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As the main immune cells of the central nervous system (CNS), microglia regulates
normal development, homeostasis and general brain physiology. These functions put
microglia at the forefront of CNS repair and recovery. Uncontrolled activation of microglia
is related to the course of neurodegenerative diseases such as Alzheimer’s disease. It
is clear that the classic pathologies of amyloid β (Aβ) and Tau are usually accompanied
by the activation of microglia, and the activation of microglia also serves as an early
event in the pathogenesis of AD. Therefore, during the occurrence and development
of AD, the key susceptibility factors for AD—apolipoprotein E (APOE) genotype, sex
and age—may further interact with microglia to exacerbate neurodegeneration. In this
review, we discuss the role of microglia in the progression of AD related to the three risk
factors for AD: APOE genotype, sex and aging. APOE-expressing microglia accumulates
around Aβ plaques, and the presence of APOE4 may disrupt the phagocytosis of
Aβ aggregates and aggravate neurodegeneration in Tau disease models. In addition,
females have a high incidence of AD, and normal female microglia and estrogen have
protective effects under normal conditions. However, under the influence of AD, female
microglia seem to lose their protective effect and instead accelerate the course of AD.
Aging, another major risk factor, may increase the sensitivity of microglia, leading to the
exacerbation of microglial dysfunction in elderly AD. Obviously, in the role of microglia in
AD, the three main risk factors of APOE, sex, and aging are not independent and have
synergistic effects that contribute to the risk of AD. Moreover, new microglia can replace
dysfunctional microglia after microglial depletion, which is a new promising strategy for
AD treatment.
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Abbreviations: AD, Alzheimer’s disease; Aβ, amyloid β; CNS, central nervous system; APOE, apolipoprotein E; iPSC,
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APOE4-KI, APOE gene knock-in; TREM2, triggering receptor expressed on myeloid cells 2; FAD, familial AD; APOE-KO,
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chitinase 3-like 1.
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INTRODUCTION

As the resident macrophages of the central nervous system (CNS;
Gomez Perdiguero et al., 2015), microglia play an essential role
in brain homeostasis, neuroinflammation and neurodegenerative
diseases (Salter and Stevens, 2017). As the main neuroimmune
sentinels in the brain (Daneman, 2012), microglia maintain the
dynamic balance of the internal environment by continuously
sensing changes in the external environment (Nimmerjahn
et al., 2005). These immune detection and defense functions
put microglia at the forefront of CNS repair and recovery.
When the normal course of neurological development is
disrupted, many neurological diseases can occur. Uncontrolled
microglial activation is associated with the development of
neurodegenerative diseases (Hansen et al., 2018).

As an age-related neurodegenerative disease, Alzheimer’s
disease (AD) is the most common cause of dementia (Weuve
et al., 2014). It is related to progressive cognitive decline and
memory loss (Weuve et al., 2014). AD affects approximately
10% of the 65-year-old population and 50% of the 85-year-
old population (Hebert et al., 2003). In the next few decades,
this number is expected to increase significantly (Weuve et al.,
2014). AD is characterized by the extracellular deposition of
amyloid plaques, consisting predominantly of amyloid β (Aβ)
peptides, and the intraneuronal accumulation of neurofibrillary
tangles comprising aggregated, hyperphosphorylated tau protein
(Serrano-Pozo et al., 2011). In addition to Aβ plaques and tau
neurofibrillary tangles, neuroinflammation is also considered to
be a key feature of AD pathology (Shi and Holtzman, 2018). As
the main source of proinflammatory cytokines, microglia are the
key mediators of neuroinflammation (Colonna and Butovsky,
2017). Single microglia sequencing confirmed the existence of
a high proportion of activated microglia in APP transgenic
mice (Sierksma et al., 2020). In AD-related lesions, the glial
hyperplasia response may lead to the loss of cells after plaque
and neurofibrillary tangle-accumulation (Ke et al., 2005). In
contrast, chronic gliosis may also promote the accumulation
of plaques and tangles before the onset of AD, leading to the
progression of the disease (Herrup, 2010). These findings suggest
that microglia may actively participate in the pathogenesis of AD.
APOE genotype, sex and aging, the main risk factors for AD,
affect the progression of AD and may interact with microglia to
further aggravate neurodegeneration. Targeting microglia may
be a preventive intervention to delay the progression of AD. In
light of some new findings, in this review article, we will explore
the role of microglia in the brain and how they interact with the
factors of APOE genotype, sex, and aging to exacerbate AD.

PHYSIOLOGICAL FUNCTION OF
MICROGLIA

Microglia in the Adult Brain
Microglia maintain and repair the damage to neural networks,
which are the foundation of healthy brain development and
function (Ginhoux et al., 2013). Unlike, monocytes derived
from bone marrow, the maintenance and local expansion of

microglia depend on self-renewal (Ajami et al., 2007; Ginhoux
et al., 2010). Mature microglia are in a resting state and are
characterized by multiple branches and processes (Nimmerjahn
et al., 2005). Through two-photon imaging of the cerebral
cortex in vivo, Nimmerjahn et al. (2005) found that microglia
constantly observe the surrounding micro environment in their
presumed resting state. It is worth noting that microglia are
also sensors for brain pathology and can be quickly activated by
minor pathological changes in the CNS (Kreutzberg, 1996). The
phagocytic activity of activated microglia increases significantly
to effectively remove neuronal debris (Stence et al., 2001).

