, conventional experi-

mental approaches, such as nuclear magnetic 

resonance (de Medeiros et al., 2010), are often 

time-consuming and not cost-effective. On 

the other hand, there is an increase in the num-

ber of new proteins sequenced by next-gene-

ration sequencing techniques. As a result, a 

large number of novel defensin candidates 

can potentially be found in these proteins. 

Thus, it is desirable to rapidly and accurately 

identify defensins from large-scale proteins. 

Previously, machine-learning (ML) methods 

were naturally selected to conduct a large-

scale identification and prediction of several 

proteins and peptides (Li et al., 2015; Lin et 

al., 2010, 2019; Lv et al., 2020; Su et al., 

2018; Xu et al., 2019; Zhang et al., 2021; 

Zulfiqar et al., 2021). These approaches are 

able to effectively employ protein sequence 

information without the knowledge of the 

protein’s three-dimensional structure. 

Furthermore, the general machine learning 

framework used for the prediction of de-

fensins involves four major steps as summa-

rized in Figure 1, including, the preparation of 

training and independent test datasets, feature 

extraction, feature optimization, and model 

development and evaluation. Currently, there 

are six state-of-the-art computational approa-

ches that have been developed for the in silico 

prediction of defensins, including, Karnik’s 

method (Karnik et al., 2009), ID_RAAA (Zuo 

and Li, 2009), Defensinpred (Ramya Kumari 

et al., 2012), iDPF-PseRAAAC (Zuo et al., 

2015), iDEF-PseRAAC (Zuo et al., 2019) and 

DEFPRED (Kaur et al., 2021) as summarized 

in Table 1.  

We categorize these computational me-

thods in Table 1 into two groups according to 

their predictive applications. The first group 

is comprised of computational methods deve-

loped for the in silico prediction of defensins, 

which make up two out of six existing me-

thods (i.e., Karnik’s method (Karnik et al., 

2009) and DEFPRED (Kaur et al., 2021)). 

The second group is focused on those compu-

tational methods which have been developed 

for the in silico prediction of the defensin pep-

tide family and subfamily, and comprise of 

four out of the six existing methods (i.e., 

ID_RAAA (Zuo and Li, 2009), Defensinpred 

(Ramya Kumari et al., 2012), iDPF-PseR-

AAAC (Zuo et al., 2015) and iDEF-PseR-

AAC (Zuo et al., 2019)). 

Motivated by the above-mentioned 

considerations, we provide a comprehensive 

comparison and analysis of the current state-

of-the-art computational methods. Major con-

tributions of this review article could be sum-

marized as follows: (i) to the best of our 

knowledge, this article provides the first com-

prehensive review on the development of 

computational approaches for the in silico 

identification of the defensin peptide family 

and subfamily; (ii) we have provided several 

important aspects that play a crucial role for 

the development of reliable and stable predic-

tion models, covering, their dataset quality, 

feature encoding methods, feature selection 

schemes, ML algorithms, cross-validation 

methods and web server availability/usability 

and (iii) we have discussed the limitations as 

well as the advantages and disadvantages of 

existing methods and provided future per-

spectives for improving the prediction perfor-

mance and model interpretability. 
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Figure 1: The general machine learning framework of the prediction of defensins and their family/sub-
family 
 
 

Table 1: A list of currently available machine learning-based methods for the predictions of defensins 
and their family/subfamily 

Method Classifier a Feature b Feature  
selection  

Evaluation 
strategyc 

Web sever 
availability, 
status 

Karnik’s method 
(Karnik et al., 2009) 

RF RQA N/A 10CV/IND No 

ID_RAAA  
(Zuo and Li, 2009) 

ID RAAA N/A Jackknife test No 

Defensinpred  
(Ramya Kumari et al., 
2012) 

SVM PAAC N/A Jackknife test Yes, inactive 

iDPF-PseRAAAC 
(Zuo et al., 2015) 

SVM RAAA N/A Jackknife test Yes, inactive 

iDEF-PseRAAC  
(Zuo et al., 2019) 

SVM RAAA F-score Jackknife test Yes, active 

DEFPRED  
(Kaur et al., 2021) 

SVM More than 20 
descriptors, including 
AAC, APAAC, DPC, 
CTD, PSSM, et al. 

