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Caffeic acid (CA) has been present in many herbs, vegetables, and fruits. CA is a bioactive
compound and exhibits various health advantages that are linked with its anti-oxidant
functions and implicated in the therapy and prevention of disease progression of
inflammatory diseases and cancer. The anti-tumor action of CA is attributed to its pro-
oxidant and anti-oxidant properties. CA’s mechanism of action involves preventing
reactive oxygen species formation, diminishing the angiogenesis of cancer cells,
enhancing the tumor cells’ DNA oxidation, and repressing MMP-2 and MMP-9. CA
and its derivatives have been reported to exhibit anti-carcinogenic properties against
many cancer types. CA has indicated low intestinal absorption, low oral bioavailability in
rats, and pitiable permeability across Caco-2 cells. In the present review, we have
illustrated CA’s therapeutic potential, pharmacokinetics, and characteristics. The
pharmacological effects of CA, the emphasis on in vitro and in vivo studies, and the
existing challenges and prospects of CA for cancer treatment and prevention are
discussed in this review.
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INTRODUCTION

Caffeic acid (CA) is a phenolic derivative generally found in green tea,
red wine, fruits, vegetables, and coffee (Chen et al., 2019; Meinhart
et al., 2019; Zhang et al., 2019). CA (3,4-dihydroxycinnamic acid)
exhibits anti-bacterial and anti-inflammatory effects and participates
in significant functions of the human system (Kępa et al., 2018;
Bounegru and Apetrei, 2020). It demonstrates anti-cancer, anti-
oxidant, anti-proliferative, and anti-inflammatory properties. CA
plays a pro-oxidant role in tumor cells and an anti-oxidant role in
healthy cells. The oxidative DNA injury induced by the pro-oxidant
property and its downstream pathway stimulate cell death by
apoptosis (Kanimozhi and Prasad, 2015). CA has been frequently
found as quinic acid ester called chlorogenic acid (Chen and Ho,
1997; Verma and Hansch, 2004; Silva et al., 2014).

CA plays in the protection machinery of plants against infections,
predators, and pests, inhibiting the growth and survival of insects,
fungi, and bacteria (Tošović, 2017). Polyphenols are organic
compounds distinguished by huge manifolds of phenol structural
parts that perform as the bases of exclusive chemical, biological, and
physical functions to individual constituents of the class. This
significant structural variety deeply influences their bioavailability
(Birková et al., 2020). The defensive effect of CA on the human
system is elucidated because of its anti-oxidant functions that are
endorsed for its chemical structure. The chemical features of CA
molecules permit the removal of free radicals and inhibit reactive
oxygen species (ROS) formation; thus, it has useful impacts on
human health (Birková et al., 2020).

CA and its derivatives have been identified with anti-oxidant,
anti-viral, anti-inflammatory, and anti-cancer activities (Prasad
et al., 2011; YangW. S. et al., 2013).; Yang et al., 2013b). CA acts as
an inhibitor of low-density lipoprotein oxidative alteration that is
considered engaged in the pathogenesis of atherosclerosis (Wang
and Yang, 2012). CA blocks STAT3 action, and this, in turn,
down-triggers HIF-1α action. It is a promising inhibitor of
STAT3 and represses cancer angiogenesis via blocking the
action of STAT3 and the expression of VEGF and HIF-1α
(Jung et al., 2007). Moreover, the mRNA levels of iNOS,
COX-2, and TNF-α were less regulated via CA. CA strongly
suppresses the nuclear translocation of AP-1 member proteins
(Yang W. S. et al., 2013) and may simultaneously repress the
activation of NF-κB, NFAT, and AP-1 (Feng et al., 2005).

Based on the broad effects of CA, here we discuss its therapeutic
potential in cancer by emphasizing its function in cancer signaling.
This review focuses on CA’s chemical and pharmacological effects by
representing its mechanism of action, bioavailability, and
pharmacokinetic characteristics for expressing the promising
therapeutic function in tumors, with emphasis on in vitro and in
vivo studies. To conclude, CA’s current challenges and prospects for
cancer management are also discussed.

STRUCTURAL FEATURES OF CAFFEIC
ACID

Phenolic compounds offer defense against diseases by regulating
cellular mechanisms at different levels, such as enzyme inhibition,

protein phosphorylation, and alteration of gene expression (Naz
et al., 2017; Naz F. et al., 2018; Naz H. et al., 2018; Ishtikhar et al.,
2018; Mohammad et al., 2019; Mohammad et al., 2020; Kasprzak-
Drozd et al., 2021). An enhancement in phenolic compounds may
change their health advantages (Saibabu et al., 2015; Anwar et al.,
2016). However, more than 8,000 phenolic compounds might be
categorized into two major groups, such as flavonoids and non-
flavonoids (Kumar and Pandey, 2013).

Phenolic acids (PAs) are non-flavonoid phenolic compounds,
including a single phenyl group alternated through a carboxylic
and one or more OH groups (Leonard et al., 2021). PAs are again
categorized by the extent of the chain, which encloses the
carboxylic group, including hydroxycinnamic acids (HCs),
hydroxyphenyl acids, and hydroxybenzoic acids (Has). HC has
a C6–C3 fundamental skeleton. The existence of a CH2 =
CH–COOH set in cinnamic acids guarantees a superior anti-
oxidant capability than the COOH set in benzoic acid. Hence, one
of the main HCs is CA (Göçer and Gülçin, 2011; Vinayagam et al.,
2016; Filipe et al., 2018). Moreover, the potential therapeutic
prospective of CA examinations has exhibited that the clean
shape of CA has the accessibility to be absorbed in the intestines
and consequently interfaces with the intention tissue (Sato et al.,
2011).

