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Abstract

Genome-wide association studies (GWAS) have identified several common genetic variants 

influencing major depression and general cognitive abilities, but little is known about whether the 

two share any of their genetic etiology. Here we investigate shared genomic architectures between 

major depression (MD) and general intelligence (INT) with MiXeR and their overlapping 

susceptibility loci with conjunctional false discovery rate (conjFDR), which evaluate the level of 

overlap in genetic variants and improve the power for gene discovery between two phenotypes. We 

analyzed GWAS data on MD (n=480,359) and INT (n=269,867) to characterize polygenic 

architecture and identify genetic loci shared between these phenotypes. Despite non-significant 

genetic correlation (rg=−0.0148, p=0.50), we observed large polygenic overlap and identified 92 

loci shared between MD and INT at conjFDR<0.05. Among the shared loci, 69 and 64 are novel 

for MD and INT, respectively. Our study demonstrates polygenic overlap between these 

phenotypes with a balanced mixture of effect.

Introduction

Major depressive disorder is a debilitating mental disorder with a lifetime prevalence of 

16%1. Major depressive disorder ranks among one of the major contributors to the global 

burden of disease2, imposing severe suffering as well as large societal costs3. In addition to 

the characteristic mood symptoms and aberrant thought, cognition and bodily functions, the 

disorder is associated with both mental and somatic comorbidities4,5 indicating complex 

underlying mechanisms. However, despite clinical heterogeneity, heritability estimates of 

major depressive disorder amounts to 35 %6, implying sizeable genetic effects.

Cognitive impairment is a central feature in major depressive disorder, and is a mediator of 

the impaired social and occupational functioning observed in the disorder7. In addition to 

being part of the diagnostic criteria of major depressive episodes, cognitive symptoms are 

also observed during euthymia8, suggesting mechanisms distinct from those of mood 

symptoms. However, the underlying pathophysiology of the cognitive impairments remains 

largely unknown, although some neurobiological correlates have been proposed9. 

Importantly, cognitive genetic effects are indicated, as unaffected relatives of patients with 

major depressive disorder display cognitive deficits10, and family and twin studies find that 

the genetic liabilities of major depressive disorder and cognitive abilities covary10,11.

Like most complex conditions, major depressive disorder is a polygenic disorder12,13, and 

genome-wide association studies (GWAS) have not until recently identified genetic 

susceptibility loci14. The most recent GWAS of more than n=480,359 participants with an 

estimated single nucleotide polymorphism (SNP) heritability of 8.7% identified 44 genetic 

loci associated with major depression (MD)15. General intelligence (INT) is also regarded as 

a polygenic trait, with estimated SNP heritability of 22%16. It has also been difficult to 

identify genetic loci associated with INT until the recent well powered GWASs of INT with 

n=300,48617 and n=269,86716 participants, which identified 148 and 205 genetic loci, 
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respectively. Despite the phenotypic overlap indicating genetic pleiotropy, common genetic 

mechanisms for INT and major depression remain elusive and recent genetic correlation 

estimates are low (rg=−0.1448) and nonsignificant16. However, a significant negative 

correlation (rg=−0.2675, p=6.20×10−10) between depressive symptoms and INT has been 

reported previously16.

In the present study, we aimed to identify single SNPs shared between major depression and 

INT. Despite the assembly of very large GWAS cohorts, the identified genome-wide 

significant loci only explain a small portion of the variance of these complex 

phenotypes15,16. The lack of power of the traditional GWAS statistical approach can be 

attributed to the polygenic architecture of complex traits which is largely expected to be 

accounted for by numerous loci with very small effects18. Shared genetic background is 

expected for any pair of highly polygenic traits, in line with the omnigenic model19. It is 

now possible to use the MiXeR model20 to quantify the level of overlap and thus address 

how large the overlap is between polygenic phenotypes.

