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Abstract

Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV
disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used
for prediction only if the model parameters are identifiable from clinical data. Most previous parameter identification studies
for HIV have used sparsely sampled data from the decay phase following the introduction of therapy. In this paper, model
parameters are identified from frequently sampled viral-load data taken from ten patients enrolled in the previously
published AutoVac HAART interruption study, providing between 69 and 114 viral load measurements from 3–5 phases of
viral decay and rebound for each patient. This dataset is considerably larger than those used in previously published
parameter estimation studies. Furthermore, the measurements come from two separate experimental conditions, which
allows for the direct estimation of drug efficacy and reservoir contribution rates, two parameters that cannot be identified
from decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the model parameter values, with
initial estimates obtained using nonlinear least-squares methods. The posterior distributions of the parameter estimates are
reported and compared for all patients.
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Introduction

Many researchers have analyzed the dynamics of human

immunodeficiency virus (HIV) using nonlinear ordinary differen-

tial equation (ODE) models [1–5]. Using various mathematical

models, they sought to simulate the dynamics of the virus or to

help design a treatment. Many of these studies have attempted to

identify model parameters from patient data, but the sparsity of

measurements resulted in very large confidence intervals in the

parameter estimates. Furthermore, the experimental data used

only included the period of viral decay following the introduction

of therapy. Identification of the HIV model parameters under

these conditions requires assuming that the drug efficacy is known,

which in turn affects the estimates of the remaining parameters.

The amount of data normally available for HIV model

identification is sparse. Typically, a patient on effective therapy

has his or her viral load tested every 3 or 4 months, a rate too slow

to accurately capture the dynamic characteristics accurately. In

this paper, the data used to identify model parameters are from the

AutoVac study conducted at the IrsiCaixa HIV research

foundation in Barcelona [6]. In the AutoVac study, 12 patients

underwent a series of about 30-day treatment interruptions,

followed by resumption of suppressive therapy, and viral load

measurements were taken at 3-day intervals during the interrup-

tion. This resulted in between 69 and 114 viral load measurements

per patient, with between 38 and 77 data points per patient above

the limit of detection. Therefore, data gathered from this

particular experiment are sufficiently rich for model identification.

All patients enrolled in the AutoVac study had maintained

undetectable viral loads on therapy for at least two years prior to

the study, and had baseline CD4+ T-Cell counts over 700. Patient

nine and twelve both had interruptions without measurable viral

load rebound, and were excluded from this study due to

insufficient usable data.

Full-state measurements are not available for HIV model

identification, so the problem of identifiability must be considered.

For HIV models, Stafford et al. [7] have studied the identifiability

of a 3 state model. Xia and Moog [8] analyzed the theoretical

identifiability of a 4 state model and determined the minimal

number of state measurements needed for estimating all model

parameters. Frequently, only viral load data are available and in

this case, not all parameters can be identified independently [7,9].

Recently, Miao et al. also investigated some identifiability issues

for viral dynamics [10].

For identifying the parameters of a viral dynamics model, two

major methods are commonly used: nonlinear least squares [11]

and Bayesian estimation [12–16]. In this paper, we employ a

Bayesian Markov-Chain Monte Carlo technique as in [12,16],

with nonlinear least-squares used to generate initial conditions for

the MCMC technique. The primary difference between this work
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and previous works is the quality of the data used for estimation.

The data used in [16] consists of 10 measurements from 12

patients taken at 5 time points. The data used in [12] consists of

seven measurements from 42 patients taken at seven time points.

The data used in [15] consists of 9 viral load measurements from

42 patients taken at nine time points, plus a single baseline

measurement of phenotypic drug susceptibility and survey data on

patient adherence. The data used in [17] used 18 measurements of

viral load from 18 time points. All four of these studies only

included data from a single virus decay phase following treatment

initiation. As a result of the sparse data, these previous studies had

to make a number of simplifying assumptions about parameter

values in order to preserve identifiability. By contrast, the AutoVac

patient study provides us with between 69 and 114 viral load

measurements from 10 patients from between 3 to 5 treatment

interruptions cycles per patient. The high quality of the data used

in this study allows reliable estimation of parameter values without

resorting to the simplifying assumptions used in previous studies.