BIOAVAILABILITY AND METABOLISM OF
CAFFEIC ACID

CA’s partition coefficient fluctuates between 1.0 and 1.3, and its
molecular mass is 180.16 g/mol (Wu et al., 2007; Kudugunti et al.,
2010). Monocarboxylic acid transporters are responsible for CA
absorption in the gastro-intestinal tract (Konishi et al., 2004;
Konishi and Kobayashi, 2004). CA metabolism is also linked to
the gut microbiota. CA undergoes decarboxylation under an
anaerobic condition which passes via bacteria with the
production of an analog [3-(3-hydroxyphenyl)-propionic acid]
and thus exhibits better anti-oxidant action as compared to CA
(Shen et al., 2020). After absorption, CA undergoes widespread
metabolic pathways in the liver and kidney (Ito et al., 2005; Lafay
et al., 2006). CA has disclosed an excellent safety summary in
phase 1 clinical trial.

Hydrolyzation is an incredibly chief step in the human
metabolism of CA in the intestine because of esterases,
enzymes that are able to hydrolyze chlorogenic acid to make
CA. CA is found in its ester in extremely tough foods to get
absorbed. The ingestion of CA starts in the stomach, where a little
amount is absorbed. Following the action of microbial esterases in
the colon, CA gets sliced in free appearance and 95% gets
absorbed via the intestinal mucosa (Birková et al., 2020) by
active transport induced through monocarboxylic acid
transporters. Hence, the highest CA plasma concentration has
been detected to reduce 1 h after food ingestion. The
detoxification method instantly creates more hydrophilicity
after absorption, decreasing its toxic effect and facilitating its
removal. The small intestine is the probable location of
feruoylquinic acid cleavage into CA and ferulic acid, CA
metabolism into 3-O-sulfate and 4-O-sulfate, as well as CA
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methylation, resulting in the formation of isoferulic acid followed
by 3-O-sulfation and glucuronidation. CA is emitted mainly by
urine, with calculated urinary secretion being between 5.9 and
27% (Olthof et al., 2001; Manach et al., 2004; Espíndola et al.,
2019).

ROLE OF CAFFEIC ACID IN HUMAN
PHYSIOLOGY

CA is HA with a C6–C3 skeleton and with a transethylene wire
connecting an aromatic ring with a carboxylic acid (Magnani
et al., 2014; Silva et al., 2014). Plant CA biosynthesis occurs via a
pathway which makes AAA from glucose (Silva et al., 2014;
Rodrigues et al., 2015). Beginning with shikimic acid, it undergoes
three enzymatic reactions. The first reaction is shikimate kinase-
induced phosphorylation, followed by the conjugation of
phosphoenolpyruvate induced by 5-EPSP synthase and lastly
by chorismate synthetase, producing one of the vital
conciliator metabolites of this signaling, chorismic acid (Silva
et al., 2014; Ishtikhar et al., 2015; Rodrigues et al., 2015).
Chorismic acid is converted by chorismate mutase into
prephenic acid.

Furthermore, L-phenylalanine production is induced as a
coenzyme by deamination through pyridoxal 5-phosphate and
as an electron exchanger through nicotinamide adenine
dinucleotide (Silva et al., 2014; Rodrigues et al., 2015). The
deamination of L-phenylalanine through
phenylalanine ammonia lyase forms cinnamic acid, which is
transformed into p-coumaric acid through C4H and CA
through the enzyme C3H (Rodrigues et al., 2015). CA is
attained from plants by solvent extraction at the highest
temperature, though its yield is extremely low, involving huge
amounts of botanical substance to obtain a considerable yield
(Lin and Yan, 2012; Rodrigues et al., 2015). This compound can
be achieved in huge quantities through organic synthesis
(Touaibia and Guay, 2011). Genetics alter
microorganisms—for example, Escherichia coli strains
(Kawaguchi et al., 2017; Hernández-Chávez et al., 2019).

There are several beneficial effects of CA and its derivatives,
including anti-bacterial (Matejczyk et al., 2018; Mitani et al.,
2018), anti-viral (Langland et al., 2018; Shen et al., 2018), anti-
oxidant (Shiozawa et al., 2018; Kfoury et al., 2019), anti-
inflammatory (Zaitone et al., 2019; Lima et al., 2020),
immune-stimulatory (Krifa et al., 2013; Coleman et al., 2016),
antidiabetic (Chiou et al., 2017; Bounegru and Apetrei, 2020),
cardioprotective (Agunloye et al., 2019; Salau et al., 2021), anti-
proliferative (Pelinson et al., 2019), hepatoprotective (Abdelhafez
et al., 2018; Saleem et al., 2019), anti-cancer (Zeng et al., 2018;
Martini et al., 2019; Pelinson et al., 2019), and so on. CA plays a
central function in the human system because of its many
beneficial effects. It can be found in pharmaceuticals
(Katsarova et al., 2017; Li et al., 2017).

Several studies showed that high doses of CA might cause
considerable side effects, which inhibit the implantation of
embryos (Liu et al., 2019) or cancerous effects (Hagiwara
et al., 1991). The information is verified; the small intestine

absorbs a significant amount of CA, which goes into the
bloodstream in a large proportion (Wang et al., 2017). CA can
support the progression of squamous cell carcinomas in the
kidneys and stomach of mice and rats (Hagiwara et al., 1991).
A toxicity study of CA has been performed to understand the
reproductive role and the progression of offspring in female mice.
However, female mice have incessantly been exposed to different
dosages via gavage in the 3-segment analysis. Two CA doses (5
and 150 mg/kg/day) were reported to affect embryo implantation
when administered before the sixth day of gestation. Additionally,
the CA dose of 150 mg/kg/day influenced the fetal weight to be
achieved (Liu et al., 2019).