To improve the discovery of loci with small effects and to identify genomic loci shared 

between polygenic traits, we applied the condFDR/conjFDR method. This method employs 

the entire original set of p-values from the GWAS summary statistics for two traits of 

interest and intrinsically controls for the type 1 error rate using Benjamini-Hochberg-like 

FDR correction21. The condFDR/conjFDR method builds on an empirical Bayesian 

statistical framework and increases the power to detect novel phenotype-specific and shared 

loci by leveraging the combined power of two GWAS22. Specifically, we condition the false 

discovery rate (FDR) for one trait on association with another, even in the presence low 

genetic correlation between the two, to prioritize candidate susceptibility loci for the 

former22,23. Furthermore, SNPs enriched for cross-trait associations are more likely to 

replicate24. Like standard GWAS analysis, the condFDR/conjFDR method does not operate 

on a causal level, but identifies LD proxies of the underlying causal variants, which remain 

unknown. The method has successfully uncovered shared loci in various complex traits and 

disorders, even in the absence of genetic correlation25. Here, we used this statistical 

approach to analyze the recent large GWAS datasets on MD15 and INT16. We aimed to 

characterize the polygenic architecture shared between INT and major depression, and to 

discover shared genetic loci with small effects with both the same and opposite directions of 

effect.

Results

Shared genomic architectures (MiXeR)

MiXeR20 analysis provided evidence of large polygenic overlap between major depression 

and intelligence. Of 13.9K causal variants linked to MD, 11K (SE=0.4) were shared with 

intelligence, while the overall measure of polygenic overlap, on 0–100% scale, was 88.3% 

(as quantified by the Dice coefficient) and 0.2K variants associated with intelligence were 

not shared with major depression, despite no genetic correlation (Figure 1). MiXeR also 

estimated a much lower number of SNPs shared between height and MD (1.1K, SE=0.5) and 

height and intelligence (1.6K, SE=0.2 ), with Dice coefficient 12.2% and 21%, respectively 

(Supplementary Figures 2 and 3).
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Enrichment pattern

To provide a visual pattern of pleiotropic enrichment between the two phenotypes, we 

generated conditional Q-Q plots26 conditioning INT on MD and vice versa. The conditional 

Q-Q plots showed a strong enrichment pattern for MD given INT (Figure 2A) and for INT 

given MD (Figure 2B). The blue line shows association p-values in the main trait of interest 

(major depression) for all SNPs irrespective of their association p-values in INT. Red, yellow 

and purple lines show association p-values in the main trait for successively nested subsets 

of SNPs with increasing significance in the conditional trait. The consistently increasing 

degree of leftward deflection for subsets of variants with higher significance in the 

conditional trait in both directions indicates substantial polygenic overlap between major 

depression and INT (Figure 2A & B).

To test the statistical significance of the enrichment for the Q-Q plot strata, we used the 

partitioned LD-score regression approach13. The results showed a significant increase in the 

enrichment parameter for major depression given INT, Further details are provided in the 

Supplementary Methods.

Shared genetic loci (cond/conj FDR)

To improve the discovery of genetic variants associated with major depression and INT, we 

applied the condFDR statistical analysis on the association of major depression with INT, 

and vice versa. At condFDR<0.01, we identified 68 loci associated with major depression 

conditionally on INT (Supplementary Table 1). The reversed condFDR analysis identified 

298 loci associated with INT conditional on major depression at condFDR<0.01 

(Supplementary Table 2)15,16. The LD-score regression13 resulted in a non-significant 

genetic correlation (rg=−0.0148 with p-value=0.5008).

At conjFDR<0.05, we identified 92 distinct genomic loci jointly associated with major 

depression and INT (Figure 3; Supplementary Table 3): 69 of these loci were not identified 

in the original major depression GWAS15, and 64 were not reported in the original INT 

GWAS16. In total, 53 shared loci are novel for both major depression and INT 

(Supplementary Table 3).

By comparing the effect directions of the lead SNPs at the shared loci (conjFDR<0.05), we 

found that 48 lead SNPs have consistent effect directions in major depression and INT and 

44 have opposite effect directions. This is in line with the observed absence of significant 

genetic correlation and supports the hypothesis of mixed effect directions between major 

depression and INT.