We consider the following mathematical model characterizing

the viral dynamics for a patient:

_xx(t)~l{dx(t){b(1{gu)x(t)v(t)

_yy(t)~b(1{gu)x(t)v(t){ay(t)zly(t)

_vv(t)~cy(t){vv(t)

ð1Þ

There are three states: x, the concentration of target CD4+ T

cells; y, the concentration of actively infected CD4+ T cells; v, the

viral load. l is the proliferation rate and d is the death rate of

target CD4+ T cells; b is the infection rate; g is the drug efficacy; a
is the death rate of actively infected cells; ly(t) is the contribution

of the reservoir to actively infected CD4+ T cells; c is the rate of

free virus production by infected cells; v is the clearance rate for

the free virus. The drug application u is 0 during interruptions and

1 during treatment. This is a variation of a model first proposed in

[18], with the addition of the ly(t) term describing the additional

contribution of infected cells from all viral reservoir processes. This

model is essentially the same as the model identified against patient

data in the previous studies [11–15].

Highly active antiretroviral therapy (HAART) has proven

effective to reduce the active viral load [19,20] and is standard

care for HIV patients. However, it cannot eradicate the virus

completely [21,22]. Although scientists suspect that the existence

of long-term latent reservoirs in patients is the main reason for

viral persistence [23,24], there is little quantitative understanding

of their contribution, mainly because of the difficulty measuring

the virus reservoir directly. Some HIV investigators have proposed

mathematical models to describe the dynamics of long-term latent

reservoirs [25–27]. Little research has been done to estimate the

parameters of these models quantitatively based on clinical data.

In this study, the total contribution of the reservoir processes to

the actively infected CD4+T cells is estimated from standard viral-

load time-series data. We analyze the identifiability for each

parameter in Model 1 using differential algebra tools. The

implementation of Bayesian estimation method is presented, and

the joint posterior parameter distributions calculated by the

Bayesian methods for each patient are reported.

Methods

Experimental Methods
Ethics statement. The previously published clinical study [6]

was carried out in accordance with a human subjects protocol

approved by the institutional ethics review committee at the

University Hospital Germans Trias i Pujol in Barcelona, Spain.

Written informed consent was obtained from all study partici-

pants. De-identified patient data was shared in accordance with a

protocol approved by the University of Delaware Institutional

Review Board.

Study design. This research described here uses data from a

previously published study. The measurements which are the focus

of this work have been previously described in [6]. Briefly, a

Figure 1. The viral load data for Patient 1.
doi:10.1371/journal.pone.0040198.g001
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randomized prospective Structured Treatment Interruption study

enrolled 26 HIV-1 positive asymptomatic adults with no

detectable virus for at least two years prior to entering the study

(limit of detection 50 virions per ml). 14 were randomized to a

control group, continuing their previous cART regimens. 12 were

randomized to the experimental group, and underwent between

three and five cycles of interrupted antiviral therapy, remaining off

therapy until two consecutive viral load measurements above 3000

virions/mL were reached, or for a maximum of 30 days, then re-

initiating the original cART regimen for 90 days before the next

interruption cycle began. HIV-1 RNA PCR quantitative analysis

was performed on samples collected three times weekly following

treatment interruption, and then weekly for the two months

following re-initiation of treatment.

Modeling Persistence of Latent Reservoirs
Although highly active antiretroviral therapy (HAART) effi-

ciently suppresses viral load to undetectable levels, current

regimens cannot eradicate the virus completely [21,26,28–30].

One possible reason is the persistent replication of HIV at a very

low level, even under HAART conditions [26,31,32]. Another

possible reason is the existence of stable reservoirs of latently

infected cells [26,33,34]. These two possibilities are not mutually

exclusive, and it is likely that a combination of persistent viremia

and reservoir activation combine to maintain the reservoirs and

prevent eradication [26].

Rong and Perelson proposed models to describe the dynamics

of the latent reservoir [26]. However, in order to be identifiable

from viral-load data, the models must be simplified. Siliciano et al.

[35] found that the average half-life of the latent reservoir in

resting CD4zT cells is 44 months, which means it is extremely

stable. There is no strong evidence that the activation rate of the

reservoir is constant, however, and a combination of various

factors may contribute to the maintenance of a residual virus load

during effective antiviral suppression. Therefore, in Equation 1

ly(t) represents the total average contribution of reservoir

dynamics to the active infected cell compartment y during the

treatment period. The time between ceasing antiviral therapy and

the viral load reaching measurable levels (the rebound time) is very

sensitive to the value of ly(t), and consequently the goodness of fit

Figure 2. Model fitting for identified patients. Red star: experimental data (detection limit: 50 copies/mL); solid line: simulation based on
estimated parameters.
doi:10.1371/journal.pone.0040198.g002
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for the entire model is also very sensitive to ly(t). Surprisingly, as

shown in our results, a patient-specific constant value for ly(t)

provided an excellent fit for all ten patients for all interruption

cycles, implying that the average contribution of reservoir

dynamics to the active infected cell compartment is relatively

constant across several interruption cycles.