PHARMACOLOGICAL EFFECTS OF
CAFFEIC ACID

Anti-cancer Properties
CA and its derivatives have been recognized for their anti-
inflammatory, anti-bacterial, and anti-carcinogenic functions
that could be associated with its anti-oxidant action (Genaro-
Mattos et al., 2015). CA treatment has increased the ROS levels
and changed matrix metalloproteinases (MMP) in ME-180 and
HeLa tumor cells. Enhanced apoptotic morphological alterations
have been observed in CA-treated cells in ME-180 and HeLa cells
(Kanimozhi and Prasad, 2015). Hence, a pro-survival result of CA
mediated by the NF-κB pathway has been expressed in lung
tumor cells treated with paclitaxel (Lin et al., 2012). The accurate
function of ROS in intracellular activity remains less understood
and probably depends on particular situations.

New studies show that CA exerts anti-tumor properties by
AMPK activation, and a mechanism has been identified in colon
tumor cells in vitro (Murad et al., 2015). CA demonstrates a
potent anti-tumor effect in the HT-1080 cell line, which might be
utilized as an anti-cancer drug (Prasad et al., 2011; Alam et al.,
2022). It prevented breast tumor cell proliferation, influencing
cell cycle development and downstream effectors. The maximum
impact of CA has been observed in MCF-7 cells, where it
suppressed the proliferation and survival of breast tumor cells
(Rosendahl et al., 2015).

The role of CA-targeting gene amplified in squamous cell
carcinoma 1 (GASC1) has been established recently. GASC1 is a
recently reported oncogene in various cancer types, including
esophageal cancer (Sun et al., 2013; Jia et al., 2020). The anti-
cancer effect of CA has been studied in advanced esophageal
squamous cell cancer (ESCC), and clinical trials are being
conducted (ClinicalTrials.gov identifier: NCT04648917). CA
was used as a drug for thrombocytopenia when the patient
received chemotherapy. A recent clinical trial has been done
to see the effectiveness of oral CA tablets in managing primary
immune thrombocytopenia. Scientists have observed a very
effective role of CA in immune thrombocytopenia patients,
with few and mild side effects, thus suggesting a potential
therapeutic role of CA (Qin et al., 2015).

The anti-carcinogenic functions of CA have magnetized the
consideration of the scientific society (Da Cunha et al., 2004;
Damasceno et al., 2017; Sidoryk et al., 2018). Reports have
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revealed that the utilization of foods rich in CA causes a defensive
action in carcinogenesis by inhibiting the creation of nitro
compounds, the pathology’s chief inducers (Touaibia et al.,
2011; Damasceno et al., 2017). However, these effects of CA
are generally linked with its anti-oxidant (Stagos et al., 2012;
Magnani et al., 2014) and pro-oxidant abilities (Li et al., 2000;
Zhang et al., 2008), which are attributed to their chemical
structure. Initially, the existence of free phenolic hydroxyls is
probably to reduce the enthalpy of OH-bond dissociation that
enhances the transfer speed of H atoms to peroxyl radicals and
the number and location on the phenyl ring. Hence, the existence
of a double bond in the carbon chain enhances the constancy of
the phenolic radical (Son and Lewis, 2002; Touaibia et al., 2011;
Magnani et al., 2014). Thus, chemical features connected with CA
molecules permit the removal of free radicals, inhibiting the
creation of ROS and the initiation of DNA oxidation of tumor
cells (Silva et al., 2014; Sidoryk et al., 2018).

Anti-oxidant Activity
CA is an anti-oxidant which may decrease the oxidative stress
present in the body because of free radicals. Hence, oxidative
stress is described as an inequity between the making of ROS and
anti-oxidant protection (Birková et al., 2020). Consequently to
this inequity, oxidative stress frequently results in the progression
of many diseases in humans, including cancer (Ahmed et al.,
2015; Bjørklund and Chirumbolo, 2017). Anti-oxidants inhibit
the effects regulated via free radicals and oxidizing compounds
(Soares et al., 2005). The grouping of CA with other products,
including chlorogenic and caffeic acids, is explained by the high
potent anti-oxidant action in different systems (Meyer et al.,
1998; Fukumoto and Mazza, 2000). CA is considered as a
potential photo-protective agent present in skincare products
because of its anti-oxidant action (Yamada et al., 2006).
Depending on the exposure time, wavelength, exposed area,
and dose, UV radiation may cause premature skin aging, skin
burns, skin cell DNA injury, and skin tumor (Scharffetter-
Kochanek et al., 1997; Matsumura and Ananthaswamy, 2002).