Functional annotations

The functional annotation of all SNPs in the loci shared between major depression and INT 

(n=5,234; Figures 4 A–C) at conjFDR value<0.05 indicates that these are mostly intronic 

and intergenic, 54.7% and 30.6% respectively, while 1.4% were exonic (Figure 4 A, 

Supplementary Table 4). Of the 92 top lead SNPs in the loci shared between major 

depression and INT, 42 were located inside a protein-coding gene and 16 inside a non-

coding RNA (Supplementary Table 3).
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Seven of the 92 top lead SNPs (rs301807, rs62255971, rs12204714, rs13276452, rs4740502, 

rs3896224 and rs1952042) had CADD scores27 above 12.37 suggesting high 

deleteriousness. Four of these SNPs, rs62255971, rs12204714, rs3896224 and rs1952042, 

were intronic variants within CCDC66, ESR1, SORCS3 and RTN1, respectively 

(Supplementary Table 3). The distribution of minimum chromatin state showed that 80.5% 

of the top SNPs are located in open chromatin states regions. (Figure 4 C; Supplementary 

Table 3). Two of the top SNPs (rs301807 and rs9620039) had RegulomeDB scores28 of 1f 

and 1b, respectively, indicating that they may affect transcription factor binding 

(Supplementary Table 3); rs301807 had a CADD score of 16.18; these SNPs annotated to 

RERE and TCF20 as nearest genes, respectively (Supplementary Table 3). We further 

investigated the gene regulatory effects of rs301807 and rs9620039 using the GTEx and 

Braineac eQTLs datasets. These databases showed that rs301807 was significantly 

associated with altered expression of RP5–1115A15.1, RERE, GPR157 and SLC2A5 in 

several human tissues, including frontal cortex, hippocampus, putamen, temporal cortexand 

intralobular white matter (Figure 5; Supplementary Tables 5 and 6).

We then found that rs9620039 was significantly associated with the expression levels of 

multiple genes in human brain tissues (Supplementary Tables 5 and 7), including TCF20 in 

the cerebellar cortex (Supplementary Figure 5). These findings provide complementary 

information about the potential gene regulatory mechanisms of rs301807 and rs9620039 that 

may influence major depression and INT.

Using GTEx data29, we found that loci having concordant effect directions in major 

depression and INT were annotated to genes significantly overexpressed in cerebellum, 

hypothalamus and frontal cortex BA9 (Supplementary Figures 3A, 4 and 5). GO gene-set 

analysis for the genes annotated to the loci with concordant effect directions revealed nine 

significantly associated biological processes, including “regulation of short term neuronal 

synaptic plasticity” “homophilic cell adhesion via plasma membrane adhesion molecules”, 

and “cellcell adhesion via plasma membrane adhesion molecules” (Supplementary Table 8). 

These genes were also significantly associated with six cellular component gene-sets, 

including “AMPA glutamate receptor complex”, “ionotropic glutamate receptor complex” 

and “endoplasmic reticulum”, as well as one molecular function gene set, i.e., “calcium ion 

binding” (Supplementary Table 8). On the other hand, the expression of genes annotated to 

the loci with opposite effect directions was not higher in brain than in other tissues 

(Supplementary Figures 3B, 6 and 7). GO gene-set analysis showed 18 significantly 

associated biological processes for the genes annotated to the loci with opposite effect 

directions; “central nervous system projection neuron axonogenesis”, “negative regulation of 

dendrite development” and “central nervous system neuron axonogenesis” were among the 

most strongly associated processes (Supplementary Table 9). Further, these genes were 

significantly associated with eight cellular component gene-sets, including “t_tubule”, 

“synapse”, and “excitatory synapse” and with six molecular function gene sets, where the 

most strongly associated were “alpha actinin binding”, “transcription coactivator activity” 

and “voltage gated cation channel activity” (Supplementary Table 9).

The pathway over-representation analysis indicated “MECP2 and Associated Rett 

Syndrome” and “GABAergic synapse” pathways as significantly overrepresented (p-
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value=0.00466, p-value=0.00892, respectively) based on the genes annotated to the loci with 

consistent effect directions in MD and INT, and “Validated nuclear estrogen receptor alpha 

network”, “Regulation of nuclear SMAD2/3 signaling” and “Phenytoin (Antiarrhythmic) 

Action” pathways as significantly overrepresented based on the genes annotated to the loci 

with opposite effect directions (Supplementary Table 10).