Identifiability Analysis
Equation 1 is a special case of the following general nonlinear

model:

_XX (P,t)~F (X (P,t),P) ð2Þ

In this study X (P,t) is the state vector ½x,y,v�’, P is the

parameter vector ½l,d,b,u,a,ly,c,v�’, and F is the function which

describes system dynamics.

We adapt the following concepts of identifiability from [36–38]:

Definition 1. Equation 2 is said to be globally identifiable

from the given states if the equation F(X (P,t),P)~F (X (P�,t),P�)
has only one solution P~P�.

Definition 2. Equation 2 is said to be locally identifiable from

the given states if in some open neighborhood, U
p� , around the

true parameter vector, the equation F (X (P,t),P)~F (X (P�,t),P�)
has only one solution P~P� and P�[U

p� .

The identifiability of HIV dynamic models has been analyzed

previously [8,10]; however, these previous works assumed more

than one state could be measured. Here, only the viral load data

are assumed to be available. Differential algebra is used to analyze

the identifiability issue of Model 1. Details of the differential

algebraic techniques are found in [37–39]. The steps in this

analysis are as follows:

i) We choose the following order relation for Equation 1:

vv _vvv€vvvv.

ii) Based on the above order, the normalized characteristic

polynomial of v is calculated:

A~vv{ _vv€vvzb(1{gu)(v)2€vvz(azdzv)v€vv{(azv)( _vv)2

z(ab(1{gu)zbv(1{gu))(v)2 _vvz(adzdv)v _vvzly _vv

zabv(1{gu)(v)3z(adv{bly(1{gu){bcl(1{gu))(v)2{dlyv

~0

ð3Þ

Equation 3 is generated by a) solving for y from the last

equation of Equation 1, b) substituting for y in the middle equation

of Equation 1, c) solving for x from that equation and d)

substituting for x in the first equation of Equation 1. Knowledge of

v allows one to estimate the coefficients in Equation 3. This

characteristic polynomial does not contain the states x, y and their

derivatives, but still describes the viral dynamics of Equation 1.

iii) By extracting the coefficients in the above polynomial we

obtain the following set of identifiable parameters:

b(1{gu) ~ a1

azdzv ~ a2

azv ~ a3

ab(1{gu)zbv(1{gu) ~ a4

adzdv ~ a5

ly ~ a6

abv(1{gu) ~ a7

adv{bly(1{gu){bcl(1{gu) ~ a8

dly ~ a9

ð4Þ

iv) The identifiability of each parameter can be checked by

checking the injectivity of the the map defined in Equation

4. All parameters except c and l are uniquely identifiable;

the product cl is uniquely identifiable. Since the patients

enrolled in the AutoVac study had all maintained undetect-

Figure 3. The marginal posterior distribution of each parameter for ten different patients.
doi:10.1371/journal.pone.0040198.g003

Table 1. The average correlation coefficients between
parameters for all ten patients.

log10(l) log10(b) log10(a) log10(ª)

log10 (l) 1 0.0953 0.6632 0.4278

log10 (b) 0.0953 1 0.1228 20.6421

log10 (a) 0.6632 0.1228 1 0.5817

log10 (c) 20.6421 0.5817 0.6632 1

doi:10.1371/journal.pone.0040198.t001

Figure 4. Typical scatter plot of R0 correlation. The heavy
correlation between the elements in the numerator and denominator of
R0 demonstrates the strong higher-order correlation between param-
eters.
doi:10.1371/journal.pone.0040198.g004

...

(3)

...
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able viral loads on therapy for at least two years prior to the

study, it is reasonable to assume that the initial conditions of

this study are the steady states in Equation 1. Therefore, the

steady state of x in Equation 1, l
d
, is set as the concentration of

CD4+ T Cells at the beginning of this study. Under this

assumption, the value of l is defined as the product of the

initial number of target cells x(0) and the estimated decay rate

of target cell d.