Based on the mechanisms of CA, it acts in cancer via its
promising anti-oxidant ability that inhibits the creation of ROS,
thus decreasing oxidative stress, which is incredibly general in
disease (Silva et al., 2014; Sidoryk et al., 2018). CA performs as a
primary and pro-oxidant (secondary). A primary anti-oxidant
performs via disrupting the creation of free radicals via
preventing the chain reactions with a different molecule
(Angelo and Jorge, 2007; Damasceno et al., 2017). This
procedure happens when CA donates hydrogen/electrons for
free radicals, changing them into thermodynamically constant
products. Hence, these products present better constancy because
of the electron delocalization in the aromatic ring of CA
(Damasceno et al., 2017). A secondary anti-oxidant performs
as a chelating agent and makes complexes with metals (copper
and iron), preventing the decomposition of peroxides, decreasing
the creation of free radicals and their assault on amino acids,
lipids, and bases of DNA, and consequently evading the making
of lesions and failure of cellular integrity (Angelo and Jorge, 2007;
Damasceno et al., 2017). However, CA has a huge potential effect
for decreasing metals because of its structural chemical features;

the compound is vulnerable to auto-oxidation and oxidation
caused via other biological agents (Medina et al., 2012;
Damasceno et al., 2017).

Pro-oxidant Activity
The utilization of foods rich in CA has been revealed to protect
against carcinogenesis due to its anti-oxidant and pro-oxidant
functions. CA displays pro-oxidative roles in cancer cells, which
are correlated with oxidative DNA injury and, pursued by its
consequent pathway, the induction of cell death in tumor cells
(Birková et al., 2020). This anti-tumor effect of CA by pro-
oxidative functions has been first identified by scientists in
2015. They detected enhanced apoptotic morphological
alterations in tumor cells treated with CA, where CA
enhanced the lipid peroxidation (LPO) markers in ME-180
and HeLa cells. Hence, they detected elevated levels of ROS
and modified MMP (Kanimozhi and Prasad, 2015). CA may
turn into a pro-oxidant by its capability to chelate metals like
copper and stimulate LPO, causing injury on the DNA of tumor
cells through oxidation or creation of covalent adducts with DNA
(Zheng et al., 2008; Damasceno et al., 2017). CA holds the
capability to cap the endogenous Cu ions of human
lymphocytes to form CA-Cu (II) (Zheng et al., 2008). CA
undertakes deprotonation relative to Cu, producing an oxygen
center by high electronic density (Zheng et al., 2008; Damasceno
et al., 2017). However, this complex ensures oxygen to make the
semiquinone radical anion with Cu (I) (Zheng et al., 2008;
Damasceno et al., 2017). CA deprotonation takes place to
form a phenoxide wherever the Cu (I) ion should be bound as
a bidentate linker (Zheng et al., 2008; Damasceno et al., 2017).
Pro-oxidant acts play an anti-tumor effect due to the induction of
cell death in the cancer cells (Yang et al., 2012).

Anti-inflammatory Properties
CA exhibits a cardio-protective effect against hypercoagulability,
dyslipidemia, inflammation, and oxidative stress in diabetic mice.
The dietary supplementation of CA and ellagic acid increased the
levels of lipid metabolism and glycemic control in diabetic mice
(Birková et al., 2020; Sharifi-Rad et al., 2020). Eventually, both
compounds explained the anti-inflammatory, anti-oxidative, and
anti-coagulatory defense for the heart of diabetic mice (Chao et al.,
2009). CA might defend the cardiac tissue against diabetes-linked
hypercoagulability, dyslipidemia, inflammation, and oxidative stress.
The inflammatory reaction in the brain is a coordinated regulatory
machinery of specialized cells in the CNS known as microglial cells.
However, the activation of cells under pathological conditions was
revealed to contribute to the progression of numerous
neurodegenerative disorders. The discharge of pro-inflammatory
mediators in the brain stimulated through various stimulants,
including Aβ, was exhibited to account for the inflammatory
constituent of neuronal loss in Alzheimer’s disease (AD) (Ito
et al., 1998; Verri et al., 2012; Prokop et al., 2013).

CA and its derivatives possess anti-inflammatory effects and
thus are implicated in AD through these agent candidates. In
addition, the activation of Nrf2 has been explained for inhibiting
inflammatory gene expression (Chen et al., 2006; Alam et al.,
2021a) by signaling the crosstalk linking the HO-1 (Kapturczak
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et al., 2004). Kim et al. (Kim and Jang, 2014) have illustrated that
the Nrf2-induced HO-1 introduction of CAPE is correlated with
its anti-inflammatory and anti-oxidant mechanisms. The anti-
inflammatory result of other CA esters in microglial cells was
connected to the induction of HO-1 (Lu et al., 2013; Alam et al.,
2021c). Hence, their multifunctional results indicate the
relationship between the CA derivatives’ anti-oxidant and anti-
inflammatory effect and their therapeutic potential for AD. Liang
et al. (2015) have confirmed that the enhanced NF-κB, p65, and
5-LOX expression correlated with the global cerebral
ischemia–reperfusion neuronal injury and memory loss in rats
is inverted through CA (10–50 mg/kg) treatment. CA (50 mg/kg)
also improved neuronal loss and infarct volume 24 h after
ischemia (Zhou et al., 2006). Together with the common anti-
inflammatory effect of CA derivatives, these effects are all
pertinent mechanisms that might feature anti-AD potential.