SVC-L1 5CV/IND Yes, active 

a  ID: increment of diversity, RF: random forest, SVM: support vector machine 
b AAC: amino acid composition, APAAC: pseudo amino acid composition, CTD: composition-transition-distribution, DPC: dipeptide 
composition, PACC: pseudo amino acid composition, PSSM: position-specific scoring matrix, RAAA: reduced amino acid alpha-
bet, RQA: recurrence quantification analysis 
c 5CV: 5-fold cross-validation, 10CV: 10-fold cross-validation, IND: independent test 
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MATERIALS AND METHODS 

General machine learning framework of 

the predictions of defensins and their  

family/subfamily 

Until now, a number of computational ap-

proaches for in silico prediction of defensins 

and their family/subfamily have been develo-

ped (Karnik et al., 2009; Kaur et al., 2021; 

Ramya Kumari et al., 2012; Seebah et al., 

2007; Zuo and Li, 2009; Zuo et al., 2015). The 

general machine learning framework used for 

the prediction of defensins involves four ma-

jor steps as summarized in Figure 1. The first 

step is the preparation of training and inde-

pendent test datasets. The training and inde-

pendent test datasets are used for cross-vali-

dation and model validation purposes, respec-

tively. The second step is the feature extrac-

tion. There are many feature encoding 

schemes that are used to encode variable-

length proteins and peptides into fixed-length 

feature vectors. However, using the original 

feature dimensions might include irrele-

vant/redundant information as well as require 

additional computational resources during 

model optimization. On the other hand, the 

performance is not robust in many cases. 

Therefore, the third step is to select a set of 

important features. The fourth step is to train 

and evaluate a prediction model. The effec-

tiveness and robustness of the prediction mo-

dels are assessed on the independent test da-

taset. Finally, the optimal prediction model is 

employed to establish a web server. 

 

Datasets 

We reviewed all the datasets used for de-

veloping the existing methods (Karnik et al., 

2009; Kaur et al., 2021; Zuo and Li, 2009; 

Zuo et al., 2015, 2019). The detailed informa-

tion of these datasets are provided in Table 2. 

As seen in Table 2, the datasets of Zou2015 

(Zuo et al., 2015) and Zou2019 (Zuo et al., 

2019) derived from the defensins knowledge-

base (Seebah et al., 2007) applied a lower CD-

HIT threshold of 0.8 in order to exclude all 

homologous sequences. For the Zou2015 da-

taset (Zuo et al., 2015), it contained 333 de-

fensin proteins, which were classified into 60 

insect defensins, 34 invertebrate defensins, 42 

plant defensins, 157 vertebrate defensins and 

40 unclassified defensins. Among the 157 

vertebrate defensins, they were also classified 

as alpha-, beta- and theta-defensins. In the 

case of the Zou2019 dataset (Zuo et al., 2019), 

it contained 333 defensin proteins, which 

were classified as 60 insect defensins, 31 in-

vertebrate defensins, 42 plant defensins, 157 

vertebrate defensins and 38 unclassified de-

fensins. 
 

Table 2: The detailed information of the existing datasets used for analyzing in this review 

Dataset CD-HIT 
threshold 

No of samples Dataset 
availability 

Karnik2009  

(Karnik et al., 2009) 

1.0 238 defensins and 238 non-defensins No 

Zou2009  
(Zuo and Li, 2009 

1.0 286 defensins (37 insect defensins, 48 plant defensins, 
190 vertebrate defensins, 11 unclassified defensins) 

No  

Zou2015  
(Zuo et al., 2015) 

0.8 333 defensins (60 insect defensins, 34 invertebrate de-
fensins, 42 plant defensins, 157 vertebrate defensins,  
40 unclassified defensins) 

No 

Zou2019  
(Zuo et al., 2019) 

0.8 328 defensins (60 insect defensins, 31 invertebrate de-
fensins, 42 plant defensins, 157 vertebrate defensins, 38 
unclassified defensins) 

Yes 

Kaur2021  
(Kaur et al., 2021) 