Microglia in the Developing Brain and the
Difference Between Sexes
Microglia originate from red bone marrow progenitor cells in the
yolk sac (Gomez Perdiguero et al., 2015). Microglial development
occurs for a certain period of time and developing microglia
undergo gradual changes to regulate the homeostasis of the
brain (Matcovitch-Natan et al., 2016). In the developing brain,
microglia repeatedly form short-term contacts with synapses,
eliminating excess synaptic structures (Tremblay et al., 2010).
Microglia not only participate in synapse pruning (Stevens
et al., 2007; Paolicelli et al., 2011) and eliminate redundant
neural precursor cells (Cunningham et al., 2013) but also
promote neuronal apoptosis and eliminate dead cells (Marin-
Teva et al., 2004; Wakselman et al., 2008). These functions
give microglia, the ability to monitor neuronal activity and
regulate synaptic plasticity. Studies in mice have shown that
sex is linked to significant differences in microglia during and
after development (Schwarz and Bilbo, 2012). For example,
males have a significantly larger number of microglia in the
early postnatal development period (postnatal day 4), while
females have more activated microglia in the late developmental
stages of adolescence and adulthood (postnatal day 30–60;
Figure 1; Ruggiero et al., 2018). To our surprise, there are more
microglia with amoeboid morphology in males, while female
microglia tend to reach the adult phenotype earlier than male
microglia (Figure 1; Lenz et al., 2013; Villapol et al., 2019). In
addition, females have a higher rate of phagocytosis of neural
precursor cells and healthy cells than males (Figure 1; Nelson
et al., 2017). Microglia isolated from the brains of newborn
female animals exhibited a higher degree of basic internalization
of fluorescent beads and nerve debris than male microglia
(Figure 1; Yanguas-Casas et al., 2020). In contrast, the microglia
of male newborn animals exhibited higher internalization of E.
coli bioparticles than the microglia of female newborn animals
(Figure 1; Yanguas-Casas et al., 2020). However, these sex
differences disappeared in microglia isolated from the brains of
adults (5 months; Yanguas-Casas et al., 2020). Given the above
findings, we believe that the sex differences in microglia are
mainly reflected during the developmental stage. Compared with
male mice, female mice have slight but significant differences in
gene expression in different brain regions (Sala Frigerio et al.,
2019). In the early postnatal period, male mice have more
microglia in the cortex, hippocampus and amygdala than female
mice (Figure 1; Schwarz et al., 2012). However, in adulthood,
female mice have significantly more microglia in these brain
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FIGURE 1 | Sex differences in the development of microglia: the differences in the number of microglia and their distribution among the brain regions at different
developmental stages are related to sex. Females exhibit a higher rate of phagocytosis of neural precursor cells and healthy cells than males, and females have more
phagocytic microglia than males. After treatment with estradiol, the number of phagocytic microglia in female mice decreased to the typical level observed in male
mice.

regions than male mice (Figure 1; Schwarz et al., 2012). The gene
expression of a large number of cytokines/chemokines and their
receptors changes significantly with development and is highly
dependent on sex (Schwarz et al., 2012). Based on the above
results, we believe that the sex differences in microglia are mainly
reflected during the developmental stage, and female microglia
may have a protective effect during the development.

Microglia in the Aging Brain
During brain development, microglia guide neurons for
proper CNS formation; in adulthood, microglia maintain
tissue homeostasis; and in old age, microglia may become
proinflammatory and finally exhausted (Figure 2; Valdés-Ferre
et al., 2020). However, we currently know very little about
microglia in the aging brain. Aging is one of the main risk
factors for neurodegenerative diseases and is marked by an
increase in CD68 expression and the accumulation of lipofuscin
(Figure 2; Weber et al., 2015; Safaiyan et al., 2016). Zhao
et al. (2020) found that the immunoreactivity of CD68 in
the brains of 24-month-old mice was significantly higher than
that in the brains of 3-month-old mice, confirming the effect
of aging on the activation of microglia (Zhao et al., 2020).
Microglial process speed significantly decreases with age (Streit
et al., 2004; Olah et al., 2018). The changes in the phagocytic
activity of senescent microglia in vitro were similar to those
of microglia purified from aged brains (Yanguas-Casas et al.,
2020). In vivo imaging of young, adult, and aging mice

showed that in addition to a slight increase in cell density,
microglial morphology and behavior also changed (e.g., larger
cell bodies, shorter dendrites, thicker dendrites, fewer branches,
and decreased phagocytic ability and motor ability; Figure 2;
McGeer et al., 1987; Itagaki et al., 1989; Styren et al., 1990).
During aging, the deposition of myelin in the parenchyma
may exceed the processing capacity of microglia, leading to the
accumulation of lipids and non-degradable lysosome aggregates
(Figure 2). This observation has been confirmed: with age,
myelin fragmentation increased, microglia entered a state of
dysfunction, and insoluble lipofuscin-like lysosomal inclusion
bodies appeared (Safaiyan et al., 2016). Age-related myelin
fragments overload the microglial lysosome system, resulting in
microglial aging and immune dysfunction (Figure 2; Safaiyan
et al., 2016). Aging causes chronic inflammation of microglia
(Figure 2; Hammond et al., 2019). With age, the function of
microglia decreased, the normal brain monitoring function is
gradually lost, and the pathological conditions of the brain may
not be detected and processed in time. Therefore, the dysfunction
of microglia in the aging brain may lead to age-related cognitive
decline and neurodegenerative diseases.