Induction of Apoptosis
CA induces apoptosis through inhibiting Bcl-2 action, resulting in
the liberation of cyt-c and the consequent activation of caspase-3,
representing the fact that CA stimulates apoptosis by the intrinsic
apoptotic pathway (Chang et al., 2010; Alam et al., 2019; Alam et al.,
2021b). Their anti-oxidant results are arbitrated throughmodulating
pathways, including MAPK, NF-κB, and Akt. Furthermore, they
stimulate cell cycle arrest and increase cell death in tongue, neck, and
mouth cancer (Srinivasulu et al., 2018). In Ht-29 cells, 5-
caffeoylquinic acid and CA decreased cell viability by endorsing
specific cell cycle modifications and stimulating cell death in a time-
and dose-dependent way (Murad et al., 2015; Anantharaju et al.,
2016). CA demonstrated a vital function in inhibiting cancer
progression by reducing cell viability and cell death induction.
The treatment with CA caused the modulation of the cell cycle,

prevention of colony formation, and alteration in caspase expression
(Pelinson et al., 2019). CA attenuated cancer stem cell-like functions
by the prevention of TGFβ-SMAD2 signaling induced via
microRNA-148a in vivo as well as in vitro (Li et al., 2015). The
contrast in the anti-tumor results of CA and CAPE showed the
exposure time and dose-dependent capability of CAPE to be highly
promising in the treatment of tumor cells with its action induced
through stimulating cell death and cell cycle arrest inMDA-MB-231
cells (Kabała-Dzik et al., 2017) and decreasing the migration of
MCF-7 (Kleczka et al., 2020).

Inhibition of Vascularization and
Invasiveness
CA efficiently blocked the VEGF-mediated proliferation and
survival of retinal endothelial cells in a concentration-
dependent way (Figure 1A). Additionally, the tube formation
of cells and VEGF-mediated migration have been presented (Kim
et al., 2009; Alam and Mishra, 2020). CA might also perform
hepatocellular carcinoma (HCC) cells’ angiogenesis by decreasing
the JNK-1 phosphorylation through the reduction of HIF-1α
activation. This causes the decline of vascularization mediated
through VEGF and represses cancer growth (Gu et al., 2016).
HCC is an extremely vascularized tumor whose main distinctive
characteristic is angiogenesis, and its major resource of blood
supply is the hepatic artery (Dhanasekaran et al., 2016; Gu et al.,
2016; Klungboonkrong et al., 2017). This cancer is rich in
vascularization; hypoxia is very frequent because of the quick
proliferation of cancer cells and, accordingly, the making of huge
solid tumor masses, hindering and squeezing the blood vessels
about it (Dhanasekaran et al., 2016; Gu et al., 2016;
Klungboonkrong et al., 2017). Cancer cells seek to adapt to

FIGURE 1 | (A)Caffeic acid (CA) actions on the angiogenesis of cancer cells through decreasing the JNK-1 phosphorylation and reducing the HIF-1α activation that
cause the decline of vascularization mediated by vascular endothelial growth factor. (B) CA may act on tumor cells by repressing MMP-2 and MMP-9 expressions,
which, in turn, inhibits the activation of NF-κB stimulated through PMA (activating protein 1) in tumor cells, thus reducing cancer invasiveness and growth. ↓, decrease.
(Adapted from Espíndola et al., 2019)
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hypoxia through activating HIF-1 by the JNK-1 pathway, which
stimulates numerous proangiogenic factors, including VEGF.
When better expressed, VEGF causes extravasation of blood
from the cancer blood vessels, leading to hepatic bleeding
(Zhu et al., 2011; Gu et al., 2016), a significant factor for
cancer survival (Zhu et al., 2011; Dhanasekaran et al., 2016;
Gu et al., 2016; Klungboonkrong et al., 2017). CA drastically
repressed the retinal neovascularization in oxygen-mediated
retinopathy like the animal model of ROP with no retinal
cytotoxicity (Kim et al., 2009).

An additional mechanism of action suggested that CA
represses MMP-2 and MMP-9 expression in HCC. MMP-2
and MMP-9 are expressed in cancer cells that degrade the
extracellular matrix (ECM) type IV collagen during tumor
metastasis and invasion (Chung et al., 2004; Lee et al., 2008;
Yeh et al., 2012; Pramanik et al., 2016). Phorbol 12-myristate 13-
acetate (PMA) can stimulate PKC; once activated, it endorses the
induction of pro-inflammatory cytokines, including IL-6 and
TNF-a (Jiang and Fleet, 2012). These pro-inflammatory
mediators stimulate the activation of NF-κB by c-Src/ERK/
NIK/IKK (Touaibia et al., 2011; Kim et al., 2014; Alam and
Mishra, 2021). NF-κB produces enhanced MMP-2 and MMP-9
expression that leads to the metastasis and invasion of hepatic
cells through the degradation of ECM (Chung et al., 2004; Lee
et al., 2008; Yeh et al., 2012; Pramanik et al., 2018). The repressive
result of CA on MMP-2 and MMP-9 is connected with the
obstruction of NF-κB activation, as identified in liver tumor cells
stimulated via PMA, leading to a reduction in cancer invasiveness
and growth (Chung et al., 2004; Lee et al., 2008; Alam et al., 2017)
(Figure 1B). CA has been noted of its anti-oxidant results via
repressing the making of ROS and superoxide dismutase and
inhibiting tumor development and migration by reducing cell
adhesion via a decreased connection to the ECM in A549 and
HT29-D4 cells (Anantharaju et al., 2016; Zhu, 2016).

