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Abstract
The potential of real-world data to inform clinical trial design and supplement 
control arms has gained much interest in recent years. The most common ap-
proach relies on reproducing control arm outcomes by matching real-world 
patient cohorts to clinical trial baseline populations. However, recent studies 
pointed out that there is a lack of replicability, generalisability, and consensus. In 
this article, we propose a novel approach that aims to explore and examine these 
discrepancies by concomitantly investigating the impact of selection criteria and 
operations on the measurements of outcomes from the patient data. We tested 
the approach on a dataset consisting of small-cell lung cancer patients receiving 
platinum-based chemotherapy regimens from a real-world data cohort (n = 223) 
and six clinical trial control arms (n = 1224). The results showed that the discrep-
ancy between real-world and clinical trial data potentially depends on differences 
in both patient populations and operational conditions (e.g., frequency of assess-
ments, and censoring), for which further investigation is required. Discovering 
and accounting for confounders, including hidden effects of differences in op-
erations related to the treatment process and clinical trial study protocol, would 
potentially allow for improved translation between clinical trials and real-world 
data. Continued development of the method presented here to systematically 
explore and account for these differences could pave the way for transferring 
learning across clinical studies and developing mutual translation between the 
real-world and clinical trials to inform clinical study design.

Study highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Real-world data have the potential to inform clinical trial design, control arms, 
and regulatory assessment. However, real-world evidence studies have shown 
poor replication and generalizability and a lack of consensus on the analytical 
process, thus underlining that the mechanisms that would allow the transla-
tion between clinical trials and real-world populations are still not completely 
understood.
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INTRODUCTION

During the past few years, discussions have highlighted 
the limitations of randomized clinical trials (RCTs) due 
to their high costs and the challenge of translating clini-
cal outcomes between RCT cohorts and real-world pa-
tient populations.1,2 Since the 21st Century Cures Act in 
2015, the potential for translating between real-world data 
(RWD) and clinical trials to inform regulatory decision-
making has gained attention.3–7 A growing body of re-
search has focused on the extrapolation of RWD to inform 
clinical trial design, often described as emulation of RCT 
control arms or simulated (synthetic) data,8–12 with the 
purpose of reproducing clinical trial outcomes.8–11,13–17

In an attempt to adjust for confounders, analyses have 
often focused on recreating the inclusion criteria of clini-
cal trials in RWD cohorts.8–10,14,16,18–26 The most common 
method is patient matching based on propensity score.27 
Propensity score is formally defined by Rosenbaum and 
Rubin as the conditional probability of assignment to a 
particular treatment.28 The method gives a probability of 
an RWD patient being enrolled in a clinical trial study 
arm given a vector of observed covariates. Then, the 
RWD cohort is adjusted by including only patients with 
high propensity scores. Propensity score approaches, 

including variations of this method, still constitute the 
main proposed technique for adjusting for confound-
ers in RWD cohorts based on the characteristics of RCT  
control arms  .8,10,16,19,21,22,24,26,29,30

However, propensity score approaches have been 
shown to be limited in this aspect since a probabilistic 
empirical approach is highly sensitive to undetected con-
founders and biases of the data.1,8,10,11,14,25 Indeed, the 
alignment of patient characteristics is seldom sufficient 
to reproduce outcomes across populations.10,11,16 It has 
repeatedly been pointed out that there is a lack of replica-
bility and generalisability1,9,10,13,17 with only a few clinical 
trials being replicable based on RWD.10,13,17 Results have 
been mixed depending on the specific case study13,17,31 
and measurements of outcome10,16 (e.g., overall survival 
and intermediate end points10,14).

The lack of translatability has been attributed to the 
differences in populations, such as baseline confound-
ers and key eligibility criteria that are not available in the 
data.10,11,13,14 The main focus of improvement has been 
on how patient demographics affect measurements of 
outcome with little focus on the operations and processes 
behind the data.8,10,13,23,32 The potential operational differ-
ences between clinical practice and clinical trial protocols 
have been mentioned as potential confounders but are yet 

WHAT QUESTION DID THIS STUDY ADDRESS?
What are the mechanisms that would allow translation between clinical trials 
and real-world? How can we design a comprehensive and systematic approach to 
explore the grade of translation? Does the approach work in a challenging real-
world case study such as small-cell lung cancer chemotherapy?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Differences in operations and protocols have a relevant impact on the gap in clini-
cal outcomes. These must be studied in concomitance with the selection criteria 
of the baselines. Previous works proposed pure empirical approaches (such as 
propensity score), and limitations of the findings can be related to the lack of con-
sideration of operational differences between trials and real-world practice. Our 
approach allowed novel insights regarding which aspects would benefit from fur-
ther investigation to improve the design of small-cell lung cancer studies (ECOG 
2 underrepresentation and pre-trial biases, exploring the therapies with the new 
TNM staging categories, operational biases of trials censoring and progress free 
survival).
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
Designing a comprehensive and systematic approach to investigate how selection 
criteria and operations are impacting on the measurements of outcome would 
allow us to estimate the trade-off between internal validity and generalizability 
of clinical trials. Thus, pushing real-world evidence toward a learn and confirm 
cycle from which we learn case by case and close the translational gap between 
clinical trials and real-world populations.
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to be fully explored.1,2,8,10,11,13,32 There is a need to investi-
gate the bias that is introduced by differences in investiga-
tion and clinical assessment1,10,11,23,32 (e.g., lack of pre-trial 
monitoring in clinical practice1), and potential differences 
in the RCT monitoring process compared with real-world 
patients, with more detailed and potentially more frequent 
follow-up on tumor response and adverse effects, and 
decision-making such as withdrawal of therapy.1,10,11,25,32