Microglial Phenotypes
Previous studies have divided microglia into resting (M0),
proinflammatory (M1), and proresolution (M2) microglia by
purifying isolated cells in vitro, but these phenotypes are highly
dynamic (Ransohoff, 2016). When homeostasis in the nervous
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FIGURE 2 | Microglia in the aging AD brain: the signs of aging are an increase in CD68 expression and the accumulation of lipofuscin. Aged mice have large
microglia with short, thick dendrites, few branches, signs of malnutrition, and decreased phagocytotic and locomotor abilities. Age-related myelin fragmentation
overloads the microglial lysosomal system, and the accumulation of lipids and nondegradable lysosomal aggregates leads to microglial senescence and immune
dysfunction. As AD is a disease, closely related to aging, the microglia of the AD brain usually appear in clusters and gather around deposits of Aβ fibrils (discussed in
the following section). With aging, the protruding movement of microglial processes is significantly reduced, and microglial coverage is reduced, leading to an
increase in Aβ fibril hotspots. In addition to the upregulation of APOE, AD microglia also showed enhanced aging characteristics. Microglia respond to brain tissue
damage that accumulates in AD and during aging, leading to increased inflammation, further reduction in phagocytic and motor abilities, and neuronal
communication disorders.

system is disrupted, microglia rapidly change their phenotype,
which is often referred to as microglial activation (Ransohoff
and Perry, 2009). Among these phenotypes, M1 microglia have
cytotoxic effects on neurons and oligodendrocytes cultured
in vitro, while M2 cells have phagocytic abilities and can
promote neurite growth (Kigerl et al., 2009; Hu et al.,
2012). Some studies have suggested that long-term activation
of M1 and suppression of the M2 state are the basis
of the inflammatory phenotype in AD and other chronic
neurodegenerative diseases (Cherry et al., 2014). However,
given the recent revelations regarding the complexity and
dynamics of microglia, the M0/M1/M2-classifications based on
in vitro studies may be too simple. In fact, recent single-cell
transcriptome studies have revealed several different microglial
subsets and cellular states in aging and disease, including
‘‘disease-associated microglia’’ (DAM; Keren-Shaul et al., 2017)
‘‘microglial neurodegenerative disease’’ (MGnD; Krasemann
et al., 2017) and ‘‘activation response microglia (ARM)’’ (Sala
Frigerio et al., 2019). Among these subsets, DAM may be
a protective phagocytic microglial cell population (Keren-
Shaul et al., 2017), while MGnD is a dysfunctional microglial
phenotype (Krasemann et al., 2017). Analyses of whole-tissue
RNA-seq and single-cell nuclear RNA-seq datasets show that
the lack of a DAM response in human microglia occurs in AD
tissues, but not in other neurodegenerative diseases (Srinivasan
et al., 2020). To understand whether a microglial phenotypic
switch from M0 (homeostatic) to MGnD (neurodegenerative)
is related to neuritic dystrophy in AD, Krasemann et al. (2017)
used P2ry12 and Clec7a monoclonal antibodies to distinguish
M0 and MGnD microglia in brains from APP-PS1 mice and
humans with AD (Krasemann et al., 2017). As a result, they
found Clec7a+P2ry12—microglia associated with Aβ plaques in
APP-PS1 mice (Krasemann et al., 2017). The phenotype of

Clec7a+ microglia was similar to that of MGnD microglia, found
in APP-PS1 models and during aging (Krasemann et al., 2017).
Although the role of microglia in the pathogenesis of AD is a field
of intensive research, whether the DAM and MGnD phenotypes
are the same and their effects on the CNS (harmful or beneficial)
may depend on the process and stage of the disease.

MICROGLIA AND THE MAIN RISK
FACTORS FOR AD

In the developing brain, microglia can destroy invading
microorganisms and remove harmful cellular debris (Kreutzberg,
1996). In general, microglia usually return to a resting state
after the pathogen is cleared. Nevertheless, if the CNS is
exposed to activation stimulation for a long time, microglia
will enter a dysfunctional state (Kreutzberg, 1996). Microglia
change significantly in brain pathology, undergoing a complex
multistage activation process (Kettenmann et al., 2011) and
changing from highly branched resting cells to reactive
amoeba-like cells (Zusso et al., 2012). Amoeba-like microglia
have neurotoxic effects that result in decreased phagocytosis
and motor ability and the production of inflammatory cytokines
(such as reactive oxygen species; Block et al., 2007; Hellwig et al.,
2013). At this point, the CNS becomes fertile ground for acute
or chronic pathological processes. In recent years, genome-wide
association studies (GWAS) have identified a number of genes
associated with an increased risk of late-onset AD (LOAD),
which are mainly expressed in the innate immune system and
microglia (Lambert et al., 2009; McQuade and Blurton-Jones,
2019). Minett et al. (2016) found that in people with dementia,
increased microglial activation levels are related to the pathology
of AD. By studying human postmortem cortex tissue, Felsky
et al. (2019) found that the proportion of morphologically
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activated microglia is closely related to β-amyloid and tau-related
neuropathology and the rate of cognitive decline. In LOAD,
the complete loss of functional microglia eventually leads to
widespread NFD, dementia and brain failure (Streit et al., 2020).
Although the exact mechanism of AD pathogenesis is still
unclear, integrated analysis of AD-related genes shows that the
immune/microglial gene network has the strongest correlation
with AD neuropathology (Zhang et al., 2013). In view of the
strong genetic evidence that microglia are involved in AD
and that APOE, sex and aging are the main risk factors for
AD, we will focus on summarizing their relationships with
microglia below.

