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ABSTRACT

Human 8-oxoguanine-DNA glycosylase (OGG1) is
the major enzyme for repairing 8-oxoguanine
(8-oxoG), a mutagenic guanine base lesion produced
by reactive oxygen species (ROS). A frequently occur-
ring OGG1 polymorphism in human populations
results in the substitution of serine 326 for cysteine
(S326C). The 326 C/C genotype is linked to numerous
cancers, although the mechanism of carcinogenesis
associated with the variant is unclear. We performed
detailed enzymatic studies of polymorphic OGG1 and
found functional defects in the enzyme. S326C OGG1
excised 8-oxoG from duplex DNA and cleaved abasic
sites at rates 2- to 6-fold lower than the wild-type
enzyme, depending upon the base opposite the
lesion. Binding experiments showed that the poly-
morphic OGG1 binds DNA damage with significantly
less affinity than the wild-type enzyme. Remarkably,
gel shift, chemical cross-linking and gel filtration
experiments showed that S326C both exists in
solution and binds damaged DNA as a dimer. S326C
OGG1 enzyme expressed in human cells was also
found to have reduced activity and a dimeric
conformation. The glycosylase activity of S326C
OGG1 was not significantly stimulated by the
presence of AP-endonuclease. The altered substrate
specificity, lack of stimulation by AP-endonuclease
1 (APE1) and anomalous DNA binding conformation
of S326C OGG1 may contribute to its linkage to
cancer incidence.

INTRODUCTION

Reactive oxygen species (ROS) are produced as a by-product
of cellular metabolism and through exposure to ultraviolet

(UV) and ionizing radiation and environmental carcinogens
(1–5). ROS react with DNA to produce a myriad of cytotoxic
and mutagenic base lesions (5). A major base damage
produced by ROS is 7,8-dihydro-8-oxoguanine (8-oxoG).
Unlike normal guanine, 8-oxoG has the propensity to mispair
with adenine during DNA replication, resulting in the fixation
of G:C to T:A transversion mutations (6). Oxidatively modi-
fied bases, such as 8-oxoG, are repaired primarily by the base
excision repair pathway (BER), the first steps of which are the
recognition and excision of the damaged base by a specific
DNA glycosylase. The major mammalian enzyme for remov-
ing 8-oxoG from DNA is 8-oxoguanine-DNA glycosylase
(OGG1) (7–13). OGG1 is a bifunctional enzyme, having
both 8-oxoG excision activity and a weak AP-lyase strand
incision activity at abasic sites (7–13). Following excision
of 8-oxoG by OGG1, the resultant abasic site is further
processed in sequential steps by several enzymes to complete
repair (14).

Studies of OGG1 knockout mice and immunodepletion
experiments suggest that OGG1 is the major mammalian
8-oxoguanine repair activity in non-transcribed DNA
(15–23). It is widely accepted that accumulation of oxidative
DNA damage over time can lead to cancer (24). A role for
OGG1 in tumor suppression is suggested by the frequent loss
of the OGG1 chromosomal locus in human lung and renal
cancers and by significantly lower OGG1 activity among
lung cancer patients compared to controls (10,25–28).
Increased late-onset lung tumors in knockout mice deficient
in repair of 8-oxoG, elevated 8-oxoG levels in lung tissue of
lung cancer patients and decreased repair of 8-oxoG demon-
strated in several human cancer cells lines suggest that cancer
and 8-oxoG repair capacity may be linked (21–23,29–33).
Additional studies suggest that genomic accumulation of
8-oxoG during cellular senescence may be due in part to
age-associated changes in the level and subcellular localiza-
tion of OGG1 (34–36). Recently, it was reported that
polymorphic S326C OGG1 expressed in human cells is
excluded from nucleoli during S-phase (37). Such changes
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in the subcellular localization of S326C OGG1 could be
related to 8-oxoguanine repair capacity in vivo. Changes in
the OGG1 coding sequence that result in amino acid substi-
tutions that affect function, abundance or intracellular location
could be anticipated to impact genomic 8-oxoG levels, and
thereby influence genomic stability and carcinogenesis.

Several OGG1 polymorphisms have been reported and
positively correlate with a variety of cancers [reviewed in
(38–41)]. A frequently occurring polymorphism results in
the substitution of serine for cysteine at position 326 in the
C-terminus of OGG1 (25). The allele frequency of S326C
OGG1 measured in human populations ranges from 0.13 to
as high as 0.62 and varies significantly with ethnicity (39).
Association studies have identified that individuals homozy-
gous for the S326C OGG1 allele have increased incidence of
lung, prostate and orolaryngeal cancers (42–48). A previous
study found decreased catalytic efficiency (kcat/Km) of purified
polymorphic S326C OGG1 (49), while another study implic-
ated the S326C genotype with decreased 8-oxoguanine repair
capacity in vivo (50). We characterized the glycosylase and
AP-lyase activities and DNA damage binding affinity of
purified S326C and found novel functional defects in the poly-
morphic OGG1 and a distinct dimeric DNA binding conforma-
tion compared to the wild-type enzyme. Our results confirm
that S326C has decreased repair activity towards 8-oxoG
paired with C and further show that S326C OGG1 is particu-
larly deficient in 8-oxoguanine excision activity when the
lesion is opposite T or G. The stimulation of wild-type
OGG1 by AP-endonuclease 1 (APE1) results in increased
rates of 8-oxoG excision, and is believed to be an important
step in the regulation and coordination of BER in vivo (51).
We show that S326C OGG1 is not significantly stimulated by
APE1, unlike the wild-type enzyme, thereby the coordination
of BER may be perturbed during repair of 8-oxoguanine by
S326C OGG1. We observed decreased repair activity and
dimeric conformation of S326C OGG1 expressed in human
cells, thus the altered activity and dimeric stoichiometry of the
S326C OGG1 variant may be relevant in vivo.