Translation between clinical trials and real-world 
populations is therefore still not completely under-
stood.1,8–10,13,14,16,17 Further refinement of proposed meth-
odologies is required to realize the potential of RWD to 
inform clinical trial design.6,9,10,13,33 In the past, the added 
value of a mechanistic systems view of translation in drug 
development has been beneficial for other areas of model-
informed drug development, such as quantitative in vitro 
in vivo extrapolation and physiologically-based pharmaco-
kinetics of metabolic drug–drug interactions.34 Developing 
systems approaches for real-world evidence could enable 
a similar learn-confirm cycle and learning across studies, 
where the represented systems include not only the patient, 
disease, and treatment but also the operational context.35

In this article, we propose an approach that aims to 
systematically explore the discrepancies between RWD 
and RCTs by discovering and accounting for the differ-
ences in population samples (randomization) and oper-
ation (protocols and clinical practice). We abbreviate the 
approach as SOMO as it is based on exploring the effects 
of Selection Criteria (S), Operations (O) and study proto-
cols, on the replication of the measurements of outcome 
(MO). We developed and tested the SOMO approach 
using RCTs and RWD on extensive disease (ED, multi-
ple distant metastases) small-cell lung cancer (SCLC) 
patients receiving platinum-etoposide chemotherapy. 
This was done to the extent it was possible given the 
available information, many factors were determined to 
be known unknowns.

SCLC is a case study that fits particularly well the scope 
of our study. The disease is very aggressive, with a reported 
median overall survival of about 6 months, and limited 
therapy options,36,37 and the treatment approaches have 
unfortunately not or only marginally improved during the 
past two decades.36 Hence, SCLC would benefit from le-
veraging RCT-RWD discrepancies.

METHODS

The SOMO approach

Figure 1 shows the SOMO approach and the accompany-
ing data analysis that was carried out. In short, the analy-
sis included the following components:

(S). Selection Criteria refers to all aspects related to the 
baseline variables that define the population, the biol-
ogy of the disease, and the inclusion and exclusion cri-
teria of the clinical datasets.
(O). Operations and study protocols refer to aspects re-
lated to operational processes (or mechanisms) occurring 
during treatment. These can be grouped into longitudinal 
disease factors (e.g., tumor progression), the study pro-
tocol operations (e.g., removal and censoring of patients 
that did not adhere to the study protocol), or the potential 
differences from the real-world routine healthcare opera-
tions (e.g., adjustment of doses, change of treatment due 
to relapse, patients opting to not receive treatment).
(MO). Measurements of Outcome refer to the metrics 
used to evaluate treatment efficacy (and safety, when 
available) and estimation of the feasibility of trans-
lation between RWD and RCTs using a comparative 
approach. These can be one or multiple outcomes 
depending on the study end points and the statistical 
analysis defined by the protocol (e.g., overall survival, 
progress-free survival, toxicity, exposure, or overall re-
sponse, etc.), as well as the available information from 
the real-world cohort.

Available RCT and RWD data are retrieved, pre-
processed, and harmonized into a combined dataset. 
Then, clinical experts interpret and contextualize infor-
mation (Figure 1, steps a.1–2). The analysis is then carried 
out in the following steps:

•	 Explorative analysis. An exploratory data analysis is per-
formed to define the SOMO components (steps b.1–5). 
During this phase outcomes, relevant available factors, 
and potentially important missing aspects, are mapped 
into the three categories as detailed below. First, the 
comparison between RCTs and RWD outcomes is carried 
out to estimate baseline differences in MOs between co-
horts. Then, a comparison between the two populations 
is performed to detect any potential mismatch between 
patient covariates due to selection and randomization. 
Finally, for the operational aspects, potential confound-
ers are investigated through a comparison between study 
protocols and clinical practice with the aid of longitudi-
nal outcome measures (e.g., Kaplan–Meier or dose–re-
sponse curves) and clinical expert feedback.

•	 Estimating the impact of factors on the discrepancies in 
outcomes between cohorts. The potential impact of se-
lection criteria and operations is explored by applying 
matching based on the relevant available variables and 
simulating the effects of operations. The impact on MO is 
then compared (steps c.1–2). Clinical expert involvement 
allows verification of the results by identifying and dis-
cussing eventual biases and confounders (step d).
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Hence, one of the outcomes was a list of potential fac-
tors related to selection criteria and operations that could 
contribute to explaining the translational gap and quanti-
fying their effects, or indicative future aspects to explore 
when the hypotheses cannot be tested due to the lack of 
available information.

