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Exercise: a molecular tool to boost muscle
growth and mitochondrial performance
in heart failure?
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Impaired exercise capacity is the key symptom of heart failure (HF) and is associated with reduced quality of life and higher mortality rates.
Unfortunately, current therapies, although generally lifesaving, have only small or marginal effects on exercise capacity. Specific strategies to
alleviate exercise intolerance may improve quality of life, while possibly improving prognosis as well. There is overwhelming evidence that
physical exercise improves performance in cardiac and skeletal muscles in health and disease. Unravelling the mechanistic underpinnings
of exercise-induced improvements in muscle function could provide targets that will allow us to boost exercise performance in HF. With
the current review we discuss: (i) recently discovered signalling pathways that govern physiological muscle growth as well as mitochondrial
quality control mechanisms that underlie metabolic adaptations to exercise; (ii) the mechanistic underpinnings of exercise intolerance in
HF and the benefits of exercise in HF patients on molecular, functional and prognostic levels; and (iii) potential molecular therapeutics to
improve exercise performance in HF. We propose that novel molecular therapies to boost adaptive muscle growth and mitochondrial quality
control in HF should always be combined with some form of exercise training.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Keywords Heart failure • Exercise intolerance • Exercise training • Cardiac and skeletal muscle •
Mitochondrial adaptation • Physiological muscle hypertrophy

Introduction: the unmet need
to alleviate exercise intolerance
in heart failure patients
Exercise intolerance is the main clinical symptom of heart fail-
ure (HF) and a key factor contributing to the reductions in qual-
ity of life of those affected.1–6 Exercise intolerance – defined
as an inability to perform physical activity – is accompanied
by symptoms such as dyspnoea on exertion and fatigue, and
affects HF patients with preserved and reduced ejection frac-
tion (HFpEF and HFrEF, respectively) to the same extent.4 While
exercise intolerance in HF is primarily caused by diminutions
in circulatory performance, the mechanisms are far more com-
plex and also involve functional and structural abnormalities in
cardiac and skeletal muscle as well as respiratory dysfunction and
deconditioning.4
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. Contemporary HF therapies are designed to reduce hospitaliza-

tions and mortality. While many HF drugs that reduce mortality
also influence exercise capacity, the magnitude of improvement
is modest and variable.4,7–15 Accordingly, exercise tolerance and
activity levels of HF patients remain low.5,16–18

On the other hand, evidence is emerging to suggest that
exercise training can decrease morbidity and mortality in HF
patients.2,5,16,19,20 This was recently confirmed in the REHAB-HF
trial in which an exercise intervention improved physical function.20

Exercise induces specific structural and molecular changes in HF
patients that cause sustained improvements in exercise perfor-
mance. Mechanistic insights into these pathways may uncover nodal
points for therapeutic interventions to improve exercise perfor-
mance in HF. With the current review, we provide an overview of
exercise-induced changes that may benefit HF patients, focusing on
physiological signalling pathways and mitochondrial adaptations in
cardiac and skeletal muscle.
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Physiological adaptation in cardiac
and skeletal muscle in response to
exercise
Signalling pathways that govern
physiological cardiac growth
In 1801, Corvisart was the first to hypothesize that an increase
in cardiac mass was the result of increases in cardiac workload.21

This hypothesis was confirmed by Kuelbs et al. who demonstrated
that exercise in dogs resulted in an increase in cardiac mass, which
was absent in sedentary controls.22 Many years later, a variety of
experimental designs using multiple species – ranging from volun-
tary to forced exercise – have uncovered a panel of growth fac-
tors, intracellular signalling pathways and transcriptional responses
that distinguish pathological from physiological cardiac growth.23–29

A critical event in the development of physiological hypertrophy
is the release of the specific physiological peptide growth fac-
tors, including but not restricted to insulin-like growth factor 1

(IGF1).23,29 Binding of IGF1 to its surface receptor on cardiomy-
ocytes activates the IGF1-phosphoinositide 3 kinase-protein kinase
B (IGF1-PI3K-Akt) pathway that governs a plethora of adaptive
changes (summarized in Figure 1A).23,29,30