Synergistic Effect of Caffeic Acid With
Anti-cancer Agents
Combination therapy is the treatment and management move
toward two or more agents/drugs with the target of achieving
equivalent efficiency levels with minor toxicities and at doses
lesser than normal and having superior influence with
synergistic/additive effects (Chen et al., 2016; Bayat Mokhtari
et al., 2017). A combined treatment approach with natural
products might inhibit the source of acquired drug resistance,
including chemotherapy. However, successful combinations of
potent therapeutic drugs/agents with products may attain the
desired conclusion but with lesser toxicity (Bukowska et al., 2015;
Das et al., 2018). CA and Metformin (Met) was identified to have
additive/synergistic effects while combined with anti-tumor
therapies, mainly for HTB-34 cells (Tyszka-Czochara et al.,
2017b). CA induces cytotoxicity by necrosis for SiHa cancer
cells but, combined with Met and its cytotoxicity machinery,
moved toward cell death without disturbing healthy human
fibroblasts. However, the combination for controlling
mitochondrial metabolism that stimulated ROS making in
metastatic cancer cells has been found. Hence, incubating

tumor cells with CA and Met caused a remarkable move to
the G0 from the G1 stage. Studies continue to explore the
mechanism of anti-cancer function of the combination of CA
and Met (Tyszka-Czochara et al., 2017a).

CA and cisplatin illustrated a potent anti-tumor action in
cancer. Furthermore, cisplatin-sensitive cells, while exposed to a
combination therapy of 50 μM CA and 5 μM cisplatin, quickly
enhanced the action of apoptotic cascade through enhanced
caspase action (1.7 folds) in contrast to the administration of
5 μM cisplatin only. A study on A2780cisR cells confirmed that
combining 5:50 μM(cisplatin/CA) increases the caspase action by
4:3 folds through 60% cell viability (Sirota et al., 2017). An
analysis has been performed wherein the combination of CA
with cisplatin has been checked to stop the resistance progression
in tumor treatment. CA is an inhibitor of glutathione S-
transferase and glutathione reductase that are the catalytic
enzymes of GTH (Figure 2) (Siddik, 2003; Islam et al., 2017).
Hence, there is a scope of testing the combined result of CA and
CAF to reveal their potential therapeutic effect against tumor to
evaluate the molecular mechanisms of the combination with a
multi-target (Figure 2). However, CA combined with cisplatin
enhanced its therapeutic effect, leading to the prevention of cell
growth and survival of CaSki and HeLa cells that might be
elucidated via a synergistic effect. Hence, this combination has
been correlated with enhancing the expression of caspase-3,
caspase-7, and caspase-9 (Koraneekit et al., 2018).

Clinical Significance of Caffeic Acid
A study has explained that CAPE (50 μM) considerably enhanced
the apoptosis induced via tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL) through the positive
regulation of DR5 induced via CHOP in Hep3B HCC cells.
However, TRAIL is a ligand with anti-tumor functions able to
stimulate cell death in tumor cells (Mongkolsapaya et al., 1998;
Dilshara et al., 2016). This act happens via its binding with DR5,
which interrelates with Fas through recruiting caspase-8 and
caspase-3 and stimulating cell death (Siegmund et al., 2001;
Dilshara et al., 2016). CAPE found in the bee propolis extract
potentiated TRAIL-induced apoptosis, motivating the CHOP
protein expression being dependable for DR5 regulation
(Dilshara et al., 2016). One experiment identified CAPE
(30 μg/ml) to potentiate TRAIL-mediated cell death (30 ng/ml)
by DR5 regulation through p38 and repression of JNK in SK-
Hep1 cells (Yang SY. et al., 2013; Kim et al., 2014). However, the
combination of TRAIL and CAPE has generated apoptosis by the
intrinsic pathway and through the extrinsic pathway (Yang SY.
et al., 2013). In intrinsic CAPE and TRAIL signaling,
mitochondrial membrane depolarization stimuli have been
enhanced, consequential in the liberation of cyt-c and the
making of the apoptosome and resulting in the activation of
apoptosis-stimulating caspase 9 (Nicholson, 1999; Yang SY. et al.,
2013). Alternatively, CAPE and TRAIL endorsed p38 activation
via the extrinsic signaling pathway by enhancing the expression
of apoptosis, stimulating DR5, and blocking the JNK
phosphorylation, which contributes to TRAIL resistance and,
accordingly, reduced the DR5 expression (Lu et al., 2011; Yang
SY. et al., 2013).
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CA (1mM) inhibited cell proliferation and survival in HCC cells
extracted from marmots (Wilkins et al., 2017). Hence, the
compound’s activity is connected with its participation in the
failure of mitochondrial integrity, resulting in cyt-c liberation,
apoptosome making, and caspase-9 activation, thus inducing
apoptosis. CAPE (12.5 μM) blocked the invasion and MMP-2 and
MMP-9 expression in SK-Hep1 cells that obstruct NF-κB (Lee et al.,
2008). CA (200 μg/ml) blocked cancer regression and invasion in
HepG2 and Huh7 cells via reducing pro-inflammatory cytokines,
including TNF-a, IL-1b, and IL-8, and anti-inflammatory cytokines,
including IL-10 (Guerriero et al., 2011). A neurotoxicity examination
using PC12 cells treated with 10 μM Aβ (Sul et al., 2009; Lee et al.,
2011; Kim J. H. et al., 2015; Yang et al., 2015) for 24 h confirmed that
CA holds a cytoprotective effect in a dose-dependent way (10 and
20 μg/ml) when added 1 h earlier to Aβ (Sul et al., 2009). The pre-
treatment of PC12 cell lines with chlorogenic acid (CGA) was proven
to protect them from Aβ-mediated cell death together with
attenuation of calcium levels and a decrease in the level of cell
death-associated proteins such as caspase-3, Bax, and Bcl-2 (Lee et al.,
2011). The defensive action of CA fromAβ (Sul et al., 2009; Lee et al.,
2011; Kim J. H. et al., 2015; Yang et al., 2015) and LPS-mediated
neuronal cell injury and neuronal inflammation has also been
evaluated in C6 glial cells (Kim J. H. et al., 2015). However, the
result exhibited a positive conclusion, but considering the greater
dose (5mM CA) utilized in the study, the result is not believed to be
of therapeutic application until an action at a lesser dose is exhibited

(Kim J. H. et al., 2015). In Aβ-mediated axonal atrophy in cultured
cortical neurons of mice (Sul et al., 2009; Lee et al., 2011; Kim J. H.
et al., 2015; Yang et al., 2015), CA 4-O-glucoside was shown to induce
considerable axonal elongation results on Aβ-mediated atrophy (Sul
et al., 2009; Lee et al., 2011; Kim J. H. et al., 2015; Yang et al., 2015).