1.0 1035 defensins and 1035 non-defensins (main dataset), 
1035 defensins and 1054 non-defensins (alternative data-
set) 

Yes 
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Recently, Kaur et al. established two up-

to-date datasets (Kaur2021 (Kaur et al., 

2021)) containing a main and alterative data-

sets. In Kaur2021, the defensin samples were 

collected from various sources, including lite-

rature (Zuo and Li, 2009; Zuo et al., 2015, 

2019), DRAMP2.0 (Kang et al., 2019) and 

CAMPR3 (Waghu et al., 2016). The samples 

in the work of (Kaur et al., 2021) were expe-

rimentally validated defensins exhibiting an-

timicrobial activity and the number of resi-

dues were in the range of 10-60. However, se-

quences containing non-natural or non-stan-

dard amino acids (B, J, O, U, X, and Z) were 

excluded. As a result, a total of 1,036 unique 

defensins were obtained and used to create the 

main and alterative datasets. For the main da-

taset, it contained 1,036 positives and 1,036 

negatives, where positives and negatives are 

experimentally validated defensins and anti-

microbial peptides (AMPs), respectively. In 

case of the alternative dataset, it contained 

1,036 positives and 1,054 negatives, where 

positives and negatives are experimentally 

validated defensins and selected peptides 

from Swiss-Prot (UniProt Consortium, 2017), 

respectively. 

 

Machine learning algorithms used for the 

prediction of defensins and their family/ 

subfamily 

As can be seen from Table 1, SVM is the 

most popular ML algorithm for building com-

putational models in the prediction of de-

fensins and their family/subfamily, used in 

Defensinpred (Ramya Kumari et al., 2012), 

iDPF-PseRAAAC (Zuo et al., 2015), iDEF-

PseRAAC (Zuo et al., 2019) and DEFPRED 

(Kaur et al., 2021). In the meanwhile, the RF 

and ID methods were used to develop Kar-

nik’s method (Karnik et al., 2009) and 

ID_RAAA (Zuo and Li, 2009), respectively. 

Hereafter, we provide the basic concepts of 

SVM and RF algorithms. 

SVM is a well-known and powerful ML 

algorithm that is commonly employed to deal 

with binary classification problems (Vapnik, 

1999, 2000). In particular, SVM maps the 

given input features into a higher dimensional 

space using kernel functions and finds opti-

mal hyperplanes that can separate positive 

samples from negative samples. To date, there 

are several kernel functions used for develo-

ping SVM classifiers, such as linear function, 

polynomial function, sigmoid function and 

gaussian radial basis function (RBF). 

Amongst the several kernel functions, the 

RBF kernel is the most commonly used one. 

In order to enhance the performance of SVM 

classifiers, a grid search strategy was utilized 

to optimize the two important aspects of the 

RBF kernel, including C (controls the trade-

off between the misclassification rate and 

margin) and 𝛾 (the kernel width parameter). 

Although SVM often yields satisfactory pre-

diction performances, this method is known 

as a black-box computation method (Ahmad 

et al., 2022; Charoenkwan et al., 2021d; Li et 

al., 2021a; Wei et al., 2021).  

RF is another powerful and widely 

employed ML algorithm for dealing with bi-

nary classification problems (Charoenkwan et 

al., 2020d; Hasan et al., 2020, 2021; 

Manavalan et al., 2019a, b; Su et al., 2020). 

RF is an ensemble-based method originally 

introduced by Leo Breiman (2001) that is cre-

ated by integrating a number of decision trees. 

Each decision tree consists of a single root 

node, leaf nodes and a number of intermediate 

nodes (Breiman, 2001). An if-then rule is de-

rived from the path connecting the root node 

to the leaf node. As a result, RF is able to pro-

vide a collection of if-then rules. Therefore, 

this method is known as a white-box compu-

tation method. In order to enhance the perfor-

mance of RF classifiers, a grid search strategy 

was employed to optimize two key parame-

ters: mtree (the number of decision trees) and 

mtry (the number of selected features). 