Although theoretically v is uniquely identifiable, the current

best estimate of v is between 9 and 36|day{1 [40]. Estimation of

v would require very high frequency measurements (several

measurements per hour, much faster than our data). Therefore the

value of v is set as 18:8|day{1 (corresponding to the geometric

mean of the estimated half-lives in [40]), and the virus dynamics

are treated as a singular perturbation to the system. Assuming that

the true value of v is sufficiently large that the singular

perturbation approximation is valid, the only identified parameter

that depends on this assumption is c; the posterior distribution of

estimated values for c would shift in a inversely proportional

manner with a change in the assumed value of v, with no change

in the posterior distributions of any other parameter.

The identifiability analysis described above does not take into

account the number of measurements or the sampling rate; it

simply states that for a sufficiently large number of measurements

taken at a sufficiently fast sampling rate, the set of parameters

described are identifiable. The uncertainty in the estimated

parameter values will depend on the actual number of measure-

ments and their frequency.

Bayesian Estimation
Initial estimates. During the AutoVac study treatment for

each patient was interrupted and after a period of time, restarted.

This cycle of interruption and reinstating the treatment is repeated

3 to 5 times. In order to generate an acceptable initial value for the

MCMC method, a two-step least-squares method was used, using

data from the first three interruption cycles. The data from the

period in which the treatment is interrupted, region 1, is used to

estimate the 5 parameters, l,d,b,a and c using a constrained

nonlinear least squares method. The data from region 2, where

Table 2. Parameter identification results for each patient,
reported as mean(standard deviation).

Parameter Unit Patient 1 Patient 2

log10 (l)
log10 (

cells

mL|day
)

2.77(0.07) 1.54(0.12)

log10 (d)
log10 (

1

day
)

{0:68(0:07) 21.33(0.12)

log10 (b)
log10 (

mL

copies|day
)

25.26(0.09) 25.48(0.06)

log10 (a)
log10 (

1

day
)

0.23(0.08) 20.76(0.07)

log10 (c)
log10 (

copies|mL

cells|mL|day
)

3.45(0.12) 3.69(0.05)

log10 (g) – 20.14(0.18) 20.10(0.28)

log10 (ly)
log10 (

cells

mL|day
)

25.67(0.30) 24.43(0.17)

Parameter Unit Patient 3 Patient 4

log10 (l)
log10 (

cells

mL|day
)

2.88(0.04) 2.45(0.27)

log10 (d)
log10 (

cells

mL|day
)

20.34(0.04) 20.61(0.27)

log10 (b)
log10 (

cells

mL|day
)

25.35(0.01) 25.23(0.15)

log10 (a)
log10 (

1

day
)

0.37(0.04) 0.19(0.24)

log10 (c)
log10 (

copies|mL

cells|mL|day
)

3.84(0.03) 3.82(0.22)

log10 (g) – 20.05(0.03) 20.17(0.43)

log10 (ly)
log10 (

cells

mL|day
)

22.94(0.20) 23.45(0.38)

Parameter Unit Patient 5 Patient 6

log10 (l)
log10 (

cells

mL|day
)

2.43(0.27) 1.64(0.29)

log10 (d)
log10 (

1

day
)

20.64(0.27) 21.28(0.29)

log10 (b)
log10 (

mL

copies|day
)

25.36(0.16) 25.42(0.18)

log10 (a)
log10 (

1

day
)

0.26(0.28) 20.32(0.21)

log10 (c)
log10 (

copies|mL

cells|mL|day
)

3.90(0.25) 3.70(0.17)

log10 (g) – 20.17(0.37) 20.15(0.38)

log10 (ly)
log10 (

cells

mL|day
)

23.18(0.51) 24.33(0.43)

Parameter Unit Patient 7 Patient 8

log10 (l)
log10 (

cells

mL|day
)

1.79(0.31) 2.83(0.11)

log10 (d)
log10 (

1

day
)

21.33(0.31) 20.44(0.11)

log10 (b)
log10 (

mL

copies|day
)

25.54(0.18) 25.36(0.12)

log10 (a)
log10 (

1

day
)

20.18(0.15) 0.42(0.14)

log10 (c)
log10 (

copies|mL

cells|mL|day
)

3.66(0.16) 3.91(0.21)

log10 (g) – 20.17(0.42) 20.22(0.36)

log10 (ly)
log10 (

cells

mL|day
)