It has been well established that the activation of the
IGF1-PI3K-Akt pathway is required for physiological cardiac
hypertrophy.31–37 For instance, cardiomyocyte-specific overex-
pression of the IGF1 receptor (IGF1R) results in spontaneous phys-
iological hypertrophy as well as a more profound increase in cardiac
mass in response to swimming.37 Conversely, cardiac hypertrophy
is attenuated after repetitive swimming exercises in cardiac-specific
IGF1R-knock-out mice.36 Pharmacological inhibition of PI3K-Akt
attenuates cardiac hypertrophy,31 whereas cardiac hypertrophy in
response to swimming is blocked in Akt-knock-out mice.35 Further
evidence for the critical importance of Akt has been established
with a model using the Akt-specific PH domain leucine-rich repeat
protein phosphatase (PHLPP1). In PHLPP1-knock-out mice, Akt
phosphorylation is increased and physiological cardiac hypertrophy
in response to swimming is augmented.32

The downstream effects of Akt that govern physiologi-
cal cardiac growth are diverse,19,23,29,38,39 but two stand out
as most clearly associated with exercise-induced cardiac
growth.23,39 First, the mammalian target of rapamycin com-
plex 1 (mTORC1) is phosphorylated by Akt, which subsequently
leads to downstream activation of ribosomal protein S6 kinase
1 and inhibition of eIF4E-binding protein 1 leading to pro-
tein synthesis and in turn cardiac hypertrophy.23,29,39 Second,
the IGF-1-PI3K-Akt signalling cascade was more recently also
shown to regulate CCAAT/enhancer binding protein-β (C/EBPβ),
and CBP/p300-interacting trans activator 4 (CITED4).19,23,29,39

Akt phosphorylation downregulates cardiac C/EBPβ, which
de-represses the transcription factors serum response factor
(SRF) and CITED4 and subsequently enables transcription of
genes encoding for proteins that are critical for physiological
cardiac hypertrophy.19,40–44 Interestingly, in addition to hyper-
trophic growth pathways, CITED4 also appears to regulate ..
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.. ultrastructural changes and cardiomyocyte elongation.19,40,42,43,45

The role of CITED4 has been studied in a CITED4-knock-out
mouse model, which was subjected to swimming and transaortic
constriction.44 Physiological hypertrophy was attenuated, while
pathological hypertrophy was exacerbated in CITED4-knock-out
mice, indicating that CITED4 enables physiological growth
while also preventing maladaptive responses. Interestingly,
CITED4-mediated protection is at least partially regulated by
mTORC1.44 Other potential factors include microRNA-222
(miR-222) and miR30d.19,23,40,44,46,47

Exercise-induced hypertrophy in skeletal
muscle
While resistance exercise training induces robust hypertrophy
in skeletal muscle – through mTORC1 – the hypertrophic
response to endurance exercise is negligible. Instead, skeletal
muscle increases the number of nuclei and satellite cells, adapts
capillary and mitochondrial networks, and switches its muscle
fibre type composition48–51 (Figure 1B). Fast twitch (type II), gly-
colytic muscle fibres are favourable in anaerobic and resistance
exercise, whereas slow twitch (type I), oxidative muscle fibres are
preferable in aerobic endurance exercise as they contain more
mitochondria.48 Skeletal muscle adapts to endurance exercise by
switching towards more oxidative isoforms, primarily controlled by
calcineurin signalling.48–52 Reprogramming towards oxidative iso-
forms is also associated with adaptive changes in mitochondrial
quality control and function48,53 (Figure 1C).