APOE and Microglia
The Role of APOE in Microglia
APOE is the main cholesterol carrier in the brain, and APOE
plays an essential role in lipid transport, cholesterol homeostasis
and synaptic stability. In the brain, APOE is mainly secreted
by astrocytes, and microglia also produce APOE (Xu et al.,
2006). Elevated cholesterol was observed in glial cells lacking
APOE, reflecting impaired cholesterol transport in the brain
(Nugent et al., 2020). A single-cell RNA sequencing (scRNA-
seq) study showed that microglia in the brains of AD mice
also exhibited high expression of APOE in the later stage
of the disease (Keren-Shaul et al., 2017; Hammond et al.,
2019). Interestingly, Krasemann et al. (2017) found through
Ingenuity Pathway Analysis (IPA) that APOE is the upstream
regulator of MGnD microglia. Treatment of adult microglia
with APOE inhibited the specific microglial characteristics
of M0 and induce an M1-like phenotype (Butovsky et al.,
2015). Notably, when microglia gather around amyloid plaques
and release disease-related signals, the expression of APOE
in microglia increases significantly (Keren-Shaul et al., 2017;
Krasemann et al., 2017).

In humans, there are three main subtypes of APOE (APOE2,
APOE3, and APOE4), and they differ only at two amino
acid positions (112 and 158; Zhong and Weisgraber, 2009).
APOE4 is the largest risk factor for AD, while the relatively
rare APOE2 provides AD protection (Corder et al., 1993;
Strittmatter et al., 1993). In the process of activating neuronal
signals, the three variants of APOE showed differential potentials
(APOE4 > APOE3 > APOE2; Huang et al., 2019), reflecting
their relative effects on AD risk. The inheritance of different
APOE alleles can significantly affect the neurotoxicity caused
by the natural immune response of glial cells (Maezawa et al.,
2006). As the largest genetic risk factor for sporadic AD,
the expression of APOE4 changes the normal function of
glial cells, which may increase the risk of AD (Fernandez
et al., 2019). Studies of human postmortem brain tissue
have found an increase in the number of microglia in AD
patients who carry APOE4 (Egensperger et al., 1998; Overmyer
et al., 1999). Some studies have pointed out that APOE4 has
an inherent impact on microglial physiology by increasing
microglial movement and phagocytosis in vitro, so it may be
the specific cause of microglial dysfunction associated with
AD (Muth et al., 2019). In vitro, lipopolysaccharide-induced
inflammation was the greatest in the presence of APOE4

(Maezawa et al., 2006), and APOE4 caused cell morphology
changes (contraction of amoeba morphology and branching
process) and the production of pro-inflammatory cytokines (IL-
1b, IL-6 and TNF-a, etc.; Vitek et al., 2009; Zhu et al., 2012).
It can be seen from the above findings that only carrying the
APOE4 gene variant is enough to transform resting microglia
into immunologically active microglia (Lin et al., 2018). In vivo,
APOE4 also increases susceptibility to central and peripheral
inflammation in a gene dose-dependent manner (Vitek et al.,
2009). Therefore, APOE may be a key factor in microglial
disorders in neurodegenerative diseases and may affect AD
mainly by regulating microglial activation.

The Influence of APOE Subtype on Microglia and Aβ

Pathology
Microglia are closely related to Aβ plaques in the AD brain.
In AD transgenic mice, there is a large amount of microglial
infiltration in Aβ plaques, which are usually the focus of
microglial aggregation and activation (Simard et al., 2006;
Prokop et al., 2013). Activated microglia mainly exist in and
around neurons, or core plaques (Rozemuller et al., 1989;
Mackenzie et al., 1995), but not in diffuse amyloid deposits
(Perlmutter et al., 1992; Giulian et al., 1995). In fact, diffuse
amyloid plaques usually appear in the brains of older people
with normal cognitive function, while dense core plaques,
especially those associated with dystrophy, are most common in
the brains of patients with AD dementia (Serrano-Pozo et al.,
2011). In fact, microglial APOE may be the main source of
APOE associated with amyloid plaques (Parhizkar et al., 2019).
Microglia play a role in the production of Aβ aggregates, and
APOE4 may enhance the ability of microglia to participate
in this pathological process (Najm et al., 2020). In a study,
in which 5XFAD mice were bred with APOE3- or APOE4-
targeted replacement mice, the mice expressing APOE4 showed
significantly larger and more abundant amyloid plaques and
more microglial dystrophy (Figure 3; Yang et al., 2013). APOE4-
expressing microglia in the brains of APOE4 knock-in (APOE4-
KI) mice may impair the phagocytosis of Aβ aggregates, leading
to increased accumulation of Aβ aggregates (Figure 3; Lin et al.,
2018; Najm et al., 2020).

Microglia in mouse and human brains can accumulate
aggregated Aβ intracellularly, which may be the critical first
step in plaque formation (Spangenberg et al., 2019). Early
and long-term (21 days) use of colony-stimulating factor
1 receptor (CSF1R) inhibitors (PLX3397) significantly reduced
the activation of microglia and inhibited the accumulation of
amyloid in nerves, and neuritis plaques (Figure 3; Sosna et al.,
2018). However, interestingly, some studies have shown that
microglia play a beneficial role in densifying Aβ plaques and
protecting neurites from damage (Condello et al., 2015; Wang
et al., 2016; Yuan et al., 2016). Microglia can form a protective
barrier around amyloid deposits to isolate plaques from
surrounding axons, thus preventing plaques from expanding
outward and exerting toxic effects on neighboring neurons
(Condello et al., 2015; Shi and Holtzman, 2018). The application
of high-resolution confocal imaging and in vivo two-photon
imaging in AD mice indicated the existence of this protective
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FIGURE 3 | Activation of the role of APOE in microglia under different pathological conditions. APOE in plaques may increase Aβ clearance by binding to
TREM2 and activating microglia, promoting microglial migration and phagocytosis, and its efficacy varies with APOE subtype (APOE2 > APOE3 > APOE4). Through
CRISPR/Cas9 gene editing, converting APOE4 to APOE3 can enhance the ability of microglia to absorb extracellular Aβ. Similarly, the presence of APOE (especially
APOE4) significantly aggravates the neurodegeneration of p301 mice. However, APOE-KO has a powerful neuroprotective effect in tauopathy transgenic mice,
reducing the activation of microglia and improving brain atrophy in mice. CSF1R inhibitor-mediated depletion of microglia in P301S-tau transgenic mice can also
completely prevent the progression of tau pathology.