Case study: Extensive disease small-cell 
lung cancer patients receiving 
platinum-etoposide chemotherapy

Cohort description

In this study, a mixed cohort was collated, including 
RWD and RCTs of ED-SCLC patients that had received 
platinum-etoposide chemotherapy as first-line treatment:

•	 The RWD included in this analysis was part of a retro-
spective cohort of SCLC patients treated at Karolinska 
University Hospital (Stockholm, Sweden) between 
2008 and 201637 (RWD KI, n patients = 223). The study 
was approved by the institutional review boards at 
Karolinska Institutet and Stockholm County Council 
(2016/8-31). This cohort has served diverse studies and 
proved to be robust for RWD analyses.37–39

•	 The RCT comparative groups originated from open data 
shared through the Project Data Sphere Initiative,40 in-
cluding participants receiving the standard platinum-
etoposide treatment that were randomized into the 
control arm from three randomized phase III clin-
ical trials: PDS_Amgen (NCT00119613, n = 232), 
PDS_Alliance (NCT00003299, n = 270), PDS_EliLilly 
(NCT00363415, n = 370), and three phase Ib-II tri-
als PDS_PHASE2_Alliance (NCT00453154, n = 46), 

F I G U R E  1   Summary description of the SOMO approach. Data are retrieved and pre-processes (step a), explorative analysis (step b), 
estimating the impact of factors on translation between cohorts (step c), validation and evaluation of the results (step d).
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PDS_PHASE2_EliLilly (NCT01439568, n = 41), PDS_
PHASE2_G1Thera (NCT02499770, n = 37). A subset 
of patients (n = 85) of PDS_EliLilly was censored after 
the study was declared futile after the interim analysis. 
These were removed prior to the analysis.

The combined mixed cohort encompassed n = 1224 
patients in total. The common patient variables were age, 
sex, brain metastasis (BM), Eastern Cooperative Oncology 
Group performance status (ECOG), the cohort from which 
the data were retrieved (STUDY), and the label referring 
to whether patients originated from the RCTs or real-
world cohort (STUDY_TYPE). Survival outcomes were 
progression-free survival (PFS) and overall survival (OS). 
PFS was calculated from the date of randomization or 
from the date of treatment start in the RCT and RWD co-
horts, respectively, until the occurrence of radiological or 
clinical progression, or death of any cause. Similarly, OS 
was calculated with the starting date as for PFS, until the 
death of any cause. At the time of the last follow-up, pa-
tients alive and without experiencing disease progression 
were censored for PFS, and those still alive were censored 
for OS (CENSOR). The criteria for censoring were the same 
in both the RCT and RWD cohorts. The presence of BM 
was considered as a variable of special interest. The course 
of the disease in these patients is particularly unfavorable, 
as compared with metastases in other organs (liver, bone). 
In clinical trials, brain metastases are underrepresented, 
since such patients are usually considered eligible only if 
asymptomatic, which is seldom the case. RWD instead is 
a precious source for studying this patient category, since 
SCLC with BM represents a rather common challenge in 
clinical practice. The real-world cohort had been re-staged 
using the 8th version of the International Association for 
the Study of Lung Cancer (IASLC) TNM in a previous 
validation study.38 A stage variable (STAGE) was created 
where real-world patients were defined using TNM staging 
(IVA or IVB), while the random clinical trials patients were 
staged using the traditional Veterans' Administration Lung 
Study Group (VALSG) method (ED stage). Although using 
the TNM staging classification is strongly recommended 
in clinical practice, a modified staging system categoriz-
ing SCLC patients into two groups, according to the treat-
ment strategy, is potentially curable (limited disease, LD) or 
purely palliative (extensive disease, ED) has been adopted 
as a selection criterion for a large number of clinical trials.38 
TNM-IVA patients correspond to ED patients with multiple 
tumoral nodules in the contralateral lung, pleural or peri-
cardial nodules, malignant pleural or pericardial effusion, 
or single extrathoracic metastases in a single organ, while 
IVB patients are ED patients with multiple extrathoracic 
metastases in one or more organs.38 A summary of the 
RWD and clinical trials cohorts is reported in the Table S1.

Survival analysis

Table  1 summarizes how the SOMO approach was 
applied to the ED-SCLC case study reporting the de-
tected aspects during the explorative analysis and how 
were investigated. The main techniques used during 
the analysis were: cohort stratification given the avail-
able variables, propensity score matching with weights 
computed using logistic regression,27 and oversam-
pling to generate simulated cohorts using the standard 
Synthetic Minority Over-sampling TEchnique-Nominal 
Continuous (SMOTENC) algorithm based on k-nearest 
neighbors.41 Table 1 details how these techniques were 
used for investigating the impact of variables on the ob-
served outcomes.