 

Performance evaluation and evaluation 

strategy 

Here, we employed five commonly used 

performance measures to comprehensively 

evaluate and analyze the performance of the 

six state-of-the-art predictors (Karnik et al., 

2009; Kaur et al., 2021; Ramya Kumari et al., 

2012; Seebah et al., 2007; Zuo and Li, 2009; 
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Zuo et al., 2015), including ACC, Sn, Sp, 

MCC and OA. The definitions of these per-

formance measures are defined as follows: 

ACC

=
TP(i) + TN(i)

(TP(i) + TN(i) + FP(i) + FN(i))
 

(1)  

Sn =
TP(i)

(TP(i) + FN(i))
 (2)  

Sp =
TN(i)

(TN(i) + FP(i))
 (3)  

OA =  
1

N
∑ TP(i)

M

i=1

 (4)  

where TP(i), TN(i), FP(i) and FN(i) denote 

true positives, true negatives, false positives 

and false negatives of the ith class or the ith fa-

mily. And, M and N are the number of subsets 

and the number of samples, respectively. 

 

RESULTS AND DISCUSSION 

State-of-the-art computational approaches 

for the prediction of defensins 

In this section, we conducted a perfor-

mance comparison for the two existing me-

thods for the prediction of defensins (Karnik’s 

method (Karnik et al., 2009) and DEFPRED 

(Kaur et al., 2021)). The performance compa-

rison results are provided in Table 3. In 2009, 

Karnik et al. developed the first ML-based 

predictor (called Karnik’s method (Karnik et 

al., 2009)) to discriminate defensins from 

non-defensins. The dataset consisting of 238 

defensins and 238 non-defensins, was rando-

mly partitioned into train (80 %) and indepen-

dent test (20 %) datasets. Specifically, Kar-

nik’s method was created using the RQA 

descriptor coupled with RF algorithm by tu-

ning the mtry parameter based on the 10-fold 

cross-validation scheme and the training data-

set.  

Recently, Kaur et al. created DEFPRED 

(Kaur et al., 2021) for specifically discrimina-

ting defensins from AMPs (antimicrobial 

peptides, or non-defensins). DEFPRED was 

developed using various types of features, in-

cluding AAC, APAAC, DPC, CTD, PSSM, 

etc. In their study, the support vector classifier 

(SVC) coupled with linear kernel penalized 

with L1 regularization (SVC-L1) method was 

employed to determine the optimal feature 

subset. In addition, several ML algorithms 

were used to develop the models, including 

RF, SVM, extra tree (ET), logistic regression 

(LR), k-nearest neighbors (KNN) and mul-

tilayer perceptron (MLP). The model that 

achieved the highest predictive performance 

was considered as the optimal one (DEF-

PRED). A user-friendly web sever is publicly 

available at https://webs.iiitd.edu.in/rag-

hava/defpred/. As seen in Tables 1 and 3, 

DEFPRED outperforms Karnik’s method in 

terms of generalization ability, robustness and 

utility. 

 

State-of-the-art computational approaches 

for the prediction of defensin family and 

subfamily 

As mentioned above, there are four exis-

ting methods developed for the predictions of 

defensins family and vertebrate defensins 

subfamily, including ID_RAAA (Zuo and Li, 

2009), Defensinpred (Ramya Kumari, et al., 

2012), iDPF-PseRAAAC (Zuo et al., 2015) 

and iDEF-PseRAAC (Zuo et al., 2019). The 

performance comparison results are provided 

in Tables 4-5. In 2009, Zuo and Li first propo-

sed ID_RAAA (Zuo and Li, 2009), an ID-ba-

sed approach in conjunction with RAAA 

descriptor. The ID is a similarity-based ap-

proach used for measuring the similarity score 

of two diversity samples. ID_RAAA was cre-

ated for the prediction of the defensin family 

(vertebrate defensins, plant defensins, insect 

defensins and others) and subfamily (alpha-

type, beta-type and theta-type). In the RAAA 

descriptor, there are two main parameters:  

 

 

 

https://webs.iiitd.edu.in/raghava/defpred/
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Table 3: Performance comparison of Karnik’s method and DEFPRED for the prediction of defensins 