23.46(0.36) 23.90(0.31)

Parameter Unit Patient 10 Patient 11

log10 (l)
log10 (

cells

mL|day
)

2.21(0.37) 1.65(0.10)

log10 (d)
log10 (

1

day
)

20.96(0.37) 21.35(0.10)

log10 (b)
log10 (

mL

copies|day
)

25.78(0.17) 25.54(0.04)

log10 (a)
log10 (

1

day
)

0.00(0.21) 20.74(0.07)

log10 (c)
log10 (

copies|mL

cells|mL|day
)

4.00(0.17) 3.39(0.01)

log10 (g) – 20.11(0.34) 20.13(0.06)

log10 (ly)
log10 (

cells

mL|day
)

23.00(0.24) 24.65(0.09)

doi:10.1371/journal.pone.0040198.t002

Table 2. Cont.
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treatment is reinstated, contains information about the drug

efficacy. With the value of the six parameters fixed to those values

found by least squares in region 1 (as shown in Fig. 1), the data of

region 2 is used to estimate the drug efficacy. The initial values

obtained using this two-step procedure are used as the kernel for

the MCMC methodology described below; the MCMC method-

ology identifies all six parameters against all data from both

regions of all treatment interruptions.

MCMC methodology. From the steady-state values of

Equation 1, the relationship between d and l can be written as:

d~
x(0)

l
ð5Þ

Where x(0) is the initial measurement of CD4+ T cells taken for

each patient at the beginning of the study (as in [16]). Therefore,

in this method, the parameter set ½l,b,a,c,ly,g�T are estimated. g is

calculated for each iteration by least-squares subject to the values

of the other five parameters. The MCMC approach taken here is

based on the Metropolis-Hasting algorithm [13]. Assume that the

ith subject, we have mi measurements of viral load. We denote the

parameters as:

m~½log (l), log (b), log (a), log (c), log (ly)�T

hi~½log (li), log (bi), log (ai), log (ci), log (lyi)�T

V~fVij(hi,tj),i~1, � � � ,n; j~1, � � � ,mig

Y~fyij ,i~1, � � � ,n; j~1, � � � ,mig

The logarithm is used to ensure that all estimates of the

parameters are positive. The vectors, m and hi are the logarithm of

the parameters for the population level and the logarithm of the

parameters for the ith individual respectively. The initial values of

m and hi are set as the results of Patient 2 from the nonlinear least-

square method described above, which are

½3:5877,{12:6082,{1:7614,8:3551,{10:1926�T . The matrix Y

is the matrix of the logarithm of available measurements to base 10

for all the patients. Let V (t) denote the solution of the differential

equation and Vij(hi,tj) denote the value of V (t) for the ith patient

using parameters hi at time tj .

Following the iterative MCMC algorithm of [13], the imple-

mentation can be written as:

Table 3. Result comparison between this paper and previous studies.

Source

Luo et al. Huang et al. [15] Putter et al. [16]

Average MLE Posterior Mean Posterior Median

(Interpatient Range) (95% CI) (Interpatient Range)

Parameter Units

log10 (l)
log10 (

cells

mL|day
)

2.47 1.97 0.11

(1.54, 2.88) (1.93,2.05) (20.24,0.21)

log10 (d)
log10 (

1

day
)

20.74 20.96 22.99

(21.35, 20.34) (21.01, 20.40) (NA)

log10 (b)
log10 (

mL

copies|day
)

25.41 24 26.80

(25.78, 25.23) (24.00, 23.15) (26.94, 26.53)

log10 (a)
log10 (

1

day
)

0.01 20.42 20.50

(20.76,0.42) (20.49, 20.22) (20.62,0.26)

log10 (c)
log10 (

copies|mL

cells|mL|day
)

3.77 2.51 4.87

(3.39,4.00) (NA) (4.83,4.89)

g – 0.73 NA 0.71

(0.60,0.89) (NA) (0.63,0.84)

R0pre – 1.93 NA 3.90

(1.16,3.68) (NA) (1.72,4.86)

R0post – 0.56 NA 0.34

(0.13,0.76) (NA) (0.05,0.60)

# of patients 10 42 12

# of measurements per patient 98 9 5

doi:10.1371/journal.pone.0040198.t003
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1. Initialize the chain with initial values (s{2(0),m(0),J{1(0),h
(0)
i ).