Mitochondrial adaptations to exercise
in cardiac muscle
Because exercise increases the demand for energy, mitochondrial
numbers must increase as well54–58 (Figure 1A). Mitochondrial bio-
genesis refers to the generation of new mitochondria from existing
organelles through the process of self-replication,54,56 and repre-
sents the principal mechanism responsible for exercise-induced
increases in mitochondrial content.59 Mitochondrial proteins are
encoded by both mitochondrial and nuclear DNA, which requires
accurate transcriptional regulation and protein import.54,56,57,60

Several signalling pathways activate biogenesis including sirtuin
1 and 3 (SIRT1/3), AMP-activated protein kinase (AMPK) and
endothelial nitric oxide synthase (eNOS).56,61–63 These pathways
all converge in the downstream activation of the master reg-
ulator peroxisome-proliferator-activated-receptor gamma coac-
tivator 1-alpha (PGC-1α).54,56,57,64 Subsequently, PGC-1α acti-
vates nuclear respiratory factors 1–2 (NRF1-2), which pro-
mote transcription of nuclear encoded mitochondrial proteins
but also activate mitochondrial transcription factor A (tFAM)
which promotes transcription of mitochondrial DNA.54,56,57,64,65

The majority of the evidence indicates that exercise induces
mitochondrial biogenesis.54,66–70 Most studies have demonstrated
that mitochondrial quantity increases after voluntary exercise
in mice.71 eNOS appears to be critically involved in this pro-
cess, since mitochondrial biogenesis was significantly reduced in

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 1 Physiological adaptation in cardiac and skeletal muscle. (A) The adaptive effects of endurance exercise on cardiac muscle are governed
by special signal transduction pathways and mitochondrial quality control. Upper panel: exercise stimulates binding of insulin-like growth
factor 1 (IGF1) to a specific transmembrane tyrosine kinase membrane receptor (IGF1R), causing a conformational change that recruits and
phosphorylates insulin receptor substrates 1 and 2 (IRS1/2). In turn, the activation of IRS1/2 phosphorylates phosphoinositide 3 kinase (PI3K)
and further downstream activation of protein kinase B (Akt). The diverse effects of Akt activation include for example activation of endothelial
nitric oxide synthase (eNOS), activation and/or inhibition of sirtuins, inhibition of glycogen synthase kinase 3β as well as inhibition of forkhead
box protein O3 (FOXO3). Most importantly, however, activation of Akt subsequently (i) promotes protein synthesis through activation of
mammalian target of rapamycin complex 1 (mTORC1), its downstream activation of ribosomal protein S6 kinase 1 (S6K1) and inhibition of
eIF4E-binding protein 1 (4EBP1) and (ii) by inhibiting the transcriptional repressor CCAAT/enhancer binding protein-β (C/EBPβ) to activate
a specific physiological growth programme downstream of the transcription factor CBP/p300-interacting trans activator 4 (CITED4). Lower
panel: exercise also enhances mitochondrial performance through enhanced mitochondrial biogenesis, and potentially also through increased
mitochondrial clearance (mitophagy) and mitochondrial morphological changes (mitochondrial dynamics). Exercise stimulates mitochondrial
biogenesis through activation of AMP-activated protein kinase (AMPK) and upregulation of sirtuin 1/3 (SIRT1/3) and eNOS. These factors in
turn promote the activity of the transcription factor peroxisome-proliferator-activated-receptor gamma coactivator 1-alpha (PGC-1α) and its
downstream factors nuclear respiratory factor 2 (NRF2) and mitochondrial transcription factor A (tFAM). NRF2 and tFAM are both essential
for the generation of new mitochondrial proteins. (B) Resistance exercise induces skeletal muscle hypertrophy mediated through Akt, which
activates mTORC1 leading to the synthesis of new proteins and muscle growth. (C) In skeletal muscle, endurance exercise causes an increase
in mitochondrial biogenesis, mitophagy and mitochondrial dynamics. Mitochondrial biogenesis is regulated by activation of AMPK, PGC-1α and
downstream NRF2 as well as tFAM. An additional effect of exercise in skeletal muscle fibres includes a shift toward a more oxidative composition
through calcineurin (CnA) mediated activation of nuclear factor of activated T-cells (NFAT) and Ca2+/calmodulin-dependent protein kinase
(CaMK), or through modulation of AMPK and PGC-1α. Full lines indicate direct effects, dashed lines indicate indirect effects. AMP, adenine
nucleotide monophosphate; ATP, adenine nucleotide triphosphate; C, cytoplasm; Ca2+, calcium; ER, endoplasmic reticulum; M, mitochondria;
miR-222, microRNA; N, nucleus.