Cross- 

validation 

Method No of  

samplesd 

No of  

features 

ACC (%) Sn (%) Sp (%) MCC 

10-fold CV Karnik’s method 

a 

190P,190N 7 78.20 - - - 

DEFPRED b 828P,828N 60 93.00 89.26 96.74 0.86 

DEFPRED c 828P,843N 50 93.96 90.82 97.10 0.88 

Independent 

test 

Karnik’s method 

a 

190P,190N 7 79.16 73.60 81.20 0.56 

DEFPRED b 208P,207N 60 96.59 95.17 97.98 0.93 

DEFPRED c 208P,211N 50 98.09 97.10 99.05 0.96 

a Performance results were obtained from Karnik et al. (2009). 
b Results based on the main dataset (Kaur et al., 2021).  
c Results based on the alternative dataset (Kaur et al., 2021). 
d P: positive samples, N: negative samples 
 

Table 4: Performance comparison of ID_RAAA, iDPF-PseRAAAC and iDEF-PseRAAC for the predic-

tion of defensins family 

Family Methoda Sn (%) Sp (%) MCC 

Insect ID_RAAA 79.36 - - 

 iDPF-PseRAAAC 90.00 97.07 0.86 

 iDEF-PseRAAC 96.67 98.13 0.93 

Invertebrate ID_RAAA - - - 

 iDPF-PseRAAAC 61.76 97.32 0.64 

 iDEF-PseRAAC 74.19 97.64 0.73 

Plant ID_RAAA 85.33   

 iDPF-PseRAAAC 90.48 98.97 0.90 

 iDEF-PseRAAC 92.86 98.60 0.91 

Vertebrate ID_RAAA 95.74 - - 

 iDPF-PseRAAAC 99.36 88.64 0.88 

 iDEF-PseRAAC 97.45 97.08 0.95 

Unclassified ID_RAAA 74.73 - - 

 iDPF-PseRAAAC 40.00 96.63 0.46 

 iDEF-PseRAAC 68.42 97.23 0.69 

a Performance of ID_RAAA was obtained from Karnik et al. (2009), while Performance of iDPF-PseRAAAC and iDEF-PseRAAC 
was obtained from Zuo et al. (2019). 

 
 

different sizes (S = 5, 8, 9, 11, 13, 20) and N-

peptide compositions (N = 1, 2, 3). For the 

prediction of the defensin family, an OA of 

91.36 %.was obtained by using a combination 

of N = 2 and S = 13 as indicated by the jack-

knife test. The combination of N = 2 and S = 

13 still achieved an OA of 94.21 % for the 

prediction of the defensin subfamily.  

Zuo et al. (2015) introduced iDPF-PseR-

AAAC, a multi-class SVM predictor coupled 

with the RAAA descriptor. Zuo’s study was 

proposed to address a small number of samp-

les (Zuo and Li, 2009). As a result, Zuo et al. 
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collected more than 500 defensin proteins 

from the defensins knowledgebase (Seebah et 

al., 2007). Then, the CD-HIT threshold of 0.8 

was used to exclude sequence redundancy. Fi-

nally, Zuo et al. obtained a dataset containing 

333 defensin proteins. These defensin pro-

teins could be classified into five families, in-

cluding insect defensins, invertebrate de-

fensins, plant defensins, vertebrate defensins 

and unclassified defensins. The SVM classi-

fier coupled with a combination of N = 2 and 

S = 13 (called iDPF-PseRAAAC) yielded an 

OA of 99.36 %. In addition, the 10-fold cross-

validation results were also performed to as-

sess the predictive ability of iDPF-PseR-

AAAC. The 10-fold cross-validation and 

jackknife test results were 83.78 % and 

85.59 %, respectively. For the vertebrate de-

fensin subfamily prediction, iDPF-PseR-

AAAC provided an OA of 98.39 %, while the 

MCC for the prediction of alpha-type, beta-

type and theta-type was 0.97, 0.96 and 0.89, 

respectively (Table 5). 