MATERIALS AND METHODS

Cell culture

HeLa cells (CCL-2) were obtained from ATCC and main-
tained in EMEM medium containing 10% fetal bovine
serum (Gibco) in 5% CO2 at 37�C. Cells were transfected
by using Fugene 6 transfection reagent (Roche) according
to the manufacturer’s instructions. Nuclear extracts were
prepared using NE-PER extraction reagents (Pierce).

Expression and purification of recombinant OGG1 and
APE1 proteins

The human OGG1 1a coding sequence in pET-28a expression
vector (Novagen) was used to express his-tagged OGG1 in
BL21 Codon Plus (Stratagene), Rosetta Blue (Novagen) and
BL21 Star (Invitrogen). pET-28a plasmids containing the
wild-type CD19, S326C, S326C CD19 and CD20 OGG1 cod-
ing sequence were created with a Quik Change II XL muta-
genesis kit (Stratagene) or PCR. Mammalian expression
vectors encoding N-terminally FLAG-tagged OGG1s were

constructed by cloning PCR amplified OGG1 genes into
pCMV-2B expression vector (Stratagene). The human
APE1 coding sequence in pET-15b expression vector
(Novagen) was used to express his-tagged APE1 in BL21
Codon Plus. All plasmid sequences were verified by
bi-directional DNA sequencing. Proteins were purified from
sonicated cell-free extracts by using NTA (nickel-nitriloacetic
acid) agarose (Qiagen) chromatography. His-tags were
removed by incubation with biotinylated thrombin (Novagen).
Thrombin was subsequently removed from cleavage
reactions by incubation with streptavidin beads. Additional
purification was performed by ion exchange chromatography
using an AKTA FPLC purification system (Amersham).
Proteins were further purified by being passed through a
Q HP column (Amersham) and bound to an S HP column
(Amersham) at 150 mM NaCl. Over a linear NaCl gradient
of 150–600 mM, proteins were eluted at �350 mM NaCl.
Finally, proteins were purified to homogeneity by
size-exclusion chromatography using a Superdex 200 HR
column (Amersham). Purified proteins were dialyzed against
20 mM Tris–HCl (pH 7.4), 300 mM NaCl, 10% glycerol and
stored at �80�C.

Preparation of duplex DNA substrates

31mer oligos with the sequence 50-GTGACTACGAGACCT-
XATGTGACTGAGAGAG-30 containing 8-oxoG or uracil at
position X were obtained from Midland Certified Reagent
Company (Midland, TX) and Invitrogen, respectively.
Damage-containing oligos were purified by high-performance
liquid chromatography (HPLC) and the 8-oxoG-containing
oligo was verified by mass spectrometry. Complementary
HPLC-purified oligos having C, T, G or A opposite X were
obtained from Invitrogen. Damage-containing oligos were
annealed with a 1.2-fold excess of the complementary strand
by heating to 95�C in 20 mM Tris–HCl (pH 7.4), 100 mM
NaCl, 1 mM MgCl2 and slow cooling to room temperature. A
duplex substrate having an abasic (AP) site opposite C (AP·C)
was prepared by incubating a U·C-containing duplex with
uracil DNA glycosylase (UDG) (New England Biolabs).
UDG was subsequently removed by phenol–chloroform
extraction and ethanol precipitation. Duplex substrates were
30 end labeled with [a-32P]dCTP (Dupont) and Klenow
exo-DNA polymerase (New England Biolabs). Unincorpor-
ated radioactivity was removed by using MicroSpin G-25
columns (Amersham).

8-oxoguanine glycosylase and AP-lyase activity assays

OGG1 proteins or nuclear extracts were incubated with
DNA substrates at varying concentrations in 20 ml reactions
containing 20 mM Tris–HCl (pH 7.4), 100 mM NaCl and
0.15 mg/ml BSA (New England Biolabs). To measure
glycosylase activity, reactions were terminated by adding
SDS and piperidine to 5% and 200 mM, respectively.
Reactions were heated at 95�C for 5 min to cleave DNA at
abasic sites. When measuring AP-lyase activity with an AP
site substrate, reactions were terminated by adding SDS and
glycerol to 5 and 10%, respectively, without heating.
Reactions were electrophoresed on 20% acrylamide gels con-
taining 7 M urea and radioactivity was quantified using a
Storm phosphorimager and ImageQuant software (Molecular

Nucleic Acids Research, 2006, Vol. 34, No. 5 1621



Dynamics). Apparent kinetic constants Kapp
m and kapp

cat were
derived from Lineweaver–Burke double-reciprocal plots of
kinetic data. Experiments were performed in triplicate and
are shown with standard deviation.

Sodium borohydride trapping of OGG1

In a sodium borohydride trapping assay, OGG1 is reacted with
an 8-oxoG·C substrate in the presence of a strong chemical
reductant. After base excision, OGG1 may proceed to cleave
the abasic site produced by its glycosylase activity via a
b-elimination mechanism to create a single strand break
(9,11,12). The reductant causes a covalent linkage of the
enzyme to a reaction intermediate in the cleavage of an abasic
site, thereby creating a ‘trapped’ enzyme–DNA complex (52).
Chemical linkage of OGG1 to reaction intermediates was per-
formed by incubating OGG1 enzymes (5 mM) and an
8-oxoG·C substrate (5 mM) in 20 mM Tris–HCl (pH 7.4),
100 mM NaCl, 1 mM MgCl2 with 1 mM sodium cyanoboro-
hydride (Sigma) at 37�C for 30 min. Trapped OGG1
enzyme–DNA complexes were separated from free enzyme
by SDS–PAGE electrophoresis on 4–20% acrylamide gels
(Invitrogen) and quantified with Kodak 1D gel analysis
software.

Chemical cross-linking of OGG1

Wild-type and polymorphic OGG1 (5 mM) were incubated
with or without 8-oxoG·C substrate (10 mM) in 50 mM
Tris–HCl (pH 7.4), 50 mM NaCl in the presence of 1 mM
of homobifunctional sulfhydryl-reactive cross-linker
BM[PEO]4 (1,11-bis-Maleimidotetraethyleneglycol) (Pierce).
Reactions were incubated at 4�C for 2 h and analyzed by
electrophoresis on 4–20% SDS–PAGE gels and Coomassie
staining (Bio-Rad).