First, the RCTs were combined into one dataset and di-
rectly compared with the RWD. Then, a pairwise analysis 
was carried out using a simulation approach to compare 
the RWD with each RCT to explore the between-study 
variability in MO.

Differences in the survival outcomes (OS and PFS) 
were explored. This was done using Kaplan–Meier Curves 
and Cox proportional Hazard ratios. The reference for 
computing the hazard ratios was the RWD cohort.

For the pairwise analysis, simulations were carried out 
creating a surrogate cohort (n = 250) by randomly selecting 
a 1:1 ratio of patients from the two populations, the RWD 
and the analyzed RCT (Figure S1). Then, the Cox hazard 
ratios between real-world and clinical trials cohorts were 
computed. This was repeated 100 times to estimate the 
variability in the outcomes. This number of iterations 
was chosen since was enough to reproduce the baseline 
MO discrepancy between trial and RWD cohort. Different 
scenarios were simulated by adjusting the selection of 
patients according to the identified variables across the 
datasets (e.g., stratification by individual variables). The 
main assumption was that in the ideal scenario, where we 
would be capable of blindly adjusting for all confounders 
in the RWD to RCTs, there would be no significant dif-
ferences in outcome between the two populations. Hence, 
assessing the impact of the explored factors on MO could 
be used for future trial designs.

RESULTS

Mapping available data and SOMO 
components

In total eight selection criteria factors were identified, nine 
potential operational discrepancies, and three potential 
effects on MO. Among these, it was possible to study from 
the available data the effects of seven selection criteria and 
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T A B L E  1   SOMO analysis description for mixed cohort SCLC study.

SOMO 
component

Parameter/factor to 
investigate

Is possible to investigate using the 
current data? Analysis description

Selection 
criteria (S)

ECOG Performance status Yes Cohort stratification based on ECOG

Sex Yes Cohort stratification sex

Age Yes Cohort stratification of patients older 
than 75 years

Brain metastasis Yes
Baseline brain metastasis records were not 
available for all clinical trial patients, or not 
explicit mentioned as an exclusion criterion

Cohort stratification based on brain 
metastasis where possible

Cancer stage Yes
For RWD: 8th TNM version (“IVA” PR 
“IVB”). For RCTs: VALSG stage (unique 
value: “ED-SCLC”)

Cohort stratification of RWD TNM 
staging IVA and IVB

Oversampling with SMOTENC of RWD 
TNM-IVA to balance with IVB patients

RCT selection criteria 
“probability of survive more 
than 3 months”

Yes
This information is not explicitly expressed 
in the RCTs data. We can only find a 
simulation strategy to reproduce this 
implicit selection in the RWD

Simulated by matching the RWD 
patients using a propensity score 
matching with Y = “OS >90 days” (y/n)

RWD propensity score 
matching

Yes Propensity score matching with 
Y = “probability of being included in the 
RCT study cohort” (y/n)

Lab tests and chemistry 
blood values before 
initiating the treatment

Few overlaps between RWD and RCTs. 
The only common baseline available in all 
the studies was hemoglobin. Few RCTs 
instances matched with the RWD available 
blood values (Lactate Dehydrogenase, 
Albumin, and Sodium)

Other Key baselines: 
smoking status, ethnicity, 
and comorbidity score

Smoking status: information not available 
from the RCTs
Ethnicity: Information not available from 
the RWD
Comorbidity score: information not 
available from RWD and RCTs

Operations and 
protocols (O)

Outcomes definition 
Correction (RWD survival 
outcomes are calculated 
from the start of the 
therapy, RCTs from the 
randomization)

Yes
Correction made from the RCTs data when 
timestamps were available. For the RCTs 
with this information missing, we imputed 
the correction as random effect informed by 
the available one

Analysis performed with the corrected 
RCTs outcomes

ECOG 2 RCT pre-trial 
enrolment bias

Yes
RCT patients with ECOG 2 were compared 
with RWD ECOG 2-3 to assess of there 
was a worsening of baseline for the RCTs 
patients

Sub-cohort stratification

Clinical trials censoring Yes Inclusion the censored records for 
futility of the PDS_EliLilly study to 
estimate the censoring bias

Removing all censored patients from the 
analysis

Propensity score matching including the 
censoring as variable
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four operational factors, on the two MO (See Table 1 for 
more details).

From the available data, it was possible to explore the 
effects of the commonly available variables reported in 
the previous section by observing the differences in out-
comes for stratified subsamples of the cohort. The RWD 
stage IVA patients (n = 46) were oversampled with the 
SMOTENC algorithm to balance these against the IVB 
patients (n = 231). Propensity score matching allowed the 
exploration of the effects of these variables. Moreover, 
propensity score was used to simulate the common se-
lection criterion across all RCTs, patients that are ex-
pected to live more than 3 months, for the RWD.