In 2019, Zuo et al. presented iDEF-PseR-

AAC (Zuo et al., 2019) by applying SVM al-

gorithm and the F-score method. In iDEF-

PseRAAC, it was developed based on a 

brand-new descriptor (i.e., reduced amino a-

cid resource) containing more than 600 types 

of features. Their comparative results showed 

that the DPC of type 5 and cluster 19 (T = 5, 

C = 19) provided an OA of 91.16 %. To im-

prove the predictive performance, the F-score 

method was employed to select informative 

features. Then, the 329 selected informative 

features were obtained and they achieved an 

OA of 92.38 %. The SVM classifier in con-

junction with the 329 selected informative 

features was considered as iDEF-PseRAAC 

in the work of Zuo et al. (2019). In the case of 

the defensin family prediction, iDEF-PseR-

AAC gave an OA of 92.38 %. Meanwhile for 

the vertebrate defensin subfamily prediction, 

iDEF-PseRAAC gave an OA of 98.79 %, an 

Sn of 0.99, and an Sp of 0.99. 

From Table 2, it can be observed that, 

iDPF-PseRAAAC and iDEF-PseRAAC were 

developed for predicting the five defensin 

protein families (i.e., insect defensins, inver-

tebrate defensins, plant defensins, vertebrate 

defensins and unclassified defensins), while 

ID_RAAA were developed for predicting the 

four defensin protein families (i.e., insect de-

fensins, plant defensins, vertebrate defensins 

and unclassified defensins). Therefore, we 

conducted a performance comparison 

between iDPF-PseRAAAC and iDEF-PseR-

AAC in order to make a fair conclusion. As 

can be seen from Table 4, iDEF-PseRAAC 

achieves the best overall performance as com-

pared with iDPF-PseRAAAC for all the five 

families of defensins in terms of Sn and MCC. 

To be specific, the MCC of iDEF-PseRAAC 

was 0.86, 0.64, 0.90, 0.88 and 0.46 respec-

tively, which were 7 %, 9 %, 1 %, 7 % and 

23 % higher than that of iDPF-PseRAAAC 

for insect defensins, invertebrate defensins, 

plant defensins, vertebrate defensins and un-

classified defensins, respectively (Table 4). 

Taken together, iDEF-PseRAAC outperforms 

ID_RAAA and iDPF-PseRAAAC in terms of 

predictive performance and robustness. 

 

Table 5: Performance comparison of ID_RAAA and iDPF-PseRAAAC for the prediction of vertebrate 

defensins subfamily 

Family Methoda Sn (%) Sp (%) MCC 

Alpha-type ID_RAAA 91.67 - 0.91 

 iDPF-PseRAAAC 95.83 100.00 0.97 

Beta-type ID_RAAA 96.03 - 0.92 

 iDPF-PseRAAAC 100.00 94.81 0.96 

Theta-type ID_RAAA 75.00 - 0.46 

 iDPF-PseRAAAC 80.00 100.00 0.89 

a Performance of ID_RAAA and iDPF-PseRAAAC was obtained from Karnik et al. (2009) and Zuo et al. (2015), respectively.
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Characterization of defensins based on  

sequence information 

Kaur et al. (2021) provided compositional 

analysis and preferential position analysis ba-

sed on the main and alternative datasets. As 

mentioned above, the main dataset contains 

1,036 defensins and 1,036 AMPs, while the 

alternative dataset contains 1,036 defensins 

and 1,054 non-defensins. As shown in Figure 

2A, it can be observed that Cys, Asp, Glu, 

Asn, Arg, Thr and Tyr were found to be a-

bundant in defensins as compared to AMPs, 

while Phe, Ile, Ala, Lys, Leu were found to be 

abundant in AMPs as compared to defensins. 

Interestingly, most of the amino acids were 

significantly different between the classes at 

the level of P < 0.05, with the exception of His 

(P = 0.154), Pro (P = 0.369) and Trp (P = 

0.289). In addition, Figure 2B reveals that 

Cys, Gly, Arg, and Thr were abundant in de-

fensins as compared to non-defensins, while 

Asp, Val, Glu, Leu and Ala were abundant in 

non-defensins as compared to defensins. 

Furthermore, most of the amino acids were 

significantly different between the classes at 

the level of P < 0.05, with the exception of His 

(P = 0.575), Pro (P = 0.341), Ser (P = 0.674) 

and Thr (P = 0.755). Taken together, Cys, 

Tyr, Arg and Asn might be important amino 

acids for defensins. In addition, the preva-

lence of these four amino acids (i.e., Cys, Try, 

Arg and Asn) are significantly different 

between defensins and AMPs/non-defensins 

at the level of P < 0.05. 