Determination of dissociation constants by
electrophoretic mobility shift assay (EMSA)

Binding affinities were measured by incubating OGG1 pro-
teins (5 nM) with DNA substrates (10 nM) in 20 mM Tris–HCl
(pH 7.4), 50 mM NaCl, 0.15 mg/ml BSA, 15% glycerol for
5 min at 0�C. Bound complexes were separated from free
substrate by electrophoresis at 4�C on native 5% acrylamide
(80:1) gels containing 7 mM Tris–HCl (pH 7.4), 3 mM sodium
acetate and 1 mM EDTA. No enzymatic cleavage of substrates
occurred under the conditions used (data not shown). Gels
were then vacuum dried and shifts quantified with a phosphor-
imager. Dissociation constants were calculated using the
following equations.

1

r
¼ 1 þ Kd

½A� ,

where r ¼[PA] / [P] + [PA] (53); [P], [A] and [PA] represent
the concentrations of enzyme, substrate and enzyme–substrate
complex, respectively.

RESULTS

Functional comparison of wild-type and S326C OGG1

Purified wild-type and S326C OGG1 (Figure 1) were reacted
with excess DNA substrates over a range of concentrations

(Figure 2). Since reaction data were used to derive apparent
Michaelis–Menten constants, enzyme reactions were carried
out with excess substrate. A large excess of substrate over
enzyme was used at each concentration point to ensure
measurement of steady-state catalytic rates where the concen-
tration of ES (enzyme–substrate complex) remains constant
throughout the reaction and substrate is not limiting. With
duplex substrates containing 8-oxoguanine opposite all four
bases and an AP site opposite C substrate, S326C exhibited
decreased glycosylase and AP-lyase activities compared to
wild-type OGG1 (Figure 2A–E and Table 1). The catalytic
efficiency constant (kcat/Km), a measure of how often bound
molecules react to produce product, was determined for both
enzymes with all substrates (Table 1). With an 8-oxoG·C
substrate, S326C OGG1 had a 1.6-fold reduced catalytic
efficiency, in agreement with a previous study (49). The
S326C isoform also exhibited a 1.6-fold decreased efficiency
in AP-lyase activity with an AP·C substrate (Table 1). With
substrates containing 8-oxoguanine paired with T, G or A,
efficiencies were decreased by 1.4-fold, 3-fold or were similar
to the wild-type enzyme, respectively (Table 1). Catalytic
constants (kcat) of S326C were at least 2-fold less than
those of the wild-type enzyme (8-oxoG·C substrate) and
more than 10-fold less than the wild-type (8-oxoG·G
substrate). Reaction velocities (measured at a substrate
concentration of 25 nM) represent actual rates of base excision
for both enzymes (Figure 2 and Table 1). The S326C enzyme
excised 8-oxoG opposite C and A and cleaved an AP site
opposite C at rates roughly 2-fold lower than the wild-type
enzyme (Table 1). Compared to the wild-type enzyme,
S326C was particularly deficient in excision of 8-oxoG paired
with T and G, with reaction rates decreased 3.7- and 5.6-fold,
respectively (Table 1). These experiments indicate that the

Figure 1. SDS–PAGE analysis of purified proteins. Lane 1, 0.5 mg wild-type
OGG1; lane 2, 0.5 mg S326C OGG1; lane 3, 0.5 mg APE1, lane M, molecular
weight marker. Proteins were purified as described in Materials and Methods
and electrophoresed on a 4–20% acrylamide gel.
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S326C polymorphism results in decreased rates of 8-oxoG
excision, the extent of which are dependent upon the base
opposite the lesion. Similar differences in the activity of
wild-type and S326C OGG1 were consistently observed
with multiple enzyme preparations expressed in different

cell lines and with other 8-oxoguanine-containing duplex
oligo substrates (data not shown). Thus, the functional defects
of S326C are intrinsic to the enzyme and independent of
any specific effects relating to enzyme preparation or
sequence context.

Figure 2. Kinetics of wild-type and S326C OGG1. Wild-type and S326C OGG1 (2.5 nM) were incubated with increasing amounts (3.25–100 nM) of duplex
8-oxoguanine substrates having C (A), T (B), G (C) or A (D) opposite 8-oxoG, or with a substrate having an abasic site opposite C (E). Glycosylase reactions with
8-oxoguanine paired with C, T and G, were incubated for 15 min at 37�C. AP-lyase reactions with the AP·C substrate and glycosylase reactions with 8-oxoG opposite
A were incubated for 1 h at 37�C. Reactions were terminated and analyzed as described in Materials and Methods. Data points are means of three independent
experiments with standard deviation.
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S326C OGG1 has decreased binding affinity for
8-oxoguanine and abasic sites

The binding affinities of wild-type and S326C OGG1 for
duplex DNA substrates containing 8-oxoguanine paired
with all four bases and an AP site opposite C substrate
were determined by EMSA (Figure 3 and Table 1). With
the exception of the 8-oxoG·A substrate, which both enzymes
bound poorly, S326C exhibited markedly decreased binding
affinity for 8-oxoguanine and an abasic site compared to the
wild-type OGG1 (Figure 3). Dissociation constants (Kd) of
S326C were significantly increased for all substrates relative
to the wild-type enzyme, except with 8-oxoG·A, indicating

decreased binding affinity for all major substrates. The lower
DNA damage binding affinity of the polymorphic OGG1
can be seen directly in gel shifts in Figure 3 that represent
actual data used to calculate dissociation constants in Table 1.