The operational aspects that were possible to ex-
plore were: discrepancies in outcome definitions (RWD 

survival outcomes were calculated from the start of the 
therapy, for RCTs this was defined from the randomiza-
tion), the potential progression of ECOG from 2 to 3 in 
the RCTs as compared with the outcomes of ECOG 3 
RWD patients, and RCT censoring effects. The censor-
ing was studied from different perspectives: removal of 
all censored patients, simulating censoring in a synthetic 
RWD cohort using SMOTENC sampling using the same 
distribution in the RCTs, and including the censoring as 
a variable in the propensity score matching. This latter 
aspect is of particular importance, since a too short fol-
low-up time may lead to an over-representation of cen-
sored cases, namely, cases that will eventually experience 
disease progression or death within a time frame of few 
months after study closure, and where the event would 

SOMO 
component

Parameter/factor to 
investigate

Is possible to investigate using the 
current data? Analysis description

Variability and robustness 
of the longitudinal profile of 
survival curves difference

Yes Creation a real-world synthetic 
cohort with same RCTs sample size 
using SMOTENC oversampling and 
simulating censoring effect with same 
distribution of the clinical trials

Treatment administration 
(e.g., dose–response 
variables)

Information not available from the RWD

Longitudinal biomarkers, 
and lab test or chemistry 
values

Information not available from RWD

Longitudinal events and 
intermediate decisions 
(e.g., tumor regression, 
adherence to therapy, 
radiological progression, 
worsening of patient status)

Information not available from RWD

RECIST assessment of the 
radiological processes

Information not available from RWD
RECIST assessment is performed 
systematically in RCTs, but no in RWD

Treatment lines after first-
line therapy

Information not available from RCTs

Measurements 
of outcome 
(MO)

Survival outcomes: Overall 
survival (OS) and progress-
free survival (PFS)

Yes
PFS is not available for all the RCTs data

Common reported outcomes. Analysis 
with Kaplan–Meier Curves, and Cox 
Hazard ratios of the entire cohort 
hazard ratio variability. Hazard ratios 
distribution obtained from the pairwise 
matching simulation of interventions on 
the matching (Figure S1)

Toxicity analysis (Adverse 
Effects incidence, toxicity 
grade)

Information not available from RWD

Abbreviations: OS, overall survival; PFS, progress free survival; RCT, random clinical trial; RECIST, response evaluation criteria in solid tumors; RWD, real-
world data; SMOTENC, Synthetic Minority Over-sampling TEchnique-Nominal Continuous.

T A B L E  1   (Continued)
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have instead been captured with a longer and more ade-
quate follow-up time.

Due to a lack of overlap in information across RWD and 
RCTs, it was not possible to investigate the effect of blood 
chemistry values and biomarkers, dose administration, in-
termediate decisions, and longitudinal events (tumor pro-
gression or adverse effects), and treatments after the first 
chemo-cycle. Considerations regarding toxicity outcomes 
were not possible due to the lack of longitudinal informa-
tion. Furthermore, information on PFS was limited and 
only reported for a small subset of RCT patients (mainly 
from PDS_EliLilly).

Cohort discrepancies

Table  2 reports the baseline discrepancies between the 
studies and the main results of the comparison of RWD 
with the aggregated RCT data. A significant difference 
was observed when comparing survival outcomes in RWD 
and RCT patients: OS (hazard ratio: 0.65 [0.55, 0.75], ref-
erence: RWD) and PFS (hazard ratio: 0.70 [0.58, 0.85]). 
The full set of results is reported in the Table S2.

Analysis of selection criteria identified several dif-
ferences in the RWD as compared with the RCTs. In the 
RWD, the age distribution was skewed toward older age 

T A B L E  2   Main results for the aggregated cohort analysis.

Measurement 
of outcome 
(MO) Parameter analysis Total cohort (RCT, RWD) Hazard ratio (ref = RWD)

Overall survival Baseline MO difference 1224 (996, 228) 0.65 [0.55–0.75]***

(S) ECOG 0 386 (331, 55) 0.71 [0.52–0.97]*

(S) ECOG 1 669 (564, 105) 0.75 [0.6–0.94]*

(S) ECOG 2 169 (101, 68) 0.73 [0.53–1]

(S) TNM staging STRAT 1224 (996, IVA:40 IVB: 188) IVA: (ref), IVB: 1.9 [1.36–2.7]***, 
RCT: 1.1 [0.78–1.5]

(S) Oversampling TNM-IVA 
stage

1372 (996, IVA: 188 IVB: 188) IVA: (ref), IVB: 1.72 [1.40–2.1]***, 
RCT: 0.96 [0.81–1.1]

(O) Propensity score including 
also the censoring as variable

456 (228, 228) 1.1 [0.87–1.3]

(O) Oversampling RWD simulating 
RCT censoring

1992 (996, 996) 0.89 [0.8–0.99]*

Progress free 
survival

Baseline MO difference 689 (461, 228) 0.7 [0.58–0.85]***

(S) ECOG 0 261 (206, 55) 0.78 [0.54–1.1]

(S) ECOG 1 330 (225, 105) 0.85 [0.64–1.1]

(S) ECOG 2 98 (30, 68) 1.2 [0.74–2]