 

Web server availability and usability 

As can be seen from Table 1, among the 

five state-of-the-art computational approa-

ches, four of them were implemented as web 

servers for the prediction of defensins (DEF-

PRED (Kaur et al., 2021)) and their fa-

mily/subfamily (Defensinpred (Ramya 

Kumari et al., 2012), iDPF-PseRAAAC (Zuo 

et al., 2015) and iDEF-PseRAAC (Zuo et al., 

2019)). Unfortunately, only two web servers 

(iDEF-PseRAAC (Zuo et al., 2019) and DEF-

PRED (Kaur et al., 2021)) were functional 

during our manuscript preparation (accessed 

on 13 March 2022).  

iDEF-PseRAAC is a multi-class SVM 

predictor coupled with RAAA descriptor. 

iDEF-PseRAAC is freely available at 

http://bioinfor.imu.edu.cn/idpf/public/. In the 

case of the iDEF-PseRAAC web server, the 

query sequence pertains to five defensin fam-

ilies, including insect defensins, invertebrate 

defensins, plant defensins, vertebrate defen-

sins and unclassified defensins.  

DEFPRED, on the other hand, is an in sil-

ico method developed for the prediction and 

design of defensins. The web server provides 

users with two options for the prediction of 

the query sequence: (i) discriminating defen-

sins from AMPs (obtained from Model 1) and 

(ii) discriminating defensins from any random 

protein sequences (obtained from Model 2). 

In particular, Model 1 and Model 2 were 

trained using SVM-based models coupled 

with the 50 and 60 selected important fea-

tures, respectively (Kaur et al., 2021). More-

over, DEFPRED is able to predict potential 

defensins from primary protein sequences, 

but the length of the query sequence should be 

in the range of 10 to 60 residues. Furthermore, 

the web server provides users with a protein 

scan module that plays an important role in 

identifying specific regions in a protein. 

These regions can contribute in the designing 

of defensins. The DEFPRED web server is 

freely available at 

https://webs.iiitd.edu.in/raghava/defpred/. 

 

 

http://bioinfor.imu.edu.cn/idpf/public/
https://webs.iiitd.edu.in/raghava/defpred/
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Figure 2: Boxplots of average amino acid compositions of 20 amino acids of Defensins vs AMPs (A) 
and Defensins vs non-Defensins (B). X- and Y-axes represent 20 amino acids along with their p-value 
and average amino acid composition. 
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SHORTCOMINGS OF EXISTING  

PREDICTORS AND FUTURE  

PERSPECTIVES FOR IMPROVING 

THE PREDICTION PERFORMANCE 

To date, there are six ML-based predictors 

in existence that have been developed to pre-

dict defensins and their family/subfamily as 

summarized in Table 1. These ML-based pre-

dictors could effectively facilitate the predic-

tion of the defensin family/subfamily and ex-

hibit promising predictive performance. 

However, several shortcomings remain in 

these approaches that need to be addressed to 

develop more accurate and useful models as 

summarized hereafter. 

First, the existing training datasets were 

relatively limited, especially for the defensin 

family and subfamily. Thus, the prediction 

performance of the defensin family and sub-

family was not satisfying for real-life applica-

tions. In the future, when more defensin fa-

mily and subfamily become available, more 

samples should be gathered and then 

employed to train a more comprehensive mo-

del (Charoenkwan et al., 2021a, 2022a; Kabir 

et al., 2022). 

Second, all the existing ML-based predic-

tors were trained on the training datasets with 

high homologous sequences based on the CD-

HIT threshold of 0.8-1.0 (Table 2). It could be 

stated that iDPF-PseRAAAC (Zuo et al., 

2015) and iDEF-PseRAAC (Zuo et al., 2019) 

could achieve promising prediction perfor-

mances when these two models were evalua-

ted based on the dataset having high sequence 

identity. On the other hand, the prediction 

performance for those models was unsatisfac-

tory based on the dataset having low sequence 

identity. Therefore, in order to construct a 

high-quality dataset, the CD-HIT threshold 

should be set as 0.3-0.4 to avoid over-estima-

tion of the model’s performance (Dao et al., 

2019; Feng et al., 2019; Lai et al., 2019; Lv et 

al., 2019; Su et al., 2018; Xu et al., 2019). 