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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eNOS-knock-out mice after swimming.72 Conversely, other animal
studies have suggested that exercise-induced mitochondrial bio-
genesis is more prominent in skeletal muscle than in the heart.73,74

The latter may suggest that mitochondrial biogenesis is more
important for the early adaptation to exercise than the later
stages.

Mitophagy is the opposite of mitochondrial biogenesis as it
refers to the removal of damaged or dysfunctional mitochondria.56

The canonical mitophagy pathway is driven by the loss of
mitochondrial membrane potential which fosters mitochondrial
accumulation of PTEN-induced kinase 1 (PINK1),56,57,75 and
subsequent cytoplasmic-to-mitochondrial translocation of the
E3 ubiquitin ligase Parkin. The Parkin-mediated ubiquination of
mitochondrial proteins that ensues, targets mitochondria for
engulfment by autophagosome.56,57,75 The balance between mito-
chondrial biogenesis and mitophagy is tightly regulated through
PGC-1α by Parkin-interacting substrate (PARIS), which prevents
a mismatch in generation and degradation of mitochondria.56,57,75

Theoretically, exercise-induced biogenesis would be accompanied
by similar increases in mitophagy,56 to remove old and damaged
mitochondria and to make room for the newly produced ones.76

One research group describes several studies suggesting that
mitophagy was enhanced and associated with the beneficial effects
of exercise.68 However, others reported that mitophagy was
suppressed rather than stimulated.77,78 These discrepancies are
at least in part explained by the short-lived mitophagy process
in combination with the paucity of suitable models to study
mitophagy in vivo.

Mitochondrial dynamics is a subtler quality control mechanism
that controls the shape and size of the mitochondrial population
through mitochondrial fission and fusion events.79 Dynamic interac-
tions between mitochondria and changes in the outer mitochon-
drial membrane allow for continuous exchange of mitochondrial
content and changes the size and shape of these organelles.79–81

Fission of a mitochondrion results in multiple, smaller, mitochon-
dria, a process which is controlled by the dynamin-1-like protein
(DRP1), mitochondrial fission 1 protein (Fis1) and mitochondrial
fission factor (MFF).80,81 Fission and the generation of fragmented
mitochondria is required for mitosis, programmed cell death and
mitophagy to occur.80,81 On the other hand, fusion causes mito-
chondria to fuse into larger and longer mitochondria.80,81 The
functional purpose is therefore also different; fusion allows for mix-
ing of mitochondrial content, improvement of mitochondrial func-
tion, and precedes mitochondrial biogenesis.80,81 Critical regulators
of the fusion process are mitofusin 1 and 2 (Mfn1-2) and opti-
cal atrophy protein 1 (OPA1).80,81 Physiological exercise appears
to activate fission and fusion processes simultaneously. Coron-
ado et al.77 demonstrated that increased fission is essential for
the cardiac adaptation to exercise. Other authors did not detect
major changes in fission in aged rats but did detect an increase
in exercise-induced fusion activity.82 Yoo et al.78 did not observe
changes in mitochondrial fission and fusion after acute exercise,
despite detecting enhanced cardiac mitochondrial function. Taken
together, relatively little and inconsistent data are available related
to the role of mitochondrial dynamics in response to exercise and
require further exploration. ..
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.. Mitochondrial adaptations to exercise
in skeletal muscle
The metabolic demand of skeletal muscle can increase by 100-fold
during maximal exercise,58 making skeletal muscle highly depen-
dent on mitochondrial function as well66,83–85 (Figure 1C).
While the absolute mitochondrial content of skeletal muscle
is low compared to the heart,83 it contains large mitochon-
drial networks – the mitochondrial reticulum – which allows
for unparalleled plasticity.66,83,85,86 Studies indicate that mito-
chondrial biogenesis is activated by both acute and chronic
exercise.66,83,85,87,88 For instance, mitochondrial biogenesis is
enhanced in human muscles after low-volume high-intensity
interval training,89 as well as after chronic endurance exercise.90