The activity of CA was determined (100mg/kg) on the structural
alterations caused by HCC in the rat microbiota, showing that the
compound decreases and alters the markers of liver damage during
exposure to HCC, including transaminase, aspartate, alanine,
aminotransferase, phosphatase, and total cholesterol. Hence, a
possible machinery by CA actions is associated in the prevention
of survival of malefic bacteria (Del Chierico et al., 2017; Zhang et al.,
2017; Ali et al., 2021) and the introduction of the growth and survival
of microbiota-beneficial bacteria during HCC progression (Li et al.,
2016; Zhang et al., 2017). CA possesses anti-oxidant functions,
making it capable of eliminating oxygen radicals and which
facilitates the growth of beneficial bacteria, which are anaerobic
and grow extremely without oxygen (Zhao et al., 2014; Zhang et al.,
2017). Compounds possess an anti-microbial action in removing
malefic bacteria of themicrobiota, supporting the control of markers
of liver injury (Pinho et al., 2015; Zhang et al., 2017).

CA (1 mM) improved the efficiency of Tris-acetate-EDTA
(TAE) in rats with tumors. Hence, TAE is a therapeutic process
utilized in patients with HCC to promote ischemia because of
occlusion of the arterial blood supply, resulting in the obstruction
of nutrients and oxygen for cancer (Johnson et al., 2016; Wilkins

FIGURE 2 | Synergistic action of caffeic acid (CA) with anti-tumor therapy that affects the reactive oxygen species, catalase, and superoxide dismutase. The
combined result of CA and CAF reveals their potential against tumors and evaluates the molecular mechanisms of the combination with a several-target approach (Maity
et al., 2021 and Alam et al., 2022). This figure was drown by ChemBioDraw.
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et al., 2017). The chief nutrient for HCC is lactate, which is
created by glycolytic metabolism that is dependable for enhancing
vascular growth factor expression in vasculogenesis (Mathupala
et al., 2007; Wilkins et al., 2017). This effect is probably because of
the anti-cancer, anti-inflammatory, and anti-oxidant properties
that produce ROS and fragment DNA, which causes apoptosis in
tumor cells (Wilkins et al., 2017). CA can stimulate the intrinsic
pathway of cell death by changing the mitochondria’s membrane
potential (Prasad et al., 2011; Wilkins et al., 2017).

CA is an extremely flexible compound with various biological
actions impacting the human system, including anti-tumor, anti-
oxidant, anti-microbial, anti-inflammatory (Verma and Hansch,
2004; Yang SY. et al., 2013; Genaro-Mattos et al., 2015). This
information seems to favor its activity in the HCC, as in vitro and
in vivo investigations already exhibited its act by numerous
mechanisms of action in the battle against diseases, including
ROS prevention (Silva et al., 2014; Sidoryk et al., 2018),
angiogenesis (Gu et al., 2016), and repression of MMP-2 and
MMP-9 (Chung et al., 2004; Gu et al., 2016), thus explaining the
diversities in the effects found. Kim et al. (2015) examined the
defensive capabilities of CA in an Aβ-injected (Sul et al., 2009; Lee
et al., 2011; Kim J. H. et al., 2015; Yang et al., 2015) AD mouse
model through the administration of 10–50 mg/kg/day for
2 weeks. CA, in a dose-dependent way, blocked LPO and
nitric oxide creation in the kidney, liver, and brain, while this
was contrasted with the Aβ-injected (Sul et al., 2009; Lee et al.,
2011; Kim J. H. et al., 2015; Yang et al., 2015) healthy group. In
kainic acid-mediated cognitive dysfunction in rats, CA
demonstrated a considerable enhancement in memory
presentation, oxidative stress parameters, and a mitochondrial
role compared to the control group (Kumar et al., 2012). By
utilizing the global cerebral ischemia–reperfusion damage
analysis model in rats, a study (Liang et al., 2015) has
examined the effect of CA on memory wherever the bilateral
carotid artery has been occluded for 20 min as pursued via
reperfusion. The analysis discovered that CA (10–50 mg/kg)
noticeably decreased the escape latency, reassured
hippocampal neuron injury, and enhanced the neuronal count
compared to that in untreated rats.