barrier in microglia and showed that it led to the formation
of dense plaques with low Aβ affinity (Condello et al., 2015).
As a new high affinity ligand of TREM2, APOE may direct
microglia to target plaques by interacting with triggering
receptor expressed on myeloid cells 2 (TREM2; Figure 3;
Cudaback et al., 2011; Shi and Holtzman, 2018; Parhizkar
et al., 2019). Yuan et al. (2016) proposed that the TREM2-
expressing microglial barrier restricts the growth of amyloid
plaques and protects neurons from damage. In the absence
of TREM2, Aβ plaques were more diffuse and had lower
density, resulting in greater neurite damage (Wang et al., 2016),
but had no significant effect on the steady-state plaque load
(Fitz et al., 2020). Therefore, TREM2 deficiency prevents the
formation of protective barriers of microglia that regulate the
compaction of amyloid plaques (Yuan et al., 2016), resulting
in the accumulation of dystrophic neurites near diffuse plaques
(Wang et al., 2015; Jay et al., 2017; Ulland and Colonna,
2018; Parhizkar et al., 2019). In the presence of APOE4,
the coverage of Aβ plaques by microglia was also reduced,
resulting in a significantly higher percentage of Aβ in the
hippocampus and cortex (Yang et al., 2013). Therefore, we
speculate that the presence of APOE4 abolishes the beneficial
effect of TREM2 on the microglia barrier. A recent study
found that in human samples, either the pathological effect
of AD was stronger than that of the APOE genotype or
the effect of APOE4 was dependent on AD (Zhao et al.,
2020). Therefore, without an increase in familial AD (FAD)

mutations, APOE3-KI and APOE4-KI mice did not produce
Aβ aggregates in the brain (Zhao et al., 2020). However,
transforming APOE4 into APOE3 by CRISPR/Cas9 gene editing
enhanced the ability of microglia to take up extracellular Aβ

(Figure 3; Lin et al., 2018).

The Influence of APOE Subtype on Microglia and Tau
Pathology
Friedberg et al. (2020) found that the density of microglia
was significantly correlated with tau pathology, and the
existence of tau aggregates in reactive microglia was confirmed
in the brains of patients (Odawara et al., 1995; Hopp
et al., 2018). In fact, PET images in mice showed that
tau accumulated before the activation of microglia, and
severe brain atrophy occurred after microglial activation
(Ishikawa et al., 2018). In the tauopathy mouse model,
microglia participate in the process of neurodegeneration
which are the main driving force of neurodegeneration
(Leyns et al., 2017; Shi et al., 2019). Activated microglia
not only aggravated the pathological changes of tau but
also drove the accumulation of hyperphosphorylated tau
(Vogels et al., 2019), which is consistent with the result
that activated microglia co-cultured with primary neocortical
neurons significantly increased neuronal tau phosphorylation
(Li et al., 2003).

In the P301S-tau transgenic dementia mouse model, mice
carrying human APOE4 exhibited more significant brain
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atrophythan mice carrying other APOE variants, such as
APOE2 and APOE3 (Shi et al., 2017). Individuals carrying
APOE4 have microglial dysfunction. Moreover, compared with
mice expressing APOE2 or APOE3, microglia-mediated cell
damage was greater in mice expressing APOE4 (Maezawa et al.,
2006). The presence of APOE, especially APOE4, significantly
aggravated neurodegeneration in P301S mice (Figure 3; Shi
et al., 2017). However, APOE knockout (APOE-KO) had a
strong neuroprotective effect in tauopathy mice (Figure 3; Shi
et al., 2019), significantly reducing the activation of microglia
and improving brain atrophy (Figure 3; Shi et al., 2017).
Microglia in APOE-KO mice still engulfed dead neurons, but
the MGnD phenotype did not appear (Keren-Shaul et al., 2017;
Krasemann et al., 2017; Bisht et al., 2018), suggesting that APOE
is essential to maintaining this phenotype. The microglia of
P301S-tau transgenic mice aged 6–9.5 months were depleted
by PLX3397, which completely blocked the progression of tau
pathology (Figure 3; Shi et al., 2019). However, using the
same method to reduce microglia in the aged mouse model of
invasive tau disease did not lead to changes in tau lesions or
neurodegeneration (Bennett et al., 2018). In addition, a slight
reduction in microglia (∼30%) did not change the tau load or
cortical atrophy in the mouse model of tau disease (Bennett
et al., 2018). Controlling the activity of microglia may not be an
effective strategy against the pathological changes of tau because
higher doses of PLX3397 or early intervention may be required
during the course of the disease.