Third, almost all of the existing ML-based 

predictors, including PseRAAAC (Zuo et al., 

2015), iDEF-PseRAAC (Zuo et al., 2019) and 

DEFPRED (Kaur et al., 2021), were develo-

ped based on a black-box computational me-

thod (SVM) (Table 1). Motivated by this li-

mitation, our group has proposed the scoring 

card method (SCM) which is a simple and in-

terpretable model (Charoenkwan et al., 2013; 

Huang et al., 2012). The SCM method has 

been effectively applied to characterize and 

predict a variety of biological activities of 

proteins and peptides (Charoenkwan et al., 

2021b, c, 2020b, c, d, e, f, 2013; Huang et al., 

2012). The main contribution of the SCM me-

thod can be described into two major aspects: 

(i) the SCM method outperforms the well-

known SVM and RF methods in terms of 

simplicity and interpretability. Specifically, 

this method identifies desired proteins using 

only the weighted sum between the composi-

tion and propensity scores and (ii) the SCM 

method provides propensity scores for 20 

amino acids and 400 dipeptides that could 

help to provide insight into the characteristics 

of the proteins and peptides. Another solution 

for overcoming the limitations of the black-

box method is to make use of the Shapley Ad-

ditive explanation (SHAP) algorithm 

(Lundberg and Lee, 2017). The SHAP ap-

proach can provide both, the feature im-

portance scores and the directionality of fea-

tures. 

Fourth, there is a lack of comprehensive 

assessment of the state-of-the-art feature en-

coding methods and ML algorithms in the 

prediction of defensins and their family/sub-

family. Nevertheless, this comprehensive as-

sessment provided could serve and facilitate 

users to select appropriate feature en-

codings/ML algorithms and provide useful 

guidelines for the development of more accu-

rate and robust models in the future (Li et al., 

2021b; Liang et al., 2021). 

Finally, as described in many articles 

(Basith et al., 2020; Charoenkwan et al., 

2021a, 2022a, b; Kabir et al., 2022), user-

friendly web servers are considered as useful 

tools that are able to identify defensins and 

their family/subfamily without the use of ex-

perimental evidence. Although there are six 

computational approaches in existence, only 

two of them (i.e., iDEF-PseRAAC (Zuo et al., 
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2019) and DEFPRED (Kaur et al., 2021)) 

were deployed as freely available web servers 

for the prediction of defensins and their fa-

mily/subfamily. 

 

CONCLUSIONS 

In this study, we have conducted a com-

prehensive review and assessment of six cur-

rent state-of-the-art computational approa-

ches for predicting defensins and their fa-

mily/subfamily in terms of different im-

portant aspects, covering the dataset quality, 

feature encoding methods, feature selection 

schemes, ML algorithms, cross-validation 

methods and web server availability/usability. 

In addition, we performed a comparative ana-

lysis of the existing computational approa-

ches for predicting defensins and their fa-

mily/subfamily. For the prediction of de-

fensins, DEFPRED outperforms Karnik’s 

method in terms of generalization ability, ro-

bustness and utility. In case of the defensin fa-

mily and subfamily prediction, iDEF-PseR-

AAC outperforms ID_RAAA and iDPF-

PseRAAAC in terms of their predictive per-

formance and robustness. These computatio-

nal approaches are able to facilitate the iden-

tification of defensins and their family/subfa-

mily. However, several shortcomings remain 

in these approaches that need to be addressed. 

Herein, five crucial aspects to develop more 

accurate and useful models have been listed 

as follows: (i) compiling an up-to-date data-

set, (ii) excluding highly homologous se-

quences, (iii) using an interpretable method, 

(iv) performing a comprehensive assessment 

of the state-of-the-art feature encoding me-

thods and (vi) constructing a web server. We 

anticipate that this comprehensive review will 

provide useful guidance to researchers inte-

rested in developing cutting-edge computati-

onal approaches for the prediction of de-

fensins and their family/subfamily. 
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