The majority of evidence also suggests that acute and chronic
exercise promotes Parkin-dependent and Parkin-independent
mitophagy pathways.83–85,87,88,91,92 Mitochondrial fission is cru-
cial for exercise-induced mitochondrial adaptation,66,85 and
Fis1-knock-out mice develop swollen mitochondria with reduced
cristae density in the gastrocnemius muscle and have reduced
exercise capacity when subjected to exhaustive exercise.66,83–88,93

Similarly, DRP1-deficient mice also display deficient exercise
capacity and a maladaptive response to endurance exercise.94

The evidence regarding fusion responses to exercise remain
limited.66,84,85,95

Taken together, the beneficial effects of exercise in cardiac
and skeletal muscle are mediated by specific signal transduction
pathways, which initiate muscle growth. In addition, mitochon-
drial performance is increased through orchestrated changes in
mitochondrial biogenesis, mitophagy and potentially mitochondrial
dynamics as well.

Exercise in heart failure
Pathophysiology of exercise intolerance
in heart failure and the benefits
of exercise
Exercise intolerance has a multifactorial origin,4,96 and can be
attributed to maladaptive central and peripheral factors. However,
exercise itself can also exert beneficial effects in the setting of HF
(Figure 2).

Central pathways underlying exercise intolerance
in heart failure

Centrally, cardiac and pulmonary reserves are deteriorated in
HF and lead to symptoms such as fatigue and dyspnoea during
exercise.4,97 HF is associated with maladaptive or pathological car-
diac hypertrophy that develops in response to pathological stimuli
such as hypertension or myocardial infarction.30,98–102 Pathological
hypertrophy, while initially compensatory, eventually fails to sustain
cardiac function and often deteriorates into HF.30,98–102 Molecu-
larly, gene expression is shifted towards the foetal gene expression
programme98–102 and metabolically, substrate utilization is shifted

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.



Exercise capacity in heart failure 291

Figure 2 Mechanistic underpinnings of exercise intolerance in heart failure (HF) and the adaptive effects of exercise. Exercise intolerance can
develop due to central and/or peripheral factors, which often include pathological cardiac remodelling and mitochondrial dysfunction. These
processes can be attenuated by performing exercise, which causes adaptive effects in a disease setting in both cardiac and skeletal muscle.
The mechanisms involved include growth signalling as well as mitochondrial quality control. Colours have been used structurally: red indicates
effects in HF, green indicates effects of exercise training. Full lines indicate direct effects, dashed lines indicate indirect effects. ATP, adenine
nucleotide triphosphate; C, cytoplasm; DRP1, dynamin-1-like protein; Fis1, mitochondrial fission 1 protein; Mfn1-2, mitofusin 1 and 2; N,
nucleus; NRF1-2, nuclear respiratory factors 1 and 2; OPA1, optical atrophy protein 1; PGC-1α, peroxisome-proliferator-activated-receptor
gamma coactivator 1-alpha; PINK1, PTEN-induced kinase 1; ROS, reactive oxygen species; tFAM, mitochondrial transcription factor A.

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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from fatty acids towards increased glucose oxidation as a com-
pensatory response.98–103 Contrary to physiological hypertrophy;
fibrosis, apoptosis and necrosis also occur in response to patho-
logical stimuli.98–102 Together this results in the structural and func-
tional impairments of cardiac muscle that ultimately culminate in
the HF syndrome.29,104

In addition to structural defects, bioenergetic insufficiency is
also thought to contribute to cardiac dysfunction and exercise
intolerance in HF.104,105 Cardiac mitochondrial dysfunction can
be attributed to many factors, including abnormal mitochon-
drial ultrastructure, improper mitochondrial dynamics and func-
tional impairments related to enhanced reactive oxygen species
(ROS) and decreased ATP production.104 Mitochondrial fission
is increased, but Parkin-dependent mitophagy is dysregulated,
resulting in increased numbers of fragmented mitochondria that
are not efficiently removed through mitophagy.104,105 Fusion and
biogenesis are downregulated, further compromising mitochon-
drial quality.104,105 Together, both pathological cardiac remod-
elling and mitochondrial dysfunction may result in unmet cardiac
energy demands at rest and subsequently in response to exercise
(Figure 2).