2. Use Gibbs sampling steps to update s{2, m, and J{1 and use

Metropolis-Hastings algorithm to update hi:

(a) s{2(j)*Ga az
mi

2
,A{1Dfh(j{1)

i ,J{1(j{1),Yg
� �

;

mj*N B{1C,B{1DfJ{1(j{1),s{2(j),Yg
� �

:

J{1(j)*Wi D{1,1znDfs{2(j),mj ,Yg
� �

:

where A~b{1z 1
2

Pmi

j~1

yij{log10 Vij hi,tj

� �� ��� ��2,B~J{1zL{1,

C~J{1hizL{1g and D~V{1z hi{mð Þ hi{mð ÞT .

Ga is the gamma distribution and Wi is the Wishart prior

distribution. The hyper-parameters, a,b,g,L,V and n are known

with the following values:

a~4:5;

b~9;

g~½3:5877,{12:6082,{1:7614,8:3551,{10:1926�T;

L~diag(½100,0:2,0:4,1000,0:3�);

V~diag(½2:5,2,2,2:5,2�);

u~8

The hyper-prior values for the initial variance of hi, L, are

sufficiently large that this may be considered a non-informative

prior distribution. For comparison, the analysis in [16] had initial

variance for l and d of 0.12 and 0.016 respectively, heavily biasing

Figure 5. The histogram of coefficient of determination. R2 Cutoff values: The value of R2 corresponding to P = 0.05.
doi:10.1371/journal.pone.0040198.g005
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the posteriors to the priors, and the analysis in [15] had initial

variance for the parameters l,d,b,a,c,v of 0.005, also substantially

biasing the posterior distributions of these parameter estimates to

the prior distributions.

(b) Generate a prospective value w for h
(j)
i from the previous

iterative value h
(j{1)
i where

w*N h
(j{1)
i ,L

� �� �

(c) Evaluate the acceptance probability of this move by applying

Metropolis-Hastings algorithm. If this move is accepted,

h
(j)
i ~w. If not, h

(j)
i ~h

(j{1)
i .

3. Repeat step 2 until the chain converges.

To obtain reasonable results from the MCMC method, good

initial estimates of hi are needed. The constrained least squares

approach described previously is used to get an initial estimate.

The parameters are constrained so that R0~
lbc

dav
, which is the

basic reproduction ratio during treatment interruptions, is greater

than 1. If R0 were less than 1, then the virus would not have

successfully established infection.

The above procedure was applied to the data for 10 patients

with sufficient data. The MCMC procedure produced 200,000

possible sets of parameters for each patient that are consistent with

the patients’ data. For the purposes of analysis, the first 50,000

iterations were discarded to allow the chain to converge, leaving

150,000 parameter sets per patient for the final analysis. From this

result, the marginal probability densities for of the six parameters

can be established.

Results

Nonlinear Least Squares Estimation
Parameter estimates were generated for each of 10 patients

using the nonlinear least squares method. Of the 12 patients in the

study, 2 had no detectable virus after an interruption, leaving

insufficient data above the measurement threshold to identify

model parameters. Although the nonlinear least-square method

cannot guarantee globally optimal results, it can provide good

initial estimates for the prior distribution of the MCMC method.

Simulated viral load curves based on the identified parameter

values using this method are compared to the measured data from

Patient 2 in Fig. 2.

Bayesian Estimation
The MCMC model fitting procedure was run for each of the 10

patients with sufficient data. Histograms of the marginal posterior

distributions for the six parameters for each of the 10 patients are

shown in Fig. 3.

Note that the parameters are not independent, and the

parameter vectors should be considered as complete sets. Table 1

shows the average correlation coefficient among each different

pair of parameters; it is clear that most pairs of parameters would

be considered highly correlated. In addition to this first-order

correlation between parameters, there are also higher order

nonlinear correlations. Fig. 4 shows the high level of correlation

between the product of the parameters which form the numerator

and denominator of R0~
lbc

dav
, further emphasizing the need to

consider parameter vectors rather than individual parameters.

Values chosen independently from each parameter’s distribution

can easily generate a parameter set which is a particularly poor

representation of the data. Consequently, we also report as tables

Figure 6. Typical Bayesian Posterior Mean Results. (A)The fitted viral load curve and viral load data for patient 1; (B)Target cell simulation using
fitted parameters; (C)Infected cell simulation using fitted parameters.
doi:10.1371/journal.pone.0040198.g006
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in the supplementary material the entire posterior distribution for

each of the 10 patients (shown in supplementary tables S1, S2, S3,

S4, S5, S6, S7, S8, S9, S10). The posterior distribution generated

by this MCMC method provides a database for testing the

robustness of treatment optimization strategies, such as those

described in [25,41–43].