The Influence of Sex on Microglia and AD
The sex difference in microglial function may be one of
the factors affecting the differences observed between
men and women in the susceptibility and prognosis of
neurodevelopmental and neuropsychiatric diseases (Figure 1).
Compared with males, females have more phagocytic microglia
(Figure 1; Nelson et al., 2017). After treatment with estradiol,
the hormone responsible for masculinizing the rodent brain, the
number of phagocytosing microglia in female mice decreased
to the typical level observed in male mice (Figure 1; Nelson
et al., 2017). Female microglia expressed lesser proinflammatory
genes and had neuroprotective effects in ischemic animal models
(Schwarz et al., 2012). However, in APPNL-G-F mice, themicroglia
of female mice progressed faster on the ARM trajectory than
those of male mice (Sala Frigerio et al., 2019). After ovariectomy
in APP23 mice (an animal model of chronic neuritis replicated
in AD patients), it was found that microglia developed to a
high reaction state, and a large number of microglial response
markers were upregulated (Vegeto et al., 2006; Benedusi et al.,
2012; Sarvari et al., 2012). Increased expression of inflammatory
markers was also observed in postmenopausal women, especially
in the functional areas of the brain that responded most strongly
to inflammation (Lei et al., 2003). This sex-dependent difference
in microglial response is interesting because the incidence of AD
is higher in women (Laws et al., 2018). Therefore, we speculate
that normal female microglia and estrogen have a protective
effect, but under the influence of AD, female microglia no longer
have a protective effect but instead accelerate the course of
female AD.

The Influence of Aging on Microglia and
AD
The average age of onset for sporadic AD is above the age
65 years old, and age is the main risk for AD (Hebert et al.,
2003). Microglia deteriorate due to age and cell aging but
also due to certain risk factors (as observed in genetically and
environmentally induced AD; Figure 2). Resting microglia have
neuroprotective effects, but during aging and AD, changes in
microglial proliferation, morphology and motility are signs of
decreased microglial function (Spittau, 2017). Compared with
the microglia of aged AD mice, the microglia of young AD
mice significantly lengthened and contracted their protrusions,
and their protrusions moved more (Figure 2; Koenigsknecht-
Talboo et al., 2008). Microglia in AD usually appear in
clusters and gather around fibrous Aβ deposits (Figure 2;
Perlmutter et al., 1992; Hickman et al., 2008). With aging,
microglia exhibit significantly less process movement, and the
coverage of microglia decreases, leading to enlarged protofibrillar
Aβ42 hotspots and more serious neuritic dystrophy (Condello
et al., 2015). Srinivasan et al. (2020) found that human
AD microglia not only upregulated APOE but also showed
enhanced characteristics of human aging (Figure 2). Aging
and systemic diseases push individual microglia toward the
proinflammatory phenotype, which damages the connectivity of
the neural network, leading to neuropsychiatric diseases (Valdés-
Ferre et al., 2020). Microglia respond to brain tissue damage
accumulated during aging and neurodegeneration, resulting
in increased inflammatory reactions, disturbances in neuronal
communication, and decreases in phagocytosis and motor ability
(Figure 2; Hefendehl et al., 2014). In this case, the ability of
microglia to monitor the brain and respond to various injuries
is weakened (Baron et al., 2014; Udeochu et al., 2016; Pimenova
et al., 2017). As expected, neuroinflammation in the brains of
aged mice lasted longer than that in the brains of adult mice
(Norden et al., 2015). The delayed response of microglia in
the brains of aged mice to injury may affect the pathological
outcomes of aged animals after brain injury.

By imaging acute brain slices by two-photon microscopy
in vivo, Krabbe et al. (2013) found that the directed movement
and phagocytic activity of microglia in AD mice were also
seriously impaired (Figure 2). Compared with the microglia of
young mice, the microglia of old mice had larger cell bodies,
shorter dendrites, thicker dendrites, fewer branches, and signs
of malnutrition (Figure 2; Vaughan and Peters, 1974; Streit
et al., 2004; Sierra et al., 2007; Baron et al., 2014). As AD
is a disease closely related to aging, it may not be entirely
surprising that microglia of the AD brain share some phenotypes
with aging microglia. The consequence of these aging- and
AD-related proinflammatory phenotypic changes in microglial
communication is the impairment of the synaptic plasticity and
cognitive ability of neurons (Udeochu et al., 2016). In vitro
experiments showed that aged microglia could not engulf Aβ as
effectively as young microglia (Njie et al., 2012). Compared with
those in wild-type control mice, the morphological changes of
microglia in aged ADmice were most obvious in the pathological
area containing Aβ plaques (Koenigsknecht-Talboo et al., 2008).
The above results show that, as a disease closely related to
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aging, AD causes microglial changes similar to those caused by
aging. Aging may increase the sensitivity of AD to microglia,
leading to further aggravation of microglial dysfunction in
elderly AD.

THE CROSSTALK AMONG APOE, SEX AND
AGING IN MICROGLIA

Notably, in the development of Alzheimer’s disease in reality,
the three major risk factors for AD-APOE genotype, sex, and
aging do not affect microglia independently. Aging can be
clearly defined the greatest risk factors for AD and its effect
on microglia are consistent. With aging, APOE genotype and
gender contributed to the pathogenesis and development of AD
by affecting microglia through synergistic effect.