Peripheral factors underlying exercise intolerance
in heart failure

Peripherally, HF has been associated with several defects in the
structure and function of skeletal muscle including but not limited
to atrophy, an unfavourable switch to glycolytic muscle fibre types
and general mitochondrial dysfunction.4,104,106–108 Furthermore,
adaptive capacity of skeletal muscle is also blunted in patients
with HFrEF and HFpEF.97 In contrast to the heart, skeletal muscle
mass deteriorates in HF leading to muscular atrophy rather than
hypertrophy. Bioenergetics are also impaired in skeletal muscle,
which can be attributed to reductions in oxidative muscle fibres
(type I) and in mitochondrial volume and density4,97,104,106–109

(Figure 2).
The mechanisms causing reduced mitochondrial content and

function remain relatively unexplored. Molina et al.110 detected
reductions in mitochondrial content in skeletal muscle of older
HFpEF patients, associated with diminished citrate synthase activity
and lower Mfn2 levels, which were all correlated with parameters
for exercise intolerance. This suggests that reduced mitochondrial
fusion also contributes to skeletal muscle wasting in HF. Tsuda
et al.111 discovered increased mitochondrial protein acetylation,
associated with dysregulated fatty acid oxidation and decreased
exercise capacity in a murine HF model. Hence, post-translational
modifications may play a role in the deterioration of skeletal
muscle function.

Benefits of exercise in central and peripheral factors
underlying exercise intolerance in heart failure: evidence
from animal studies

Interestingly, exercise training appears to be beneficial for cardiac
function in rodent models of HF.112–115 For example, Campos ..
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.. et al.113 also demonstrated that 8 weeks of moderate intensity run-
ning training in rats post-myocardial infarction (MI) HF, improved
left ventricular (LV) function, associated with improvements in
mitochondrial oxidative capacity. Similarly, 4 weeks of treadmill
exercise improved LV function and reduced cardiac fibrosis in
rats post-MI. Mechanistically, mitochondrial biogenesis is clearly
upregulated by exercise, suggesting that improvements in mito-
chondrial function could underlie the salutary effects.112 Swimming
training has been shown to have similar effects, accompanied by
reduced fibrosis and apoptosis, improved mitochondrial dynamics
and reduced ROS production.115 Interestingly, endurance training
prior to ischaemia/reperfusion improved mitochondrial dynamics,
reduced infarct sizes and diminished pathological cardiac remod-
elling, suggesting that exercise has cardioprotective properties as
well.114 Taken together, exercise training exerts beneficial effects
in the HF setting, both related to pathological cardiac remodelling
and mitochondrial quality control (Figure 2).

Skeletal muscle responses to exercise in HF are also gener-
ally adaptive and beneficial.116–119 Cai et al.116 demonstrated that
4 weeks of resistance and endurance training alleviated oxida-
tive stress, protein breakdown and myocyte atrophy to the same
extent. The beneficial effects of these exercise regimens were asso-
ciated with activation of growth factors IGF1 and neuregulin-1.
Eight weeks of voluntary wheel running in a model of genetic
heart disease, also showed that exercise reduced oxidative stress
and structural damage to skeletal muscle.117 Bacurau et al.118

demonstrated the protective role of endurance exercise in HF
mice, in which activation of the IGF1-Akt–mTOR pathway pre-
vented skeletal muscle atrophy. On the other hand, Moreira
et al.119 demonstrated that mitochondrial citrate synthase activ-
ity was enhanced and tFAM expression was restored by endurance
exercise, indicating that mitochondrial biogenesis remained intact.
Hence, these studies show that skeletal muscle atrophy in HF can
be overcome by exercise, possibly through beneficial effects on
skeletal muscle mitochondria (Figure 2; Box 1).

Box 1 Exercise in a bottle?
The future promise to replace physical exercise by a drug or
supplement can be questioned. Can we promise that we can
replace physical exercise by a tablet or bottle? Taking into
account the paradigm shift toward iron supplementation and
ketone administration, exercise in a bottle is what we ulti-
mately thrive for. Whether this is a realistic gesture remains
unanswered. Considering that physical exercise does much
more than activating a specific pathway or growth hormone:
the cyclic stretch, the increase blood flow, the vasodilation: it is
hard to conceive that this is all to come out of one bottle. Tack-
ling all the aspects of exercise is non-realistic, unfortunately,
this is something many physician-scientists do hope for. Most
probably opportunities lie more within therapeutic interven-
tions in supplement to exercise training, rather than mimicking
exercise itself.