S326C OGG1 exists as a dimer in solution and upon
binding to DNA

Gel shifts of wild-type and S326C OGG1 with all substrates
used produced shifts of differing sizes (Figure 3A–E). Wild-
type OGG1 shifts consistently produced species of a single
mobility, while S326C primarily produced a higher molecular
weight species consistent with an OGG1 dimer (Figure 3). To
examine the possibility of dimerization of polymorphic
OGG1, wild-type and S326C OGG1 were incubated with a
chemical cross-linker both in the presence and absence of
excess DNA substrate (Figure 4). Wild-type OGG1 was not
significantly cross-linked, while S326C OGG1 cross-linked
exclusively as a dimer both with and without 8-oxoguanine-
containing substrate (Figure 4A). Small amounts of high
molecular weight multimers could be seen in cross-linking
experiments (Figure 4A, lanes 3 and 4), suggesting that,
although S326C exists primarily as a dimer, multimeric com-
plexes may form at high enzyme concentrations. Traces of
wild-type OGG1 dimer could be seen after cross-linking
(Figure 4A, lanes 1 and 2), so the possibility of a role for
dimerization at some stage in the catalysis by wild-type
OGG1 cannot be excluded. To determine if polymorphic
S326C OGG1 is able to dimerize with wild-type OGG1,
the wild-type enzyme was incubated either alone or
with increasing amounts of S326C OGG1 in the presence
of cross-linker (Figure 4B). The amount of OGG1 monomer
was unchanged by the addition of excess S326C under
cross-linking conditions, suggesting that the two isoforms
do not form a heterodimer (Figure 4B).

The dimeric conformation of S326C OGG1 was further
investigated by size-exclusion chromatography of both
OGG1 isoforms under native conditions (Figure 5). Wild-type
OGG1 (Figure 5B) eluted from a Superdex 200 HR
size-exclusion column (molecular weight range 10–600
kDa) later than the S326C OGG1 (Figure 5C), consistent
with the larger molecular size of the S326C dimer. Approx-
imately 90% of the S326C OGG1 exited the column as
the higher molecular weight dimeric form, suggesting the

Table 1. Kinetic and dissociation constants for wild-type and polymorphic S326C OGG1

Enzyme Substrate Kapp
m (nM) Kapp

cat (· 10�3)

(min�1)

kcat/Km

(M�1 s�1)

Dkcat/Km Velocity (25 nM)

(mol/s)(· 10�16)

DVelocity Kapp
d (nM) DKd

OGG1 8-oxoG·C 16.3 ± 1.3 339 ± 19 20.7 1.62 12.7 ± 0.9
S326C 8-oxoG·C 12 ± 2.1 150 ± 18 12.5 #1.65 0.63 #2.5 35.9 ± 2.4 "2.8
OGG1 8-oxoG·T 40.1 ± 3.5 692 ± 51 17.3 2.17 6.9 ± 0.6
S326C 8-oxoG·T 7.4 ± 0.8 94 ± 5 12.7 #1.36 0.59 #3.7 25.5 ± 1.8 "3.7
OGG1 8-oxoG·G 70.7 ± 6.6 458 ± 39 6.47 1.06 15.4 ± 1.3
S326C 8-oxoG·G 16.3 ± 2.3 35.2 ± 3 2.15 #3 0.19 #5.6 36.3 ± 2.8 "2.3
OGG1 8-oxoG·A 44.7 ± 2.9 40.5 ± 2.4 0.90 — 0.12 6.5 ± 6.1
S326C 8-oxoG·A 9.2 ± 1.2 9.1 ± 0.5 0.98 0.05 #2.4 53.7 ± 3.2 "8.3
OGG1 AP·C 5.3 ± 0.9 25.6 ± 0.3 4.8 0.15 5.9 ± 0.7
S326C AP·C 3.7 ± 0.2 11.1 ± 0.8 3.0 #1.6 0.07 #2.1 23.4 ± 1.3 "3.9

Actual kinetic data presented in Figure 2 were used to derive kinetic parameters from double-reciprocal Lineweaver–Burke plots. Actual electrophoretic mobility shift
data from experiments presented in Figure 3 were used to calculate dissociation constants as described in Materials and Methods. All constants were calculated from
experiments performed in triplicate and are shown with standard deviation.

Figure 3. EMSAs of wild-type and S326C OGG1. DNA damage binding
affinities of wild-type and S326C OGG1 were measured by incubation with
DNA substrates containing 8-oxoG·C (A), 8-oxoG·T (B), 8-oxoG·G (C), 8-
oxoG·A (D) and AP·C (E). (F) Identical to the experiment in (A), with the
addition of 1 mM DTT. Gel shifts of glycosylases were performed as described
in Materials and Methods. In all panels, lane 1, no enzyme; lane 2, wild-type
OGG1; lane 3, S326C OGG1.
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polymorphic OGG1 exists primarily as a dimer in its native
state (Figure 5C). Equal amounts of wild-type and S326C
OGG1 were mixed and run through a size-exclusion column
together (Figure 5D). The appearance of two distinct peaks
identical to peaks of the individual enzymes indicates that
S326C is distinct in size from and significantly larger than
the wild-type enzyme, consistent with a dimeric S326C.
A comparison of the elution profile of native protein markers
(Figure 5A) with those of wild-type and S326C OGG1
(Figure 5B and C) indicate molecular sizes for an OGG1
monomer and dimer consistent with those observed in
Figure 4A. The elution of distinct peaks also suggests that
the two isoforms do not heterodimerize, consistent with the
results in Figure 4B. The polymorphic enzyme could also be
cross-linked as a dimer by the primary amine-reactive cross-
linker BS3 [Bis (sulfosuccinimidyl) suberate] (Pierce) (data
not shown). S326C bound 8-oxoguanine substrates solely
as a dimer (Figure 3A–D), while an abasic site was bound
both in monomeric and dimeric conformations (Figure 3E),
suggesting that the type of lesion bound may influence S326C
dimerization. We observed that a small fraction of S326C
OGG1 produced in Escherichia coli is chemically linked
as a dimer via a reducible disulfide bond (data not shown).
We examined the activity and conformation of S326C OGG1
in the presence and absence of 1 mM DTT and found no
significant effects on enzymatic activity or dimeric stoichi-
ometry (Figures 3F and 6A). Thus, small amounts of disulfide
linking of S326C expressed in bacteria is likely due to the
close proximity of S326C OGG1 molecules in a dimer and
has a negligible effect on function and substrate binding of
the dimer.