(S) TNM staging STRAT 689 (461, IVA: 40, IVB: 188) IVA: (ref), IVB: 1.7 [1.21–2.5]**, 
RCT: 1.1 [0.76–1.6]

(S) Oversampling TNM-IVA 
stage

837 (461, IVA: 188, IVB:188) IVA: (ref), IVB: 1.6 [1.26–1.9]**, 
RCT 1.0 [0.81–1.2]

(O) ECOG 2 pre-trial effect 216 (ECOG 2 RCT: 101, ECOG 2 
RWD: 169; ECOG 3 RWD: 47)

ECOG 2 RCT: (ref), ECOG 2 RWD: 
0.79 [0.48–1.3], ECOG 3 RWD: 1.26 
[0.74–2.1]

(O) Including censored records for 
study futility

772 (544, 228) 0.67 [0.56–0.81]***

(O) Removing all censored patients 433 (210, 223) 1.5 [1.2–1.8]***

(O) Propensity score including also 
the censoring as variable

456 (228, 228) 1.5 [1.2–1.8]***

(O) Oversampling RWD simulating 
RCT censoring

922 (461, 461) 1.5 [1.2–1.8]***

Note: The log-rank test of Kaplan–Meier Curves confirmed the results obtained with the Cox Hazard ratios.
Bold text: detected similarity of outcomes, Underlined text: detected switch of survival outcome (better prognosis for real-world patients). (S), selection criteria; 
(O), operations, MO, measurement of outcomes; RCT, randomize clinical trials; RWD, real-world data. For the hazard ratios is reported the 95% confidence 
level interval. *p-value <0.05, **p < 0.01, ***p < 0.001.
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(median: 70 years, range: [42–86] years), a more balanced 
sex ratio (male: 43.4%, female: 56.6%), and a higher fre-
quency of patients with ECOG 2 (n = 68, 29.8%; Table S1). 
Baseline BM records were not available for all clinical trial 
patients, or were not explicit mentioned as an exclusion 
criterion (e.g., PDS_Alliance).

The analysis of operational aspects highlighted differ-
ences in the censoring between the two settings. Real-
world censoring corresponded to a few patients (n = 5) 
with long survival (subject to right censoring). For trial 
patients, censoring occurred with higher frequency (i.e., 
n = 225, 60.8% in PDS_EliLilly) across the survival range 
of 0–300 days. This resulted in higher estimates of OS in 
the RCTs compared with the RWD (Figure 2a).

Selection criteria: Performance status and 
TNM staging

The subcohorts of patients that showed similar OS across 
the two cohorts (i.e., hazard ratios not statistically differ-
ent from (1) were ECOG 2 patients (Table 2), and RWD 
patients with TNM staging IVA, using both conven-
tional stratification and SMOTENC (Table 2; Figure S2)). 
Traditional propensity score matching did not overcome 
the difference in OS between the two cohorts (hazard 
ratio: 0.55 [0.44, 0.70]; Table S1).

For what concerns PFS, the outcomes were similar for 
the RCTs and RWD cohort across ECOG subgroups, TNM-
IVA cancer staging of RWD patients using conventional 
stratification and with SMOTENC oversampling, and tra-
ditional propensity score matching (Table 2).

Operations: The effect of RCT censoring on 
survival estimation and propensity score 
matching

The effect of operational aspects could be deduced from 
the comparison of the survival curve shapes. Figure  2a 
shows that the differing shapes of the Kaplan–Meier curve 
between the two cohorts (i.e., lower survival in the first 
30 days for the RCTs, followed by a higher survival for 
RCTs until 130 days before reaching a similar trend for the 
rest of the longitudinal curve).

The high RCT censoring was a key operational aspect 
that was impacting on the survival discrepancies. In fact, 
the higher survival in the RCTs during the first 130 days 
was strongly related to the censoring (Figure 2a), where 
removing the censored patients or simulating the same 
censoring distribution in the RWD synthetic cohort re-
duced the difference in OS (Figure 2b; Table S1).

Moreover, adjusting the propensity score by match-
ing the censoring operations allowed to reduce the 

F I G U R E  2   Overall survival Kaplan–Meier curves and number of censored patients across the time for the (a) baseline survival gap of 
measurement of outcome (n = 1224), (b) synthetic oversampled RWD cohort with same trial censoring (n = 1992). The cohort in (b) was 
obtained by oversampling RWD with the SMOTENC algorithm to match RCT sample size, and simulating RWD censoring using the same 
distribution of the RCT cohort. RWD, real-world data.
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discrepancy in OS between RCTs and RWD (Figure 3). In 
contrast, PFS was higher in the RWD compared with RCT 
cohort when correcting for censoring (hazard ratio: 1.5 
[1.2, 1.8]) (Table 2).

The lower OS in the RCTs during the first 30 days could 
be related to potential progression of baseline ECOG 2 
between the time of screening and randomization in the 
RCTs. In fact, Figure S3 shows that ECOG 2 patients in 
RCTs have similar OS as compared with ECOG 3 patients 
from the RWD (n = 47) in the range of 0 to 30 days, and 
identical PFS curve.