The histograms in Fig. 3 show the range of values of each

parameter, and Table 2 gives the maximum likelihood estimate for

each parameter. From the histograms it is clear that the

distributions for the parameters b,a, and c vary little between

patients, indicating that the infection rate and burst size of the

virus and the death rate of infected cells may be consistent across

the patient population. By contrast, the parameters l, ly, and g
vary substantially between patients, indicating that the regenera-

tion rate of CD4+ T cells, the reservoir contribution rate, and the

drug efficacy may vary significantly across the patient population.

Table 3 gives a summary of the estimated population

parameters (the average value of the 10 identified patients),

compared with those from previously published papers [15,16].

R0pre is the basic reproductive ratio R0 of the virus without

treatment. R0post is R0(1{g), the reproductive ratio of the virus

under treatment conditions. The values for parameters l,d ,b,a,

and c are consistent with the previously published best estimates

for these parameters. In particular, the maximum likelihood

estimates for the death rate of target cells d ranged from

0:045{0:45|day{1, in perfect agreement with the estimates

obtained from patient data in [15]. This estimate is considerably

higher than the decay rate estimated in [16], but careful

examination of the methods in that previous work show that the

value of d was essentially constrained to the prior distribution. The

ratio
l

d
is consistent between all three studies. Our maximum

likelihood estimates for the death rate of infected cells a ranged

from 0:18{2:3|day{1, in agreement with the current best

estimate of 0:7{1:3|day{1 [17,26], as well as the data from the

two comparable studies [15,16]. Our maximum likelihood

estimate of the density-dependent infection rate b ranged from

2|10{6{6|10{6|mL|virion{1|day{1, compared to

1:6|10{5{1:8|10{5|mL|virion{1|day{1 [13] and

(1|10{7{3|10{7|mL|virion{1|day{1 [16]. Our maxi-

mum likelihood estimates of the target cell recruitment rate l

ranged from 35{760|cells|mL{1|day{1, higher than the

comparable range of 86{111|cells|mL{1|day{1 reported in

[15]; however, this is expected, as the inclusion criteria for our

experiment resulted in patients with much healthier immune

systems overall compared to the patients in [15]. The much lower

rate of 0:6{1:6|cells|mL{1|day{1 reported in [16] is a

direct result of that study’s unrealistically low prior value for d.

Our estimates of the virus production rate c range from

2:4|103{9:8|103|virions|mL|cells{1|mL{1, higher

than the 1|102{1|103|virions|mL|cells{1|mL{1 range

reported in [15]; however, this is due to the estimate in [15] of

v&3|day{1, as opposed to our fixed estimate of

v~18:8|day{1.

The maximum likelihood values of the reservoir contribution

rate ranged over three orders of magnitude, from

2|10{6 cells

mL|day
for Patient 1 to 1|10{3|cells|

mL{1|day{1 for Patients 3 and 10. This suggests that the

replenishment of the active compartment by the viral reservoirs is

very heterogenous between patients. However, it is noteworthy

that a single constant value of ly was able to accurately predict

rebound time across multiple interruption cycles for the same

patient despite variation in interruption length, indicating that the

replenishment rate for a given patient is relatively constant over

the course of the experiment.

The efficacy of the antiviral drugs is estimated directly from the

viral load data. To our knowledge, this is the first time this has

been done. Previous estimates of model parameters have typically

inferred drug efficacy from PK/PD data in the plasma, resulting in

estimates of g&0:95 [15], or relied heavily on the assumption that

the first measurement was at steady-state [16], resulting in

estimates between 0:64ƒgƒ0:84. By contrast, our direct estimate

of g from the viral load data give us maximum likelihood estimates

ranging from g~0:67 to g~0:88. This indicates that the estimates

based on plasma pharmacokinetic data may overestimate the true

drug efficacy, though the estimates which relied exclusively on the

first measurement were consistent with our results.

Fig. 5 shows the histograms of the coefficient of determination

R2 for each of the 10 patients. The statistical significance threshold

for the fit relative to an average measurement model was

calculated using the F-test (Pv0:05 is considered statistically

significant); this shows that, for all patients except Patient 6, all

150,000 parameter vectors in the posterior distribution would be

considered a statistically significant fit to the data if considered in

isolation.

