
Generation of two induced pluripotent stem cell lines carrying 
the phospholamban R14del mutation for modeling ARVD/C

Carlos D. Veraa,b, Amit Manhasa,b, Sushma P. Shenoya,b, Matthew T. Wheelera,b, Karim 
Sallama,b, Joseph C. Wua,b,*

aStanford Cardiovascular Institute, Stanford University, School of Medicine, United States

bDivision of Cardiovascular Medicine, Stanford University, School of Medicine, United States

Abstract

The phospholamban (PLN) R14del mutation is associated with arrhythmogenic right ventricular 

dysplasia (ARVD/C). ARVD/C is a cardiac disease characterized by arrhythmias and structural 

abnormalities in the right ventricle. Because PLN is a regulator of calcium release, this mutation 

can have deleterious effects on tissue integrity and contraction. This mutation is a trinucleotide 

(AGA) deletion that leads to an arginine deletion at position 14 of the PLN structure. Here we 

show two lines carrying this mutation with typical iPSC morphology, pluripotency, karyotype, 

ability to differentiate into the three germ layers in vitro, and readily availability for studying 

pathological mechanisms or ARVD/C.
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1. Resource utility

Two iPSC lines (Resource Table) have been generated to study the underlying mechanism of 

arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). These lines provide 

an unlimited and valuable resource to derive cardiomyocytes and other cell types for in vitro 
disease modeling and therapeutics screening.

2. Resource Table:

Unique stem cell lines identifier SCVIi030-A
SCVIi031-A
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Alternative name(s) of stem cell lines

Institution Stanford Cardiovascular Institute

Contact information of distributor Dr. Joseph C. Wu

Type of cell lines iPSC

Origin Human

Additional origin info required for 
human ESC or iPSC

1. SCVIi030-A
Age: 54
Sex: Female
Ethnicity if known: White
2. SCVIi031-A
Age: 27
Sex: Male
Ethnicity if known: White

Cell Source PBMCs

Clonality Clonal

Associated disease Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C)

Gene/locus PLN 6q22.31
SCVIi030-A: Heterozygous PLN (p.Arg14del, c.40_42 AGAdel)
SCVIi031-A: Heterozygous PLN (p.Arg14del, c.40_42 AGAdel)

Date archived/stock date SCVIi030-A: 10/06/2021
SCVIi031-A: 10/06/2021

Cell line repository/bank SCVIi030-A: https://hpscreg.eu/cell-line/SCVIi030-A
SCVIi031-A: https://hpscreg.eu/cell-line/SCVIi031-A

Ethical approval The generation of the lines was approved by the Administrative Panel on 
Human Subjects Research (IRB) under IRB #29904 “Derivation of Human 
Induced Pluripotent Stem Cells (Biorepository)”.

2.1. Resource details

ARVD/C is an inheritable disease with a pathological hallmark of a defective right 

ventricle and a prevalence ranging from 1:2,000 to 1:5,000, depending on the patient 

cohort (Corrado et al., 2017). Typically, patients have mutations in desmosomal proteins, 

which are conventionally present at intercellular junctions and are essential for the tissue 

integrity (Groeneweg et al., 2014). PLN is a regulator of the sarcoplasmic reticulum Ca2+

(SERCA2) pump in cardiac muscle and thus crucial for maintaining Ca2+ homeostasis. 

PLN mutations are associated with dilated cardiomyopathy (DCM) and ARVD/C as several 

histopathological features overlap in the diagnosis (van der Zwaag et al., 2012). The R14del 

mutation in PLN has been studied extensively for cardiomyopathy and is present in 13–43% 

of ARVD/C patients (Groeneweg et al., 2014; Karakikes et al., 2015; van der Zwaag et al., 

2012). The consensus mechanism of PLN mutations is irregular Ca2+ homeostasis due to 

disrupted regulation of SERCA2, which leads to disassembly of the desmosomal proteins 

and loss of myocardial tissue integrity (Groeneweg et al., 2014; van der Zwaag et al., 2012). 

It is essential to properly understand the disease progression to manage DCM and ARVD/C 

patients with this mutation. Here we present two resource lines that can enable researchers to 

study those intricacies and identify potential interventions Table 1.

Two human iPSC lines (SCVIi030-A & SCVIi031-A) were derived from peripheral blood 

mononuclear cells (PBMCs) of two patients diagnosed with ARVC/D. The lines were 

derived from a 54-year old female and a 27-year old male (c.40_42 AGAdel), both with 

family histories of cardiac disease (Resource Table). To reprogram the PBMCs into iPSCs, 
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we utilized the Sendai virus to deliver the Yamanaka factors. The two iPSC lines had 

normal morphology. The scale bar = 930 μm (Fig. 1A). The expression of pluripotent 

markers NANOG, OCT3/4, and SOX2 was verified by immunostaining. The scale bar = 

70 μm (Fig. 1B). Both iPSC lines could differentiate into all three germ layer lines. The 

scale bar = 70 μm (Fig. 1C). Expression levels of NANOG and SOX2 were measured 

through mRNA and detected by reverse transcription-quantitative polymerase chain reaction 

(RT-qPCR) (Fig. 1D). For comparison, a healthy control SCVI15 was also measured at 

both iPSC and cardiomyocyte states to show comparable levels of NANOG and SOX2 for 

iPSCs, but exhibited low levels for cardiomyocytes (Fig. 1D) (Manhas et al., 2022). Sendai 

virus was absent in SCVIi030-A and SCVIi031-A at passage ~ 20 but still present at a 

low passage (P4) in healthy control iPSC culture (Fig. 1E). The PLN R14del mutation was 

confirmed by Sanger sequencing and was absent in the control SCVI15 (Fig. 1F). Moreover, 

karyotyping confirmed the biological sex and showed no chromosomal aberrations (Fig. 