APOE4 genotype is the strongest genetic factor of sporadic
AD. The age of AD onset in APOE4 genotype carriers was
earlier than that in non-APOE4 carriers, suggested that the
effect of APOE4 genotype on AD onset goes hand in hand with
age. APOE4 disrupts normal glial cell biology and intersects
with changes that occur during normal aging, resulting in
neurodegeneration and cognitive dysfunction (Costantini et al.,
2018; Fernandez et al., 2019). A great deal of evidence showed
that there is a strong connection between microglial activation in
AD patients and the APOE genotype, especially related to aging
(Saitoh et al., 1997; Egensperger et al., 1998). Compared with
non-aged mice, the microglial proteome of aged mice showed
enrichment of the APOE protein (Rangaraju et al., 2018). A
proteomic analysis of the postmortem human brain also showed
that APOE expression was higher in aged microglia (Olah et al.,
2018). In AD and aging mouse models, microglial APOE mRNA
was upregulated (Figure 2; Hickman et al., 2013; Orre et al.,
2014). These results suggested that aging alone is sufficient to
induce APOE expression in microglia at the mRNA and protein
levels, then accelerating the impact of APOE on the development
of AD.

Interestingly, there is a gender effect that women with
APOE4 carriers at higher risk for AD-related pathology, amyloid
plaques, and neurofibrillary tangles (Corder et al., 2004). ARM
cells are the dominant microglial cell type in APPNL-G-F

mice, while the proportion of ARM cells in females is higher
than that in males, and the response is earlier and more
pronounced, especially in older mice (Sala Frigerio et al., 2019),
suggested that the ARM response may be the intersection
of APOE4 genotype, sex, and aging in AD. It is noted that
plaque compaction is a beneficial result of the interaction
between microglia and plaques, but the APOE4 genotype and
female were showed associated with lower plaque compaction
(Stephen et al., 2019). Microglial coverage of plaques was
highest in male APOE3 mice, while the microglial coverage
observed in APOE4 mice and female mice was significantly
lower, meanwhile the amyloid level was increased (Stephen
et al., 2019). It has been reported that the aged microglia of
female mice may lost the ability to adapt their phagocytosis
to inflammatory conditions (Yanguas-Casas et al., 2020). With
aging, estrogen resistance may be related to the impaired
ability of microglia to reduce inflammation. Although carrying

the APOE4 genotype is not necessary or sufficient for the
development of AD, these observations may indicate that ARM
increases the vulnerability of this critical pathway, especially in
older women with APOE4 carriers. Therefore, we speculate that
ARM cells may further aggravate AD pathology by synergistic
interaction with APOE4 genotype, low circulating estrogen in
aging women, and pro-inflammatory factors induced by aging,
AD pathology may worsen with the increase of ARM cells in
female APOE4 carriers.

In summary, aging is the driving factor that expanding
the APOE4 or gender factor for AD risk, and it is no doubt
that microglia play the central role to affect the occurrence
and development of AD between the interactions of these risk
factors. In future, a more comprehensive understanding of the
mechanisms that contribute to the increased risk of AD is critical
to developing interventions and determining who will benefit
the most.

CONCLUSIONS AND PERSPECTIVES

Microglia are essential for maintaining normal brain function
and have been recognized as having a significant role in
neurodegenerative diseases, such as AD. As microglia colonize
the brain early in embryonic development, environmental
and/or genetic disturbances may alter the development,
synaptic pruning and surveillance of microglia or cause
other pathologies that may directly or indirectly lead to
neurodevelopmental and neuropsychiatric diseases. In
general, the role of microglia in alleviating or promoting
the pathological development of AD may be mediated by
the specific factors, they release and the balance between
proinflammatory and anti-inflammatory cytokines. As the
resident immune cells in the CNS, microglia play a key role
in maintaining brain homeostasis. Genetic studies have shown
that microglia play an essential role in the pathogenesis of
AD. In general, microglia can remove harmful cell debris.
When Aβ levels accumulate, microglia phagocytose and clear
Aβ aggregates. When the capacity of this activity is exceeded,
microglia form a barrier that tightly envelops Aβ aggregates
in dense core plaques and separates them from neurons.
These activated microglia are dependent on TREM2 and
assisted by APOE. However, in response to the activation of
microglia, the two hallmark AD pathologies, Aβ plaque and
tau pathology, may show opposite trends. Sometimes, due to
aging or genetic susceptibility, the function of these microglia
is insufficient to prevent the occurrence and development
of AD.

The aging of the global population has led to a rapid
increase in the incidence of AD, and there is a growing
need for an effective therapy for AD to improve the quality
of life of elderly patients with AD. Microglia are considered
to be the key mediators of neuroinflammation during AD.
Changing the function of microglia in disease states is the
subject of in-depth research and provides opportunities for
developing innovative AD treatments. These include therapeutic
strategies to inhibit the inflammatory response of microglia
(e.g., with NLRP3 inhibitors and RIPK1 inhibitors; Heneka
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TABLE 1 | Summary of pharmacological microglia depletion approaches.

Pharmacological
intervention

Animal model Efficiency Time
window

Physiological effects References

CSF1R inhibitor
(PLX3397;
290 mg/kg)

Wild-type
mice
(2/12/18-month-old)

∼99% 21 days No cognitive/behavioral
impairments. Inhibitor cessation
(14 days) induced cell
repopulation.

Elmore et al. (2014, 2015)

CSF1R inhibitor
(PLX3397;
290 mg/kg)

Tauopathy mice
(12-month-old).

∼30% 21 days No change in tau burden,
cortical atrophy, blood vessels.

Bennett et al. (2018)

CSF1R inhibitor
(PLX3397;
400 mg/kg)

P301S tau transgenic
mice (6-month-old)

90%–100% 7–21 days Blocked the progression of
pathological tau stages.