Polymorphic S326C OGG1 is not stimulated by
AP-endonuclease

It was previously shown that OGG1 binds tightly to its AP site
product and cleaves it slowly, thus dissociation of OGG1

from its abasic product is rate limiting (51). APE1 can compete
with OGG1 for the AP site, thereby displacing OGG1 and
increasing its enzymatic turnover (51,54–56). The glycosylase
activity of wild-type OGG1 was stimulated over 2-fold by the
addition of an equimolar amount of purified human APE1
(Figure 6A), consistent with previous reports. In an identical
reaction, S326C OGG1 was not stimulated by the addition of
an equimolar amount of APE1 (Figure 6A) and was not
significantly stimulated by the addition of up to a 10-fold
molecular excess of APE1 (data not shown). The effect of
DTT on wild-type and S326C OGG1 activity and stimulation
by APE1 was measured (Figure 6A). DTT (1 mM) was slightly
inhibitory of the wild-type OGG1 and had a negligible effect
on the activity and APE1 stimulation of S326C OGG1
(Figure 6A). The inability of APE1 to significantly stimulate
turnover of S326C OGG1 suggests that an AP site bound by
S326C enzyme may be inaccessible to APE1.

S326C OGG1 is resistant to displacement from abasic
sites by APE1

OGG1 bound to an AP site is readily displaced by the addition
of APE1, which has high affinity and activity for the lesion
(51,54–56). Displacement of wild-type and S326C OGG1
from abasic sites by APE1 was measured by EMSA and
sodium borohydride trapping assay (Figure 6B and C).
When wild-type and S326C OGG1 were bound to an
AP site substrate and an equivalent amount of APE1 was
subsequently added, wild-type OGG1 was displaced �30%
from the abasic substrate by APE1, which competes for
binding to the abasic site and rapidly cleaves it under the
reaction conditions used (Figure 6B, lanes 2 and 3). In a
similar reaction, S326C OGG1 was not significantly displaced
by APE1 (Figure 6B, lanes 4 and 5). In a sodium borohydride
trapping assay, the trapping of wild-type OGG1 to its abasic
substrate was decreased roughly 3-fold by the addition of an
equimolar amount of APE1 (Figure 6C, lanes 2 and 3),

Figure 4. Dimerization of polymorphic S326C OGG1. (A) Wild-type (lanes 1 and 2) and S326C OGG1 (lanes 3 and 4) at a concentration of 5mM were incubated with
1 mM of BM[PEO]4 cross-linker in the absence (lanes 1 and 3) or presence (lanes 2 and 4) of 10 mM duplex 8-oxoG·C substrate. Lane M, molecular weight marker.
Reactions were analyzed by SDS–PAGE on 4–20% acrylamide gels. (B) Wild-type OGG1 (2.5mM) in lanes 1–4 was incubated with 1 mM BM[PEO]4 in the presence
of 0 (lane 1), 1.25 mM (lane 2), 2.5 mM (lane 3) and 5 mM (lane 4) S326C OGG1.
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while trapping of S326C OGG1 was decreased relative to the
wild-type OGG1 and largely resistant to competition from
APE1 (Figure 6C, lanes 4 and 5). Since trapping of OGG1
requires that the enzyme be physically bound to an AP site,
inhibition of trapping in the presence of APE1 indicates
displacement from and cleavage of the site by APE1. Since
S326C OGG1 trapping is not significantly affected by the
addition of APE1, unlike the wild-type enzyme
(Figure 6C), these results support the findings in Figure 6B
and suggest that the polymorphic enzyme is not effectively
displaced from an abasic site by APE1.

Involvement of Cysteine 326 in dimerization and
reduced activity of polymorphic OGG1

Since serine 326 is near the C-terminus of the 345 amino acid
wild-type OGG1, the possibility of a role for the C-terminus in
the unusual characteristics of S326C OGG1 was investigated.
To determine the contribution of cysteine 326 and the OGG1
C-terminus to the observed reduction in activity and dimeric

conformation of S326C OGG1, C-terminally truncated OGG1
proteins were purified as described in Materials and Methods
(Figure 7A). DNA binding affinity and enzymatic activity of
deletion mutants of wild-type OGG1 (wild-type CD19 and
CD20) and S326C (S326C CD19) were examined
(Figure 7B and D). The wild-type activity level and mono-
meric confirmation of wild-type CD19 and CD20 suggest that
the C-terminus of OGG1 plays a critical role in the DNA
binding affinity, but not enzymatic activity of the wild-type
enzyme. Deletion of the C-terminus of S326C OGG1 up to
cysteine 326 in S326C CD19, partially rescues the decreased
activity seen in full-length S326C (Figure 7B, compare lanes
3 and 4) and reduced the fraction of the protein binding
damaged DNA in a dimeric conformation (Figure 7D,
compare lanes 4 and 5). These results indicate roles for the
residues of S326C OGG1 C-terminal to cysteine 326 in both
the dimerization and reduced activity of the polymorphic
enzyme. However, the presence of cysteine 326 alone is
sufficient to cause dimerization and catalytic inhibition (com-
pare Figure 7B lanes 4 and 5; Figure 7D lanes 5 and 6).

Figure 5. Size-exclusion chromatographic analysis of wild-type and S326C OGG1. (A) Non-denatured protein size markers (Sigma). Peak 1, BSA dimer (132 kDa);
peak 2, BSA monomer (66 kDa) and peak 3, carbonic anydrase (29 kDa). Purified wild-type OGG1 (100mg) was analyzed on a Superdex 200 HR column equilibrated
with 20 mM Tris–HCl (pH 7.4), 300 mM NaCl at a flow rate of 0.25 ml/min (B). Identical runs were performed with 100 mg polymorphic S326C OGG1 (C) or 100 mg
of both wild-type and S326C OGG1 together (D).
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Removal of the C-terminus including serine or cysteine at
position 326 (CD20), resulted in a protein with near wild-type
activity, monomeric DNA binding, and greatly reduced DNA
binding affinity.