Pairwise randomized controlled trial 
comparison to the real-world population

Figures 4 and 5 show the OS of PDS_EliLilly and PDS_
Amgen, and PFS for PDS_EliLilly following simulation-
based oversampling of subgroups. Figure  S4 shows the 
OS for PDS_Alliance and the aggregated cohort of phases 
I–II patients following simulation-based oversampling. 
Overall, the results confirmed the findings of the aggre-
gated RCT analysis (Table S2). In addition, this allowed 
us to investigate the variability between the RCTs and the 
impact of correcting for the known discrepancies between 
the RCTs and RWD.

Oversampling of stage IVA patients in RWD played a 
role in reducing the discrepancies in OS across all the tri-
als. Similarly, this improved the discrepancy in PFS for the 

PDS_EliLilly trial. For the trials with a relevant number 
of censored patients (i.e., 60% for PDS_EliLilly, 18.28% for 
the phase I/II aggregated cohort), censoring was the most 
impactful factor and was associated with a larger differ-
ence in the baseline discrepancy of OS between the trial 
and the RWD cohort.

Figure 5 underlines the impact of operations on PFS, 
from which similar outcomes were achieved when cor-
recting for ECOG and TNM stage. Instead, when correct-
ing for censoring alone the discrepancy in PFS between 
PDS_EliLilly and the RWD was increased, with a. higher 
PFS in the RWD cohort.

DISCUSSION

In this study, we developed and tested an approach that 
aims to explore and estimate the impact of selection crite-
ria and operations on outcome replication between RWD 
and RCTs. This was done using a systematic approach, at-
tempting to account for known differences in the popula-
tion samples.

The results of our work are relevant from the general 
perspectives on how to improve future clinical trial de-
sign. For example, censoring in clinical trials is a known 
potential confounder.42 This work underlined that this 
was a key operational factor with a relatively high im-
pact, thus leading to a potential overestimation of OS in 
clinical trials (Table 2; Figures 2 and 3). Moreover, when 

F I G U R E  3   Overall Survival Kaplan–Meier Curves using (a) traditional propensity score marching (n = 456), and (b) propensity score 
accounting trials censoring (n = 456). RWD, real-world data.
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F I G U R E  4   Matching simulation results for overall survival hazard ratios for PDS_EliLilly and PDS_Amgen. For each simulation 
scenario are reported the boxplots of the hazard ratio distribution. BM, brain metastases; PR.SC., propensity score; RWD, real-world data; 
Strat.: stratification. Hazard ratio and 95% confidence level interval with the whole cohort is reported in red dotted lines, ideal scenario of 
RCT-RWD matching is reported with the blue-dotted line.

F I G U R E  5   Matching simulation results for progress-free survival hazard ratios for PDS_EliLilly. For each simulation scenario are 
reported the boxplots of the hazard ratio distribution. BM, Brain metastases; PR.SC., Propensity score; RWD, real-world data; Strat., 
Stratification. Hazard ratio and 95% confidence level interval with the whole cohort is reported in red dotted lines, ideal scenario of  
RCT-RWD matching is reported with the blue-dotted line.
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censored patients were removed, other variables reported 
in Table  S2 reduced the difference in OS between the 
RCTs and RWD. Thus, indicating how the censoring could 
bias the estimated difference in OS between the cohorts. 
Moreover, the interventions we applied to assess censor-
ing effect were useful as a retrospective correction of the 
outcomes, but not applicable as prospective prior RWD-
RCT translation.

As shown in Figure S3, ECOG 2 RCT patients showed 
more similar OS and PFS to ECOG 3 RWD patients. This 
could potentially be explained by differences in patient 
condition between the pre-trial phase and randomization 
that could lead to worsening in baseline ECOG.

The results showed that the challenge of replicating 
outcomes in clinical trials from RWD patients depend 
not only on patient characteristics discrepancies, but 
also on differences in operations. This can be seen in 
Figures 2 and 5 and Figure S3 where the survival curves 
of the RCTs and RWD patients present differences in OS, 
potential due to operational differences in follow-up. 
This is underlined by the PFS analysis, where matching 
of population variables (performance status and TNM 
staging) resulted in indistinguishable PFS between RCTs 
and RWD. However, the discrepancy in PFS war larger 
when accounting for the censoring (Table 2; Figure 5). 
This result is surprising, and we suspect it could be due 
to more frequent monitoring of clinical trial patients 
that could result in a shorter reported PFS when adverse 
events or relapse occur.

In previous works, the dominant approach has 
been the propensity score informed by clinical trial 
data.10,24–26,30,31,43 No in-depth examination of differ-
ences in operations has been done before. Figure  3 
demonstrates the relevant contribution operations (i.e., 
censoring) to biasing propensity score matching. This 
can potentially explain why replication was not achieved 
in previous works. Indeed, in the ideal condition of hav-
ing two populations with the same support of baseline 
covariates and sufficient population sample, accounting 
for the eventual operational differences, should theo-
retically account for any misalignment in study out-
comes.9,11,31,43 One limitation of the propensity score is 
that it works from only one direction by selecting RWD 
patients that match RCTs, thus not accounting for any 
additional findings and confounders that are only de-
tectable in the RWD population. This approach is lim-
ited for prospective applications since it would blindly 
work only in the scenario where all relevant confound-
ers are accounted for in the RCTs.