Discussion

The main finding of the present study is the substantial polygenic overlap between INT and 

MD identified with a condFDR/conjFDR approach. We singled out multiple genomic loci 

shared by the two phenotypes with a mixture of allelic effect directions (48 lead SNPs 

having concordant effect directions and 44 SNPs with discordant effect directions) despite 

their low genetic correlation. Half of the 92 genetic loci shared between major depression 

and INT have a consistent direction of allelic effect, while the other half has an opposite 

direction, which is in line with the observed non-significant genetic correlation. 

Furthermore, the MiXeR results address the question of levels of polygenic overlap. The 

shared number of causal variants was 88.3% between MD and INT; which is a substantial 

part of the polygenic architecture. In comparison, the percentage of shared causal variants 

between MD and INT was estimated to be 12.2% and 21% with height, respectively. The 

overlap with height, can inform the proportion of overlap potentially driven by omnigenic 

effects, and suggest that a large fraction of overlap between MD and INT is not driven by 

omnigenic factors.

Gene-set analysis of the identified loci shared by INT and major depression with concordant 

effects implicated functional pathways related to cell adhesion and metabolism, while the 

loci shared with opposite effects were associated with regulation of gene silencing, central 

nervous system projection neuron axonogenesis and dendrite development. This provides 

neurobiological insights that can be tested in experimental studies. Further, the extensive 

polygenic overlap between major depression and INT is likely to lead to hypotheses about 

the neurobiological underpinnings of cognitive functioning and major depressive disorder 

both related to depressive episodes as well as in euthymia8.

A recent study reported a small but non-significant genetic correlation between INT and 

major depressive disorder (using a smaller sample of n=18,75916,30), while the genetic 

correlation between INT and the larger major depression sample15 analyzed here was close 

to zero n (rg=−0.0148, p=0.5008). It is worth noting that genetic correlation can be 

significant only if the bulk of variants associated with both phenotypes reveals consistent 

direction of effects (same or opposite but not mixed). In contrast, both conditional QQ plots 

and LD score based partitioned heritability are agnostic to effect directions and capture 

shared genetic basis even when the effects are mixed and so cancel each other out in 

correlation analyses. Consistent with the absence of genetic correlation between INT and 

major depression, we identified an equal distribution of concordant and discordant directions 

among the shared loci. The conjFDR statistical approach, which enables the identification of 

individual loci jointly affecting both phenotypes, singled out 92 loci shared between INT 

and major depression, further dissecting their polygenic overlap. Further leveraging the 

increased power from the combined samples, condFDR identified 68 loci in major 
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depression conditioned on INT, and 298 loci in INT conditioned on major depression. These 

discovered loci can help explain more of the heritability underlying major depression and 

INT traits. The present study proves the usefulness and cost-effectiveness of applying the 

cond/conjFDR statistical tools to increase gain from available GWAS data26,31.

Interestingly, the balanced mixture of directional effects among the loci shared between 

major depression and INT is similar to that observed between bipolar disorder and INT25. 

This contrasts findings for other psychiatric disorders such as schizophrenia25,31, where the 

majority of risk variants shared with INT have a detrimental effect on cognitive 

performance, and is in line with the more severe cognitive impairments seen in 

schizophrenia relative to affective disorders32. Many of the loci identified here are also 

found in GWAS on various complex traits and disorders related to brain function, 

corroborating that pleiotropy is ubiquitous among brain phenotypes (Supplementary Tables 

8 and 9). The genetic effects on INT identified here are determined in a sample 

representative of the general population, who were not depressed during their cognitive 

examination, although it is possible that participants in the INT study may develop 

depression later in life16. Hence, our results indicate that genetic risk variants for major 

depression contribute to the variance in INT, even among those who are not depressed. This 

provides further evidence for the strong relationship between INT and psychiatric disorders, 

implicating a substantial shared genetic basis33 and thus neurobiological mechanisms.. This 

may inform cognitive theories of psychopathology of depression9 where cognitive processes 

are involved in generating negative thoughts characteristic of MDD. The large number of 

risk loci associated with higher cognitive performance may provide genetic clues into the 

increased inclination to many cultural and artistic professions among people with mood 

disorders34.