The viral load fitted by the model using the maximum

likelihood estimates of the parameters and simulation results for

Patient 1 are shown in Fig. 6.

Discussion

As shown in this study, the parameters in the HIV dynamics

model are heavily correlated. The strong correlation between

parameters in this model mean that only the distribution of

complete parameter sets (as opposed to independent distributions

of each parameter) can be considered to accurately represent the

fit of the model to the data. The quality and extent of the data

available in this study was considerably higher than any previously

published parameter estimation study, allowing for the accurate

estimation of the model parameters without using the simplifying

assumptions necessitated by the sparsity of data in previous studies.

Furthermore, the level of excitation of the dynamics provided by

the multiple interruption schedules allowed us to directly identify

two parameters not previously identifiable from patient data. The

results agree for the most part with previously published data, but

the results are more reliable and significant given the dramatic

increase in the amount of data available for identification.

This paper presents, for the first time, the posterior distribution

of parameters for a commonly used HIV infection model

identified against measured patient data. Analysis of this distribu-

tion shows good representation of the data. As shown in the

histograms of Fig. 5, all parameter estimates in the posterior

distributions for all patients except a subset of patient 6 would be

considered statistically significant by the standard F Test

(Pv0:05), implying that the reported posterior distribution

describes the range of feasible parameter values based on the

measured data well. Inspection of the data from patient 6 shows

the data available above the limit of detection are limited

compared to the other patients, which can explain the high value

of R2 corresponding to an F-test P value of 0.05 for that patient.

However, even for this patient, more than half of estimates are still

statistically significant, and there were 39 measurement points

above the limit of detection, substantially more measurements

than were available for any previously published parameter

estimation study.
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The multiple interruptions in the patient data provided the

opportunity to quantify the contribution rate of viral reservoirs to

the active infected cell compartment. These rates varied widely

from patient to patient. The rate was characterized in terms of

number of productively infected cells produced per day, and

equally well describes such diverse potential reservoir processes as

low-level persistent replication, viral blipping, and spontaneous

reactivation of quiescent cells. The overall fit is highly sensitive to

the rebound time, and the rebound time is uniquely determined by

the reservoir contribution rate. It is surprising, therefore, that a

single value for the reservoir contribution rate was able to describe

the data well over multiple interruptions in the same patient; this

strongly suggests that the underlying process represented by the

parameter ly is continuous rather than bursting in nature. The

quantification and understanding of the viral reservoir dynamics is

of critical importance to understanding the nature of ongoing viral

evolution under conditions of effective suppression, and will be a

necessary precursor to any attempts to flush the reservoirs and

achieve a functional cure for HIV.

The results presented here also show that the overall drug

efficacy is between 0:6 and 0:9, and that the effective reproductive

ratio of the virus while on therapy is between 0:1 and 0.8, verifying

the results presented in [16]. It is important to emphasize that,

while the antiviral drug regimens are very successful at suppressing

overall virus load, they are not perfect in inhibiting infection, and

de novo infection events continue to occur even under highly

effective therapy. The results presented here also verify the

previously reported findings in [15] that uninfected CD4+ target

cells have a half-life of approximately 2{15 days in vivo, which is

substantially shorter than estimates obtained in vitro. This is likely

due to the higher state of activation of the CD4+ T-cells during

active viremia in vivo, but whatever the cause, it is a consistent

finding across multiple experiments.

In addition to being the most accurate way of describing the fit

of a model to data with high levels of measurement uncertainty,

the publication of complete parameter distributions identified from

patient data also has significant practical importance. A growing

number of model-based interventions using variations of the model

described in Equation 1 are being proposed, including our own

methods designed to minimize the risk of resistance emerging

during antiviral regimen switching [25,41,42,44–47]. Most of

these methods have used either nominal parameters or a single

parameter set. The parameter distributions published in this work

provide a parameter set against which the robustness of a proposed

model-based method to expected patient variation can be tested.

The data used in this paper came from a cohort restricted to

patients with good immunological control of the virus under

antiviral suppression, so the distribution of parameters can only be

said to be representative of such a subgroup of HIV-infected

persons. However, the publication of the identification methods

will likely lead to the publication of parameter distributions from

patients in other studies in the future, leading to a growing library

of virtual patients.
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