RWD can inform additional disparities between RCTs 
and clinical practice.1 Previous studies indicate that this 
difference is consistent and independent of the studied 
case.9,10,13,17 One of the observations in this study related 

to the time-dynamic differences in Kaplan–Meier curves 
between RCTs and RWD (Figure 2). Similar Kaplan–Meier 
curves as in Figure 2a have previously been found in other 
oncology case studies,10,14 thus suggesting that the impact 
of operations is not isolated only to small cell lung can-
cer. Further research is needed to understand the origins 
of this difference.35 It has been noted that in translating 
between RCTs and RWD, understanding the complexity 
of clinical practice and treatment processes may be instru-
mental to explaining this.35

Previous real-world evidence studies of lung cancer 
have mainly focused on non-small cell lung cancer, thus 
leaving small cell lung cancer understudied.44 To the best 
of the authors' knowledge, this is the most comprehen-
sive real-world evidence study for small cell lung cancer 
disease. Analyses of selection criteria and MO showed 
comparable results to previous studies, where a larger 
difference was observed in OS between RCTs and RWD 
compared with other intermediate endpoints.10,14 Further, 
population differences were observed in age, an underrep-
resentation of ECOG 2 and higher representation of fe-
males in the RWD as compared with the clinical trials.45–47

The similarity between the stage IVA real-world pa-
tients and the clinical trial patients presented an interest-
ing aspect. The 8th TNM staging (with sub-categorization 
of ED-SCLC patients in IVA and IVB stages) was not yet 
developed when the trials were executed, and the LD/ED 
staging is still largely used to define treatment intention.38 
Previous studies have pointed out significant differences 
in survival between IVA and IVB patients.38,39,43,48 This re-
sult may be due to selection bias in RCTs, favoring younger 
patients with comparably better overall health and lower 
disease burden, which is only partially captured by the 
TNM staging. However, the low sample size of IVA pa-
tients in the real-world cohort is a source of potential bias 
and further investigation would be needed to confirm this.

The SOMO approach aims to contribute to the research 
direction on establishing an analytical process to estimate 
the challenging trade-off between internal validity and 
generalizability.6,11,13,33 In this work we proposed how such 
a framework could be beneficial for both translational di-
rections: clinical trials can be improved by understanding 
the discrepancy with the real-world, and real-world ther-
apies can be leveraged by comparing the discrepancies of 
trials from the real-world (e.g., Figure 4; Figure S4).

We are not claiming to have developed a definitive ap-
proach, as this work shows we identified several factors that 
were not possible to account for due to the lack of overlap-
ping information. However, we believe that further devel-
opment of the general method will allow for learning across 
translational activities. This may contribute to building 
regulatory acceptance in the real-world evidence approach 
over time as has been the case with other mechanistic 
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modeling efforts (e.g., metabolic drug–drug interaction 
predictions34,49). This is a first attempt at trying to push the 
real-world evidence paradigm into a similar learn-confirm 
cycle from which we learn case by case and pragmatically 
improve the usage of RWD in future clinical trials.

The work presents some limitations to be address in the 
future research. There are still a set of key hypotheses re-
ported in Table 1 that were not possible to address in the 
present study. The RWD represented only a single center and 
lacked longitudinal variables (e.g., tumor progression, doses, 
and adverse effects). To address these issues, the collection 
of these variables and the extensive collection of data is 
being performed. Expansion of RWD patient cohort trough 
national cancer registries is the next step of the analysis.

Another set of limitations that are not addressed in 
our work is in the inherent difference in comparing pop-
ulation with different drug use. RCTs, use fixed dosing 
regimens and adverse events are adjusted according to a 
treatment protocol. In contrast, RWD allows more free-
dom for dose adjustments. This difference can lead to 
discrepancies in the evaluation of a drug's effectiveness 
and safety. Differences in dosing could potentially affect 
the frequency of reported adverse events, and clinical out-
comes.50 An improved longitudinal data collection in the 
RWD, it could be possible to correct for dose discrepan-
cies using modeling approaches. Furthermore, a potential 
issue arises in other treatment areas where medication ad-
herence may play an important role in treatment.

In this study, the experts involved represented the clin-
ical side of the real-world domain. In the future, we will 
explore the involvement of experts on clinical trial in on-
cology and regulatory agencies.

Moreover, SOMO was tested on small cell lung can-
cer, and research on other cancers or clinical case studies 
would be beneficial to increase the generalizability of the 
work.

The increasing presence of RWD in clinical trial stud-
ies constitute a natural step for regulatory decision and 
future study designs. Improving upon approaches such as 
SOMO would pave the way to understand how we can use 
RWD to close the gap between internal validity and gener-
alizability of clinical trials.
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