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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A novel method to quantify exercise
intolerance in heart failure
In humans, the golden standard for assessing exercise capac-
ity entails the cardiopulmonary exercise test which is widely
available.120,121 However, peripheral aspects of exercise intolerance
can be studied in more detail using magnetic resonance spec-
troscopy (MRS) with an in-magnet ergometer.122–124 With the use
of 31 phosphorous (31P) MRS, in vivo skeletal muscle metabolism
can be brought to light.122,125 Measurements of phosphocreatine
(PCr), inorganic phosphate (Pi), ATP and phosphomonoester res-
onances during exercise and post-exercise recovery allow for the
determination of cellular muscle bioenergetics in the larger skele-
tal muscles.122 Additionally, oxidative muscle fibres can be visual-
ized, and mitochondrial content can be estimated.126 Changes in
metabolite measurements such as the Pi/PCr ratio during incre-
mental exercise correlate well with the degree of exercise intol-
erance in HF patients.127,128 Furthermore, measurement of PCr
resynthesis during recovery is considered to be a reliable estimate
of mitochondrial functioning in skeletal muscle, because PCr resyn-
thesis is predominantly dependent on oxidative mitochondrial ATP
synthesis.124 For instance, this technique was applied by van der Ent
et al.128 who have investigated forearm skeletal muscle metabolism
in chronic HF patients and provided evidence for decreased mito-
chondrial oxidative capacity, resulting in a decreased exercise adap-
tive capacity in HF patients. Weiss et al.96 provided the evidence
that both HFrEF and HFpEF patients exhibited normal basal skele-
tal muscle metabolism, but in response to exercise, skeletal muscle
metabolism was disrupted. This was characterized by rapid decre-
ments in phosphates and low oxidative capacity (Box 2).

Box 2 A novel golden standard
to determine exercise
intolerance?
Many clinical trials utilize the 6-minute walk test and/or Kansas
City Cardiomyopathy Questionnaire to determine exercise
capacity. In clinical practice, cardiopulmonary exercise test-
ing is however golden standard. For research purposes this
often is too laborious and costly but would provide more
insight into specific parameters of i.e., peak oxygen uptake,
which are more accurate and of prognostic value for car-
diovascular outcome. Recent studies using a 31 phospho-
rous surface coil in Magnetic Resonance Spectroscopy with
an in-magnet ergometer, have shown to provide detailed func-
tional status of peripheral skeletal muscles. This technique
offers more specific insight into mechanistic deficits in heart
failure patients with exercise intolerance. Yet its feasibility and
cost-effectiveness should be considered. Perhaps, the devel-
opment of a patient-specific panel or flow chart of tests could
provide an individualized status of exercise tolerance, which
could serve as a more accurate golden standard in both a
research and clinical setting.
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.. Possibilities to improve exercise

intolerance in heart failure
Benefits of endurance exercise in heart
failure: evidence from human studies
Clinical data also suggest that exercise is beneficial for HF patients.
In fact, multiple studies including randomized controlled clini-
cal trials such as the HF-ACTION trial, systematic reviews and
meta-analyses have shown that exercise is safe and improves symp-
toms in HF patients, both HFrEF and HFpEF patients.5,6,129–144

Exercise training is therefore recommended in HF patients.5,16

Unfortunately, exercise is initially accompanied by increases in
discomfort and many HF patients are apprehensive or physically
challenged by non-cardiac comorbidities. Long-term adherence to
such regimens is therefore low.16,18,145 Accordingly, nutriceutical
or pharmacological strategies to boost exercise performance in
HF patients could be key. Based on the evidence presented in this
review, we believe that there are multiple targets and strategies
that should be explored to improve exercise performance in HF
(summarized in Figure 3).