Catalytic impairment and dimerization of S326C OGG1
expressed in human cells

Nuclear extracts prepared from HeLa cells overexpressing
wild-type or S326C OGG1 at identical levels were analyzed
for 8-oxoG glycosylase activity (Figure 8). Cells expressing
the wild-type OGG1 had significantly higher levels of 8-oxoG
excision, suggesting that S326C OGG1 expressed in human

cells has decreased activity relative to the wild-type enzyme
(Figure 8A). These findings are consistent with previous
reports suggesting polymorphic S326C OGG1 has decreased
enzymatic activity in vivo (34,50), but contrasts with reports
that no functional difference exists between the isoforms in
human cells (57,58). Chemical cross-linking of nuclear
extracts containing FLAG-tagged wild-type or S326C
OGG1 is shown in Figure 8B. In the presence of cross-linker,
S326C OGG1 produced primarily an �80 kDa species of
identical size to that seen with cross-linked purified S326C
protein (compare Figures 4A and 8B). As with cross-linking
experiments using purified proteins, traces of a complex con-
sistent with a dimer could be seen in cross-linked nuclear
extracts of cells expressing wild-type OGG1 (Figure 8B,
lane 4), suggesting that dimerization may occur to some extent
with the wild-type enzyme. These results suggest that S326C
OGG1 has reduced activity in vivo and may exist as a dimer
when expressed in human cells.

DISCUSSION

Changes in the human OGG1 coding sequence that result in
amino acid substitutions and altered 8-oxoG excision activity
are associated with susceptibility to various cancers (38–41).
The most well documented OGG1 polymorphism (S326C) has
been shown to be associated with carcinogenesis and
decreased 8-oxoG repair activity in numerous studies,
although reports have not been conclusive. Individuals carry-
ing the S326C allele have been shown to be at higher risk of
lung, prostate and oral cancers, but not breast cancer or basal
cell carcinoma (42–48,59–61). Differences in the findings of
association studies suggest that the concurrence of the S326C
polymorphism with cancer incidence may be tissue specific
and dependent upon specific covariate factors, including eth-
nicity, lifestyle practices and environmental influences. Stud-
ies of the repair function of S326C OGG1 both in vivo and in
vitro suggest that the polymorphism may be associated with
decreased repair activity. An initial comparison of purified
glutathione S-transferase (GST)-tagged S326C and wild-type
OGG1 found a 1.6-fold decrease in the efficiency of 8-oxoG
excision from an 8-oxoG·C substrate by the polymorphic
enzyme (49), consistent with our observations. Complementa-
tion studies in bacteria, functional analysis of nuclear extracts
from 326 C/C individuals and exogenous protein expression

Figure 6. Effect of AP-endonuclease on wild-type and S326C OGG1.
(A) Glycosylase activities of wild-type (black columns) and S326C OGG1
(grey columns) (12.5 nM) were measured with an 8-oxoG·C substrate
(250 nM) with or without an equimolar amount of APE1, in the presence or
absence of 1 mM DTT. Inset, actual data. Lanes 1–4, wild-type OGG1; lanes
5–8, S326C; lanes 2, 4, 6 and 8, plus 1 mM DTT; lanes 3–4 and 7–8 plus
12.5 nM APE1. Inset, actual data. (B) Binding of OGG1 enzymes to an abasic
site substrate after adding APE1 was measured by EMSA. Wild-type and
S326C OGG1 (5 nM) were incubated with an AP site-containing duplex sub-
strate (5 nM) in the presence of 1 mM MgCl2 at 37�C for 1 min prior to adding an
equimolar amount of APE1 and incubating for an additional 1 min at 37�C. Lane
1, no enzyme; lanes 2 and 3, wild-type OGG1; lanes 4 and 5, S326C OGG1;
lanes 3 and 5, plus APE1. Inset, actual data. (C) Borohydride trapping of OGG1
enzymes. Lane 1, molecular weight marker. Trapping of wild-type (lanes 2 and
3) and S326C OGG1 (lanes 4 and 5) with an 8-oxoG·C substrate in the presence
(lanes 3 and 5) and absence (lanes 2 and 4) of AP-endonuclease as described in
Materials and Methods. Inset, actual data.
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experiments in human cancer cells suggested that the S326C
isoform is active in vivo and had reduced mutation suppression
ability compared to wild-type OGG1 (25,34,49,50). However,
reports on the effect of the S326C amino acid substitution on
directly measured OGG1 function have also not been conclus-
ive, with some studies reporting no effect of the polymorphism
on OGG1 activity (57,58). Interestingly, no effect of the
S326C polymorphism on OGG1 activity was detected in
both studies where OGG1 activity was measured in whole
cell lysates or tissue homogenates (57,58). Previous studies
have reported the presence of specific 8-oxoG binding proteins
or OGG1 inhibitors in crude cell lysates, but not partially
purified enzymes (15,62). We have also observed inhibition
of OGG1 activity in HeLa whole cell extracts, but not nuclear

extracts (data not shown). Therefore, use of crude extracts for
comparative analysis of OGG1 function may potentially be
influenced by cellular factors not directly related to OGG1
activity. A comparative analysis of the abilities of wild-type
and S326C OGG1 to suppress mutagenesis, performed under
conditions that likely reflect the in vivo situation in human
cells, found a significant decrease in the ability of polymorphic
S326C OGG1 to prevent mutations and suggests decreased
repair function of S326C OGG1 in cells (50).