Pharmacokinetics of Caffeic Acid
CA occurs in esterified and free forms, indicating around
75–100% of the entire content of hydroxycinnamic acid in
fruits (Lee et al., 1995). CA is tricky to be absorbed through
the body (Lee et al., 1995; Scalbert and Williamson, 2000;
Kolodziejczyk-Czepas et al., 2015). To be absorbed, this
compound requires to be hydrolyzed via the colonic
microflora in the intestine since human tissues and biological
fluids do not have enzymes, known as esterases, able to hydrolyze
the CGA to liberate CA (Lee et al., 1995; Scalbert andWilliamson,
2000; Kolodziejczyk-Czepas et al., 2015). Accordingly, the
pharmacokinetic procedure starts with the ingestion of CA
inward in the stomach, after which a little part is absorbed.
Hence, in the colon, the microbial esterases slice the ester piece of
CA. It is absorbed through the intestinal mucosa (Oliveira and
Bastos, 2011). The transmembrane run of CA into the intestinal
cells is via active transport mediated through MCT (Oliveira and

Bastos, 2011). The highest plasma concentration of the
compound has been detected merely 1 h after ingestion of
foods, including coffee, and subsequently, the plasma
concentration quickly reduced, requiring reiterated doses every
2 h to sustain the high concentrations (Lee et al., 1995; Scalbert
and Williamson, 2000; Kolodziejczyk-Czepas et al., 2015).
Instantly after absorption, CA is subjected to three major
procedures of enzymatic conjugation—methylation, sulphation,
and glucuronidation—by the action of UDP-glucosyltransferases
and catechol-o-methyltransferases. Hence, this creates a high
level of hydrophilicity, decreasing its toxicity and assisting its
exclusion (Oliveira and Bastos, 2011). The emission of CA
(5.9–27%) takes place mainly in urine (Lee et al., 1995).

Toxicity and Limitations of Caffeic Acid
CA has exhibited selective toxicity in HCC (Brautigan et al.,
2018). In a study, a group of 15 male hamsters was supplemented
with 1% (10 g/kg diet) CA (98% pure) for 5 months. Later, the
urinary bladders and stomach were examined by histopathology
and radiography (Shikov et al., 2014). Moderate epithelial
hyperplasia was detected in 14 animals, 1 was severe, and 7
were untreated. An increase in the number of labeled cells was
detected in the forestomach and pyloric region when
H-thymidine incorporation was assessed in the infected
hamsters. It is not statistically significant.

Another study revealed carcinogenic activity in male and
female F344 rats and C57BL/6N × C3H/HeN F1 mice in the
squamous cell epithelium in the forestomach (Hagiwara et al.,
1991). However, successful combinations of potent
therapeutic drugs/agents with products may attain the
desired conclusion but with lesser toxicity (Bukowska et al.,
2015; Das et al., 2018). CA has been believed to be a toxic
compound of anaerobic wastewater treatment (Hernandez
and Edyvean, 2018). However, CA can act differently in
terms of digestibility or toxicity in some anaerobic
situations—for example, CA undergoes autoxidation in
aqueous systems with oxygen draws, resulting in aggregates
with adsorptive properties (Rochelle, 2001). CA is
carcinogenic towards animals, but no sufficient evidence
exists for humans. To date, the accurate mechanism of the
toxic effect of CA remains unknown.

CONCLUSION AND FUTURE DIRECTIONS

Phytochemicals are presently huge achievements in cancer
prevention and treatment as they possess anti-oxidant, anti-
proliferative, anti-angiogenic, pro-apoptotic, and anti-tumor
properties. CA is a potential chemotherapeutic agent/drug
which demonstrates anti-oxidant, anti-inflammatory, anti-
proliferative, anti-microbial, and anti-tumor functions and has
an anti-oxidant role in normal cells and a pro-oxidant role in
tumor cells. It leads to pro-oxidant-induced oxidative DNA
injury, and its downstream pathway stimulates apoptotic
tumor cell death. The anti-tumor action of CA appears to be
correlated with its promising anti-oxidant and pro-oxidant action
attributed to its chemical structure and free phenolic hydroxyls.
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CA denotes a potent anti-tumor effect in several tumor cells and
thus might be used as an anti-tumor agent.

CA plays a central role in preventing cancer development
through reduced cell viability and apoptosis induction. CA
treatment leads to cell cycle modulation, prevention of cancer
progression, and alteration of caspase expression. However, CA
stimulates apoptosis by blocking Bcl-2 action, which leads to
liberating cyt-c and the consequent activation of caspase-3,
showing that CA stimulates apoptosis through the intrinsic
apoptotic pathway. CA reveals action against numerous
cancers, inhibiting the exaggerated creation of ROS and
supporting cancer cell destruction via DNA oxidation and
angiogenesis by acting to decrease VEGF-mediated
vascularization and repression of MMP-2 and MMP-9. The
repressive result of CA on MMP-2 and MMP-9 is connected
with the obstruction of NF-κB activation as verified in cancer cells
induced via PMA, which reduces cancer invasiveness and growth.

The anti-carcinogenic action of CA has been established, and
the mechanism of action has been extensively studied. This opens
an important scope for prospective investigations of CA in
combination with chemical moieties/drugs in authorized
animal models. Such studies might lead to the improvement of
CA as a potential clinical aspirant in diverse cancer circumstances
as combination therapy. CA, both in its free appearance and when
conjugated with other moieties, generates its considerable
pharmacological effect.

Combination therapy is an attractive alternative to drug
development in pharmaceutical manufacturing to resolve drug
resistance, decrease unfavorable drug reactions, and enhance
drug efficiency. Multiple disease situations primarily need a
combination therapy because of their difficult pathophysiology
and progression. However, drug development research needs
more data on suitable efficacy for a superior translational
result in clinical trials.

CA possesses a strong anti-cancer effect and can be an effective
chemotherapeutic agent. Further detailed clinical trials on CA
will be significant in developing novel anti-cancer drugs. The
experimental and clinical findings reveal the various anti-tumor
properties of CA against several cancers, which might sensitize

cancer cells and decrease cancer growth and survival. CA has a
broad range of biological activities. However, CA alone or in
combination with other chemotherapeutic agents/drugs might be
suggested to treat and manage cancer.
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