Targeting growth in cardiac and skeletal
muscle
There are clear distinctions in the molecular growth responses
between physiological and pathological growth in cardiac and
skeletal muscle. One might therefore argue that it would be
beneficial to activate physiological pathways in HF patients, i.e.
to superimpose physiological growth responses in a patho-
logical setting. A potential focus should be the activation of
exercise-induced signalling pathways, such as targeting factors in
the Akt-C/EBPß-CITED4 pathway. Considering that this pathway
signals through miRs, RNA-based therapeutics may offer opportu-
nities to promote physiological growth in HF.19,23,44,146,147 Another
example, of a potential target to regulate physiological growth is
A-kinase interacting protein 1 (AKIP1).148–150 Studies with neona-
tal rat ventricular cardiomyocytes demonstrated an induction
of cardiomyocyte hypertrophy by overexpression of AKIP1.149

This hypertrophic response was associated with activation of
Akt signalling without enhanced expression of pathological gene
markers,149 suggesting a role for AKIP1 in physiological cardiomy-
ocyte hypertrophy. Activation of such signalling pathways could
lead to beneficial reprogramming and could improve exercise per-
formance. In skeletal muscle, it is also of importance to stimulate
physiological growth, but most specifically, novel targets should be
developed to overcome skeletal muscle atrophy. The knowledge
regarding resistance and endurance training is increasing, and
this provides improvements in skeletal muscle mass, potentially
through mechanisms involving Akt and mTORC1.118

Boosting mitochondrial performance
in cardiac and skeletal muscle
Current literature describes several cardioprotective roles of
exercise due to underlying beneficial mitochondrial mechanisms,
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Figure 3 Exercise as a molecular therapy for heart failure-associated exercise intolerance. The adaptive effects of exercise in both health
and disease may provide therapeutic targets to improve exercise intolerance in heart failure. The underlying mechanistic pathways involve
stimulation of physiological cardiac growth, skeletal muscle hypertrophy and enhanced mitochondrial quality control. This is accompanied
by inhibition of pathological cardiac growth, skeletal muscle atrophy and mitochondrial dysfunction. These exercise-induced effects can be
enhanced by targeting these pathways with pharmacological manipulation, diets/supplements and/or genetic targeting.

suggesting potential targets to improve exercise tolerance in
HF.151–153 Stimulation of these mitochondrial adaptive responses
including mitochondrial biogenesis, mitophagy and mitochondrial
dynamics could potentially also improve exercise capacity in HF
patients. It is however important to consider that cardiac dys-
function may not be restored solely by improving mitochondrial
performance.154 In skeletal muscle, improvements in mitochondrial
quality control could enhance the adaptive response to stress and
block or reverse the unfavourable muscle fibre switching. Recently,
our department uncovered an important role of the erythropoi-
etin receptor in skeletal muscle, a novel target which is critical
for mitochondrial biogenesis in skeletal muscle and the response
to physiological exercise.155 Potentially, stimulating skeletal muscle
erythropoietin signalling could benefit for patients with mitochon-
drial myopathies, skeletal muscle fatigue, or atrophy.

Conclusion
Exercise intolerance is the central and most debilitating symptom in
HF patients and limited therapies are available. Evidence is emerg-
ing that exercise training has beneficial effects on both cardiac
and skeletal muscle, in health and disease settings. Therefore, in ..
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.. order to overcome exercise intolerance in HF patients, the pri-
mary advice remains exercise. However, this should be accom-
panied by additional therapies to alleviate initial symptoms asso-
ciated with exercise in HF patients. We do propose that novel
molecular therapies to boost muscle growth and mitochondrial
quality control in HF should always be combined with some form
of exercise training. Possibilities for such supplemental molecular
therapies lie within pharmacological, genetic and/or dietary tar-
geting of pathways associated with adaptive effects of exercise
in cardiac and skeletal muscle. Hence, increased understanding
of exercise-associated growth signalling, and mitochondrial qual-
ity control mechanisms may broaden the horizon for exercise as
a therapy for HF. Future studies should focus on unravelling the
mechanistic underpinnings of exercise-induced benefits in both car-
diac and skeletal muscle.
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