In the present study, the substrate specificity, glycosylase
and AP-lyase activities and damage binding affinities of
S326C OGG1 were examined and compared with those of
the wild-type enzyme. Since reports of S326C enzymatic func-
tion have been controversial, we compared the activity of

Figure 7. Binding and catalysis by OGG1 deletion mutants. (A) Amino acid sequence of the C-termini of wild-type, wild-type CD19, S326C, S326C CD19 and
CD20 OGG1. (B) Wild-type OGG1 (lane 1) was reacted with an 8-oxoG·C substrate as described in Figure 6. Identical reactions were carried out for wild-type CD19
(lane 2), S326C (lane 3), S326C CD19 (lane 4) and CD20 OGG1 (lane 5). (C) Graphical representation of actual data shown in (B). (D) Binding of OGG1 enzymes
to an 8-oxoG·C substate was measured by electrophoretic shift assay as described in Figure 3. Lane 1, no enzyme; lane 2, wild-type; lane 3 wild-type CD19; lane 4,
S326C; lane 5, S326C CD19; and lane 6 CD20 OGG1. (E) Graphical representation of actual data shown in (D). Inset, dissociation constants calculated from
data shown in (D).
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S326C OGG1 against the wild-type enzyme using enzymes
expressed in both E.coli and in human cells. We first examined
the function of purified human OGG1 enzymes expressed in
bacteria (Figure 1). Our analysis of the activity of S326C
OGG1 confirms and extends an earlier report that the
polymorphic enzyme has slightly reduced activity towards
8-oxoG·C and AP·C substrates (49). Surprisingly, S326C
OGG1 was particularly deficient in the excision of 8-oxoG
paired with T and G, with the lesion being removed at rates
decreased 4- and 6-fold, respectively, relative to wild-type
OGG1 (Table 1). Therefore, the extent to which the S326C
polymorphism negatively impacts OGG1 function is highly
dependent upon the base opposite 8-oxoG. The decreased
binding affinity of S326C towards all major OGG1 substrates
(Table 1) is in agreement with its lower catalytic rates. How-
ever, the magnitude of decreases in the turnover rates of
S326C do not correspond with decreases in directly measured

S326C lesion binding affinities (Table 1). In the case of
8-oxoG·C and 8-oxoG·T, decreases in S326C substrate bind-
ing affinity correlate well with decreases in activity (Table 1).
However, in the case of 8-oxoG·G, 8-oxoG·A and AP·C
substrates, no direct relationship exists between changes in
measured substrate binding affinities and enzymatic activity
(Table 1). Therefore, the S326C polymorphism independently
alters damage binding affinity and rates of base excision and
strand incision by OGG1 in a manner dependent upon the
lesion type and the base opposite 8-oxoguanine. Although
S326C OGG1 is deficient in the repair of 8-oxoG (particularly
8-oxoG·G) compared to wild-type OGG1 (Figure 2 and
Table 1) redundant repair enzymes for 8-oxoG, including
NTH1 and NEIL1, are present in human cells (63,64).
Thus, the S326C OGG1 polymorphism may have added
importance in individuals with high levels of oxidative stress,
as suggested by numerous studies which indicate that the
S326C OGG1 allele may modify the effects of environmental
risk factors for several types of cancer (65–69).

Since the highly purified S326C OGG1 used to determine
lesion binding affinities was a single species on an SDS–PAGE
gel (Figure 1), the presence of two bands in S326C gel shifts
(Figure 3) suggested that the polymorphic enzyme might exist
as a dimer. We investigated this possibility by chemical cross-
linking experiments which indicate that S326C OGG1, but not
the wild-type enzyme can be cross-linked both with and with-
out a damaged DNA substrate (Figure 4A). Native
size-exclusion experiments further support the distinct dimeric
conformation of S326C OGG1 (Figure 5), with native wild-
type and S326C OGG1 having elution profiles consistent with
expected molecular sizes for an OGG1 monomer and dimer,
respectively. Mixing of S326C and wild-type OGG1 enzymes
in both cross-linking and native chromatography experiments
suggest that the two isoforms do not heterodimerize
(Figures 4B and 5D), although the possibility of some level
of interaction between the isoforms in vivo cannot be
excluded. Interestingly, S326C bound an AP·C substrate as
both a monomer and dimer (Figure 3E). Since the polymorphic
enzyme is essentially completely dimerized in the absence of
substrate, it therefore seems likely that binding of S326C
OGG1 to an abasic site substrate may induce conformational
changes in the dimeric enzyme that lead to its dissociation into
monomers.

The unexpected constitutive dimerization of the poly-
morphic OGG1 has implicit functional effects on enzymatic
activity. Presumably, only one molecule of OGG1 can engage
a single 8-oxoguanine at once, so the binding of two molecules
at one lesion would by definition result in an unproductive
binding by one member of the S326C dimer. This in part
explains why measured reaction velocities of S326C OGG1
are at least 2-fold less than those of the wild-type enzyme
(Table 1). However, larger differences in the rate of base
excision by S326C, i.e. 6-fold lower than the wild-type
with an 8-oxoG·G substrate, cannot be explained solely by
an unproductive binding due to dimerization and suggest a
possible allosteric effect caused by dimerization that is
dependent upon the base opposite 8-oxoG and results in sig-
nificantly decreased glycosylase activity. While the precise
catalytic mechanism and subunit interface of the S326C
dimer remain to be determined, dimerization of the protein
in the absence of DNA and the minimal 2-fold reduction in

Figure 8. Characterization of wild-type and S326C OGG1 expressed in human
cells. (A) Comparision of 8-oxoguanine glycosylase activites of HeLa nuclear
extracts from cells transfected with pCMV vector (lane 1), or pCMV vector
expressing N-terminally FLAG-tagged wild-type (lane 2) or S326C OGG1
(lane 3). Left inset; Anti-FLAG western blot of 2 mg of nuclear extract prepared
from HeLa cells transfected with pCMV vector (lane 1), pCMV wt (lane 2) or
PCMV S326C (lane 3). Right inset; actual data shown graphically in (A). (B)
Anti-FLAG western blot of 4 mg of nuclear extract from cells transfected with
pCMV vector (lanes 1 and 2), pCMV wt (lanes 3 and 4) or pCMV S326C (lanes
5 and 6). Nuclear extracts were incubated at 0�C overnight with (lanes 2, 4 and
6) and without (lanes 1, 3 and 5) 2 mM BM[PEO]4.
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reaction rate (Table 1) suggest that one molecule of a
preformed dimer may bind DNA, rather than both members
of the dimer directly binding to damage sites. The decrease
in both the turnover rate and damage binding affinity of S326C
suggest that the subunit interface of the S326C dimer
may alter both binding and catalysis by the member of
the dimer engaging DNA damage. Additionally, partial
physical occlusion of the active site of the binding member
of a S326C dimer by its subunit partner and structural
perturbation of S326C independent of dimerization cannot
be ruled out.