An interesting shared signal with the same direction of effect in major depression and INT 

was detected on chromosome 1p36.23, at a locus that contains many genes (nearest gene 

RERE; Supplementary Table 3). The lead SNP at this locus (rs301807) was identified as an 

eQTL for RERE in the GTEx portal and Braineac database and significantly regulates the 

expression of the gene in several human brain regions29,35. The G allele of this SNP was 

associated with major depression risk and increased brain expression of RERE. The variant 

had a RegulomeDB score of 1f and a CADD score of 16.18 showing that it may affect 

transcription factor binding and be deleterious27. This locus was genome-wide significant in 

the primary GWASs on MDD15, but is a novel finding for INT. RERE is a widely-expressed 

nuclear receptor coregulator that positively regulates retinoic acid signaling. Mutations in 

RERE cause a genetic syndrome and haploinsufficiency of RERE might be sufficient to 

cause many of the phenotypes associated with proximal 1p36 deletions36. Another 

interesting locus singled out by our analyses is located on chromosome 22 in the vicinity of 

several genes (nearest gene TCF20; Supplementary Table 3) and has a RegulomeDB score 

of 1b. This locus had a strong joint effect on schizophrenia and cognitive abilities31, and was 

genome-wide significant in the primary GWASs on INT, but is a novel finding for major 

depression. TCF20 encodes a widely expressed transcriptional co-regulator, and TCF20 
mutations are associated with autism and intellectual disability. Using Braineac eQTLs 

datasets, we determined that the variant could significantly regulate the expression of TCF20 
in the cerebellar cortex.
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The genes annotated to the loci with concordant effect directions in major depression and 

INT were significantly overexpressed in multiple brain regions (Supplementary Figures 3A, 

4 and 5). Although the phenotypic effect doesn’t mainly depend on the genetic variants of 

the nearest gene, the findings support the importance of brain expressed genes in the shared 

genetic etiology underlying major depression and INT. Gene-set analysis implicated nine 

significantly associated biological processes for these genes, converging on processes related 

to cell adhesion and neuronal synapses (Supplementary Table 8). Such processes have been 

previously linked to major depressive disorder37 and INT16,38. In line with these results, the 

cellular component gene-set analysis revealed significant associations for the AMPA 

glutamate receptor complex, and the endoplasmic reticulum39. Interestingly, the over-

represented pathways for the genes annotated to these loci were GABAergic synapses, and 

MECP2 which is associated with Rett Syndrome, indicating potential involvement of 

neurodevelopmental processes40. The genes annotated to the loci with opposite effect 

direction were not significantly overexpressed in brain tissue (Supplementary Figures 3B, 6 

and 7). Gene-set analysis showed 18 significantly associated biological processes, related to 

regulation of gene silencing and central nervous system projection neuron axonogenesis 

(Supplementary Table 9). In line with these results, these genes were over-represented in 

pathways for validated nuclear estrogen receptor alpha network, regulation of nuclear 

SMAD2/3 signaling and phenytoin action (Supplementary Table 10). Estrogens are 

synthesized in various tissues throughout the body, including the brain and have a number of 

effects on cognition and brain function41.

To conclude, our study extends the current understanding of the common genetic variation 

influencing MD and INT. Our findings provide evidence for an extensive polygenic overlap 

between MD and INT, and identify a series of specific gene loci shared between MD and 

INT. The results provide insights into the shared genetic architecture between two important 

human traits, suggesting a shared neurobiological basis.

Methods

Participant Samples

For this study we used GWAS summary statistics results for major depression and INT15,16. 