Shi et al. (2019)

CSF1R inhibitor
(PLX3397;
290 mg/kg)

5xfAD mice
(10-month-old)

∼99% 21/28 days Reduced intraneuronal amyloid.
Improved cognitive function.
Prevent neuronal loss and
contextual memory.

Spangenberg et al. (2016) and
Sosna et al. (2018)

CSF1R inhibitor
(PLX5622;
1,200 mg/kg)

5xfAD mice
(10-month-old)

∼80% 28 days Reduced dendritic spine loss,
prevent neuronal loss and
contextual memory.

Spangenberg et al. (2016)

CSF1R inhibitor
(PLX5622; 300/
1,200 mg/kg)

3xfAD mice
(15-month-old)

30%–95%. 7/21 days Lower dose inhibition prevented
microglial association with
plaques.
Lower dose inhibition improved
cognition.

Elmore et al. (2014)

Clodronate
Liposomes (7 µg/µl
injection

Cx3cr1GFP/ + mice
(8–10-week-old)

35%–85% 1∼ 3 days Damaged other brain cells.
Damaged the integrity and
density of blood vessels.

Han et al. (2019)

Diphtheria toxin (DT;
500 ng DT injection)

Cx3cr1CreER mice
(8-week-old)

∼80% <5 days Induced cytokine storm.
Reproduced within 5 days after
microglia failure.

Bruttger et al. (2015)

et al., 2018; Yuan et al., 2019), enhance microglial function
(e.g., with antibodies to the extracellular region of TREM2:
AL002a and 4D9; Cignarella et al., 2020; Schlepckow et al.,
2020), enhance lysosomal function inmicroglia (Majumdar et al.,
2011) and promote lipid processing in microglia (e.g., with
agonists of nuclear receptors; Moutinho and Landreth, 2017) and
clearance of diseased microglia (Han et al., 2017). What needs
special attention is that recently many pharmacological strategies
have been developed to successfully eliminate microglia from
the central nervous system (Table 1) such as the use of
diphtheria toxin (Bruttger et al., 2015), clodronate liposomes
(Faustino et al., 2011; Han et al., 2019), and CSF1R inhibitors
(mainly PLX3397 and PLX5562; Elmore et al., 2014). Although
in a variety of AD in mice, decrease of microglia CSF1R
antagonists have different results, but most studies have found
that microglia reduce improved cognition (Dagher et al., 2015;
Spangenberg et al., 2019), saved dendritic spine loss (Dagher
et al., 2015; Spangenberg et al., 2019), and reduced overall
neuroinflammation and neuropathic plaque formation (Sosna
et al., 2018), even blocking the Tau pathology process (Table 1;
Shi et al., 2019). CSF1R inhibitors are the effective tools to achieve
microglial depletion. Microglia account for 30%–99% of all cells
could be eliminated by preparing different concentrations of
inhibitors in food, so as to achieve comprehensive control of
microglia population. Moreover, removal of the CSF1R inhibitor
from mice with depleted microglia caused the entire CNS to

rapidly reproduce new cells within 14 days (Elmore et al., 2014),
and the new renewal of microglia ultimately has a good benefit
on the treatment of AD.

This treatment strategy also has limitations and concerns.
Since microglia are the main immune cells of the CNS,
long-term elimination of human microglia is currently not
feasible (Butowski et al., 2016). In view of the effect of CSF1R
inhibitors, the ability to replace microglia by stopping CSF1R
inhibitor treatment also has obvious clinical value, whether it is
possible to delay the course of AD by eliminating the microglia
after extensive nerve damage and allowing them to completely
refill the CNS depends on whether new cells can replace the
microglia lost in brain. The current clinical use of CSF1R
inhibitors further confirms that short-term administration of
CSF1R inhibitors can effectively eliminate human microglia
(Butowski et al., 2016). Therefore, short-term elimination of
microglia and cell proliferation may be a clinically feasible and
novel method to solve neuroinflammatory events and promote
brain recovery in brains affected by microglial dysfunction (Rice
et al., 2017; Son et al., 2020). However, Since the recently
obtained information on the different roles of microglia mainly
comes from studies in mouse disease models, it is necessary for
us to develop new disease models, including human induced
pluripotent stem cells (iPSCs; Muffat et al., 2016; Bohlen et al.,
2017; Gosselin et al., 2017), to fully understand which findings
can be translated from mice to humans.
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Here, the increased understanding of APOE genotypes,
sex and aging in microglia provides a new, microglia-focused
therapeutic approach for AD that is fundamentally different from
current methods for Aβ or tau. The discovery of sex differences
in susceptibility provides a basis for sex-related therapy, which
must be based on a better understanding of the relationships
among the endocrine, immune, and nervous systems of young
and aged individuals. Microglia replacement may be a new
method applicable in many cases, especially in the elderly AD
population. Microglia extensively manipulate the structure and
function of neurons to produce beneficial results. These results
provide new insights into the behavior of microglia. Since
intervention in the late stages of dementia is unlikely to change
the disease, treatment should take into consideration the disease
stage, and be designed to alleviate neuroinflammation according
to the exact disease stage, which would provide the possibility
for the development of effective treatments targeting microglia.
Whether microglia depletion and subsequent regeneration is a
promising therapeutic strategy for AD, is still an open question.
More research is needed to clarify the extent to which aged
microglia can be restored to their protective functions and reset
their aging clock. The beneficial and harmful effects of the

microglia rejuvenation strategy still need to be considered to
promote the development of safe and effective microglia-targeted
therapies. In the future, replacing or manipulating microglia,
combined with the transplantation of iPSC-derived neurons, will
give us the opportunity to analyze these two possibilities.
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