1G). Mycoplasma testing showed proper culturing of these lines (Supp. Fig. 1A). Finally, 

a short tandem repeat (STR) analysis confirmed that the iPSCs were derived from their 

respective PBMC origins.

3. Materials and methods

3.1. Reprogramming

PBMCs were isolated from blood by Percoll density gradient medium (GE Healthcare 

#17089109), washed with DPBS, and plated in a 24-well plate. The culture medium for the 

PBMCs consisted of Stem-Pro™−34 medium (Thermo Fisher #14190144) supplemented 

with 100 ng/mL FLT3 (Thermo Fisher #PHC9414), 20 ng/mL IL-6 (Thermo Fisher 

#PHC0063), 20 ng/mL EPO (Thermo Fisher #PHC9631), 20 ng/mL IL-3 (Peprotech 

#200–3), and 100 ng/mL SCF (Peprotech #300–07). To reprogram PBMCs into iPSCs, 

we used the Sendai virus reprogramming cocktail according to the CytoTune™-iPSC 2.0 

Sendai Reprogramming Kit (Thermo Fisher Scientific #A16517). The transduced cells 

were resuspended and plated in a Matrigel-coated plate using the PBMC culture media. 

On day-7 after transduction, the medium was switched to StemMACS™ iPS-Brew XF 

medium (Miltenyi Biotec #130–104–368) until day 10–15 post-transduction, when colonies 

appeared. Colonies were picked and expanded (Manhas et al., 2022).

3.2. Cell culture

iPSCs were cultured in StemMACS™ iPS-Brew XF medium with supplement at 37 °C and 

5% CO2 until 90% confluency. Cells were further passaged using 10 μM Y-27632, a potent 

inhibitor of ROCK1 (Selleck Chemicals #S1049). The inhibitor was withdrawn after 24 hr.

3.3. Trilineage differentiation

The ability of iPSCs to differentiate into the three germ layers (ectoderm, endoderm, 

and mesoderm) was assessed using the STEM-diff™ Trilineage Differentiation Kit 

(STEMCELL Technologies, #05230) following the manufacturer’s instructions.
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3.4. Immunofluorescent staining

We performed a qualitative analysis of pluripotency and trilineage differentiation. At room 

temperature, cells were fixed in 4% paraformaldehyde for 15 min, permeabilized with 50 

μg/mL digitonin for 10 min, and blocked for 30 min with 1% BSA plus 5% FBS in PBS. 

The cells were incubated overnight at 4 °C with primary antibodies diluted in 1% BSA-PBS 

for staining. The following day, the cells were incubated with secondary antibodies in 1% 

BSA-PBS for 30 min at room temperature. Nuclei were counter-stained using NucBlue™ 

from Invitrogen™.

3.5. RT-qPCR

According to the manufacturer’s protocol, total RNA was extracted and isolated using the 

Direct-zol™ RNA Miniprep Kit (ZYMO RESEARCH #3R2061). RT-PCR was performed 

using the iScript™ cDNA Synthesis Kit (BioRad # 1708891) following the manufacturer’s 

protocol of 5 min at 25 °C, 20 min at 46 °C, and 1 min at 95 °C. Target molecules were 

amplified using commercial primers (Table 2) and TaqMan™ Gene Expression Assay from 

Applied Biosystems™.

3.6. Mycoplasma detection

Mycoplasma detection was analyzed using MycoAlert Detection Kit (Lonza #LT07–318) 

following the manufacturer’s protocol.

3.7. Short tandem repeat analysis

Genomic DNA was isolated from iPSCs and PBMCs using DNeasy Blood & Tissue Kit 

(Qiagen #69504). STR analyses were performed by the Stanford PAN facility using CLA 

Identifier™ Plus and Identifier™ Direct PCR Amplification Kits (Thermo Fisher #A44661).

3.8. Karyotyping

The whole-genome array to detect chromosomal abnormalities was performed at passage 12 

with KaryoStat™ (Thermo Fisher Scientific) on 2 × 106 cells.

3.9. Sequencing

PCR primers were designed to amplify the region of interest in the PLN sequence (Table 

2). iPSC genomic DNA was isolated using DNeasy Blood & Tissue Kit (Qiagen #69504) 

and served as the PCR template, with NEB Phusion High Fidelity PCR Kit (Thermo Fisher) 

being used to amplify the template. The PCR reaction was performed under the following 

conditions: 98 °C for 30 min, 98 °C for 10 s, 68 °C for 15 s, and 72 °C for 1 min for 35 

cycles. Sanger sequencing was performed on ABI3130xl by the Stanford PAN Facility. The 

WT and mutant alleles were parsed out using the web-based Poly Peak Parser tool from 

http://yosttools.genetics.utah.edu/PolyPeakParser/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Characterization of two iPSC lines from ARVC patients carrying PLN R14del mutation.
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