Data on major depression were obtained from the Psychiatric Genomics Consortium (PGC) 

and 23andMe which also included cases with self-reported depression. The major depression 

sample consisted of 135,458 cases and 344,901 controls including seven cohorts15. To avoid 

sample overlap, we excluded the UK Biobank cohort (n=29,740) contribution to the MD 

GWAS15 from all analyses. Any systematic sample overlap between major depression and 

INT GWASs was thereby prevented. Data on general cognitive ability were based on 

269,867 individuals drawn from 14 cohorts, primarily consisting of data from the UK 

Biobank (n=195,653)16. (For details, see Supplementary Methods and the original 

publications)15,16.

Statistical analysis

To quantify polygenic overlap between major depression and intelligence, we employed the 

MiXeR statistical tool20. MiXeR uses GWAS summary statistics of each phenotype to 
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provide univariate estimates of the proportion of non-null SNPs (polygenicity) and the 

variance of effect size of non-null SNPs in each phenotype. Then it constructs a bivariate 

causal mixture model to estimate the total number of shared and phenotype-specific causal 

variants. MiXeR results are presented as a Venn diagram of shared and unique polygenic 

components across traits. The Dice coefficient score (polygenic overlap measure in 0–100% 

scale), and genetic correlation between two phenotypes are also computed. We also applied 

MiXeR to quantify the polygenic overlap between major depression/intelligence and height, 

to demonstrate non-specific genetic overlap with a trait not association with behavioral, 

mental or cognitive traits.

Conditional quantile-quantile (Q-Q) plots26 give a visual impression of the overlap in 

associations with two traits. Conditional Q-Q plots compare the association with one trait 

within SNP strata determined by the significance of their association with the second trait. 

Specifically, we computed the empirical cumulative distribution of nominal p-values in one 

phenotype for all SNPs and for subsets of SNPs with significance levels in another 

phenotype below the indicated cut-offs (p≤1, p≤0.1, p≤0.01, p≤0.001, respectively)26. In this 

analysis we focused on polygenic effects below the standard GWAS significance threshold 

(p>5×10−8)26. Enrichment for overlapping signals exists for a given phenotype if the degree 

of leftward deflection from the expected null line increases with increasing association 

significance in the second phenotype26.

The condFDR statistical method26 improves the detection of genetic variants associated with 

major depression and INT via re-ranking SNPs compared to their nominal p-value−based 

ranking26 (for details, see Supplementary Methods). To identify shared genetic variants 

associated with both traits and make a comprehensive list of overlapping signals, we used a 

conjunctional FDR (conjFDR) procedure26. The conjFDR statistic is based on condFDR and 

is defined as the maximum of the two mutual condFDR for a specific SNP. The conjFDR 

approach estimates a posterior probability that an SNP is null for either phenotype or both, 

given that the p-values for both phenotypes are lower than the observed p-values26 (for 

details, see Supplementary Methods). Two genomic regions, the extended major 

histocompatibility complex genes region (hg19 location Chr 6: 25119106–33854733) and 

chromosome 8p23.1 (hg19 location Chr 8: 7242715–12483982), were excluded from the 

FDR fitting procedures because complex correlations in regions with intricate LD can bias 

FDR estimation.

As the empirical null distribution in GWASs is affected by global variance inflation due to 

factors such as population stratification and cryptic relatedness, all p-values were corrected 

for inflation using a genomic inflation control procedure26. To minimize inflation resulting 

from LD dependency between variants we performed random pruning of all SNPs across 

100 iterations both in conditional Q-Q plots and condFDR/conjFDR analyses. For each 

random pruning iteration, only one random SNP representative was retained for each LD-

independent block (cluster of SNPs with r2>0.1). The results were then averaged across all 

iterations. LD-score based significance testing of enrichment and genetic correlation 

analyses were also performed42.
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Genomic loci definition and Functional annotation

To detail the LD-independent genomic regions surrounding the identified signals we used 

the Functional Mapping and Annotation (FUMA) protocol43. SNPs having a condFDR<0.01 

and at r2<0.6 with each other were considered as independent significant SNPs and a 

fraction of the independent significant SNPs in approximate linkage equilibrium with each 

other at r2<0.1 were considered as lead SNPs. To determine the distinct genomic loci and 

their borders we used the default parameters from FUMA43.