Binding and functional studies of C-terminally truncated
OGG1 enzymes (Figure 7) indicate roles for both cysteine
326 and the downstream C-terminus in the reduced enzymatic
function and dimerization of the polymorphic enzyme.
Removal of the C-terminal 19 amino acids from S326C
OGG1 reduced damage binding affinity and dimerization
and restored some enzymatic activity to the polymorphic
enzyme. Based on these observations, we hypothesize that
the dimer interface of S326C is comprised of the C-terminus
of the enzyme, including cysteine 326. Interestingly, our res-
ults suggest that the C-terminal 20 amino acids of OGG1 have
a role primarily in DNA binding, but not catalysis, in the
wild-type enzyme, since wild-type CD19 and CD20 have
near wild-type activity, but significantly lower damage bind-
ing affinity than the wild-type enzyme (Figure 7). Surprisingly,
tight substrate binding by OGG1 does not appear to be an
absolute requirement for activity, since terminally truncated
enzymes with reduced substrate binding have wild-type activ-
ity. The slightly decreased binding affinity of CD20 compared
to wild-type CD19 suggests that the amino acid at position 326
may have an minor individual effect on DNA binding. In
contrast, the C-terminal 19 amino acids of S326C OGG1
have an effect on both DNA binding and catalysis, presumably
due to their involvement in the homodimer interface. Pub-
lished co-crystal structures of OGG1 with 8-oxoG and abasic
site analog [tetrahydrofuran; (THF)] substrates were obtained
with N- and C-terminally (ND12-CD18) truncated OGG1 pro-
teins (70,71). Limited proteolytic digestion of full-length
OGG1 produced the ND12-CD18 OGG1 core domain, thus
the C-terminal 18 amino acids of OGG1 were proposed to
form an unstructured peptide (70). Interestingly, serine 326
is located at the boundary of the enzyme core domain (70),
thus its substitution for another amino acid could potentially
influence both the core structure and conformation of the
downstream C-terminus. Based on our binding measurements,
the binding of full-length wild-type OGG1 to DNA is signi-
ficantly tighter than that of wild-type CD19 or CD20 and
may involve additional or distinct protein–DNA contacts
mediated via the C-terminal 20 amino acids (Figure 7D
and E). The decreased damage binding affinity of S326C
OGG1 may in part be explained by the involvement of
the C-terminal 20 amino acids in dimerization, rather than
DNA binding.

It was previously shown that OGG1 turnover is significantly
stimulated by AP-endonuclease in vitro (51,54,55). OGG1
binds tightly to the abasic site produced by its glycosylase
activity and cleaves the site slowly, thus the enzyme is product
inhibited and product release is rate limiting in the excision of
8-oxoG by OGG1. APE1 has high affinity for and activity
towards the abasic site, thereby competing for the AP site

with OGG1 and quickly cleaving it, thereby enhancing
OGG1 turnover (51,54,55). The high affinity and low activity
of S326C OGG1 for abasic sites (Table 1) suggest that the
polymorphic enzyme is also product inhibited. The failure of
APE1 to stimulate S326C turnover (Figure 6A) suggests that
the dimeric binding mode of the polymorphic enzyme may
prevent access to the AP site by APE1. We directly measured
physical displacement of S326C and wild-type OGG1 from an
AP site substrate by APE1 using both electrophoretic mobility
shift and a trapping assay (Figure 6B and C). In both cases,
addition of APE1 failed to significantly displace S326C OGG1
and suggests that AP sites bound by S326C OGG1 may be
inaccessible by APE1.

A comparison of the enzymatic activity of wild-type and
S326C OGG1 expressed at identical levels in human cells
showed a decrease in 8-oxoG excision with the polymorphic
S326C enzyme consistent with the decrease in activity
observed with purified S326C (Figure 8A). Cross-linking of
nuclear extracts from cells expressing wild-type or S326C
OGG1 produced results similar to those observed with purified
enzymes and suggest that S326C OGG1 may exist as a dimer
inside the nucleus of human cells (Figure 8B). We speculate
that the dimeric conformation of polymorphic S326C could
have multiple consequences in vivo. The decreased enzymatic
activity of dimeric S326C OGG1 may be further compounded
in cells by the apparent resistance of the isoform to stimulation
by an enzyme acting subsequent to OGG1 in the BER pathway
(Figure 6). Additionally, it seems probable that the dimeriza-
tion of S326C could influence intracellular localization and
reported interactions of the wild-type OGG1 with other DNA
repair proteins, such as XRCC1 (72), that may play crucial
roles in the regulation of 8-oxoG repair in vivo. To our know-
ledge, no report exists regarding differences in the spectrum of
mutations occurring in individuals carrying either wild-type or
S326C OGG1 alleles. In previous studies, it has been shown
that wild-type OGG1 expressed in human cells suppresses G:C
to T:A transversion mutations and that S326C OGG1 has a
lower ability to prevent such mutations in vivo (50,73). An
examination of the differences between the in vivo mutation
suppression abilities of wild-type and S326C OGG1 with
defined lesions containing 8-oxoG paired not only with cyto-
sine, but also thymine and guanine, may reveal additional
consequences of the S326C polymorphism that could affect
genomic stability. While further studies are required to
elucidate the effects of the S326C polymorphism on the
efficacy and regulation of 8-oxoguanine repair in vivo, the
catalytic and stoichiometric changes in OGG1 and resistance
to displacement from AP sites resulting from the S326C
substitution reported here may be involved in the pathological
association of this prevalent polymorphism.
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