For the functional annotation we used all candidate SNPs in the genomic loci with a 

condFDR or conjFDR value<0.10 having an r2≥0.6 with one of the independent significant 

SNPs. We annotated SNPs based on functional Categories, Combined Annotation 

Dependent Depletion (CADD) scores, RegulomeDB scores and chromatin states using 

FUMA43. The CADD score is the score of deleteriousness of SNPs predicted by 63 

functional annotations. CADD=12.37 is the score for the most deleterious variants27. The 

RegulomeDB score is a categorical score showing the regulatory functionality of SNPs 

based on the overlap of existing functional data including annotation to cis-expression 

quantitative trait loci (cis-eQTLs) and evidence for transcription factor binding28. Chromatin 

state shows the accessibility of genomic regions with 15 categorical states predicted by 

ChromHMM based on 5 chromatin marks for 127 epigenomes28,44,45.

We performed gene-set enrichment analysis based on the gene ontology classification 

system using FUMA43. As an input for this step, we took the closest gene to the lead SNP of 

each LD-independent locus identified in our conjFDR analysis. To determine gene 

expression and assess eQTL functionality of likely regulatory lead SNPs, we also applied 

data from the genotype tissue expression (GTEx) resource and the Braineac eQTLs 

dataset29,35. Pathway over-representation analyses were performed for the genes nearest the 

identified shared loci using ConsensusPathDB for the loci having consistent effect directions 

in major depression and INT and the loci having opposite effect direction separately46. All 

analyses were corrected for multiple comparisons. For details, see Supplementary Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Venn diagram shows the estimated number of causal variants shared (grey) between 

intelligence (INT) and major depression (MD) and unique (colors) to either of them. The 

number of causal variants in thousands is shown, with the standard error in thousands 

provided in parentheses. The Dice coefficient, which is the percentage of shared causal 

variants between two phenotypes, is 88.3. The genetic correlation (rg) is estimated between 

the two phenotypes.
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Figure 2. Conditional Quantile-Quantile Plots.
A) Conditional Q-Q plots of nominal versus empirical major depression (MD) −log10 p-

values (corrected for inflation) below the standard GWAS threshold of p<5×10−8 as a 

function of the significance of the association with INT, at the level of p≤0.1, p≤0.01, 

p≤0.001, respectively. The blue line indicates all SNPs. The dashed line indicates the null 

hypothesis. B) Conditional Q-Q plots of nominal versus empirical INT −log10 p-values 

(corrected for inflation) below the standard GWAS threshold of p<5×10−8 as a function of 

significance of association with major depression (MD), at the level of p≤0.1, p≤0.01, 

p≤0.001, respectively. The blue line indicates all SNPs. The dashed line indicates the null 

hypothesis.
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Figure 3. Manhattan Plot.
Common genetic variants jointly associated with major depression and intelligence at 

conjunctional false discovery rate (conjFDR)<0.05. Manhattan plot showing the −log10 

transformed conjFDR values for each SNP on the y-axis and chromosomal positions along 

the x-axis. The dotted horizontal line represents the threshold for significant shared 

associations (conjFDR<0.05). Independent lead SNPs are encircled in black. The significant 

shared signal in the major histocompatibility complex region (chr6:25119106–33854733) is 

represented by one independent lead SNP. Further details are provided in Supplementary 

Table 3.
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Figure 4. Distribution of the Annotation for All SNPs Jointly Associated With between major 
depression and intelligence at Conjunctional False Discovery Rate Less Than 0.10 Including 
Functional Consequences of SNPs.
A) Distribution of functional consequences of SNPs in the shared genomic risk loci. B) 
Distribution of RegulomeDB score for SNPs in shared genomic loci, with a low score 

indicating a higher likelihood of having a regulatory function. C) The minimum chromatin 

state across 127 tissue and cell types for SNPs in shared genomic loci, with lower states 

indicating higher accessibility and states 1–7 referring to open chromatin states.
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Figure 5. Gene expression level in human brain tissues.
The rs301807 variant shared between major depression and intelligence is significantly 

associated with brain grene expression of RERE, with the major depression risk allele 

associated with lower/higher intelligence and lower/higher RERE expression. Figure was 

generated with Brianeac35.
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