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Abstract

The power system always has several variations in its profile due to random load changes

or environmental effects such as device switching effects when generating further tran-

sients. Thus, an accurate mathematical model is important because most system parame-

ters vary with time. Curve modeling of power generation is a significant tool for evaluating

system performance, monitoring and forecasting. Several numerical techniques compete to

fit the curves of empirical data such as wind, solar, and demand power rates. This paper pro-

poses a new modified methodology presented as a parametric technique to determine the

system’s modeling equations based on the Bode plot equations and the vector fitting (VF)

algorithm by fitting the experimental data points. The modification is derived from the familiar

VF algorithm as a robust numerical method. This development increases the application

range of the VF algorithm for modeling not only in the frequency domain but also for all

power curves. Four case studies are addressed and compared with several common meth-

ods. From the minimal RMSE, the results show clear improvements in data fitting over other

methods. The most powerful features of this method is the ability to model irregular or ran-

domly shaped data and to be applied to any algorithms that estimating models using fre-

quency-domain data to provide state-space or transfer function for the model.

Introduction

In power systems, the load profile or the power curve is a trend that demonstrates the devia-

tion in demand or electrical load over a definite time. The generation companies apply this

information to map how much power they will need to produce at any time. Wind and solar

power output fluctuate immensely and are only moderately controllable. The rate of power

can be forecasted with a particular accuracy. System engineers build systems to harness any

solar and wind resources accessible; therefore, from an operational viewpoint, solar and wind

power less resembles the demand load than does the traditional fossil fuel power generation.

In some conditions, the wind and solar power resources have been successfully accumulated
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in connection with electric grids, such as when the wind has a lower rate of penetration and

the solar irradiation has a low rate of variation in light intensity. However, the important issue

is how can solar and wind power output be extrapolated and the obtained energy be estimated.

Therefore, investigating and creating an algorithm to extract a mathematical model is crucial

for the interpretation, prediction, and analysis of such power curves. The difficulty is to find

an objective criterion and to assign quantitative parameters that govern the trade-off between

the smoothness of the power curve and its proximity to the measured data points.

A mathematical model can be defined as an explanation of a system using mathematical

theory and language. Modeling may help to describe a system and revise the effects of different

elements, in addition to making forecasts about the system’s behavior. In many cases, the value

of a scientific field is based on how well the mathematical models created to match the theoret-

ical concepts with the results of repeatable experiments perform.

This research did not cover all the literature regarding this field for the following reasons:

• There is a wide range of fitting, forecasting and modeling techniques that are all based on

regression analysis, which is considered a statistical procedure for modeling or estimating

the relationships between system parameters and for associating a particular dependent vari-

able with one or more independent variables.

• Many factors affect the shapes of power curves, and there are different factors for different

applications, such as wind speed perturbations for wind energy, light shading variations for

a solar power rate curve, and parameters that quantitatively describe the load power con-

sumption shape of residential applications such as the switching effects and the power supply

structure of household appliances.

• This research proposes a general modeling technique to extract formulas that follow the

behavior of the system that is expressed by its observation data points. This technique has

the potential to fit and formulate most shapes of curves based only on field or experimental

data measurements.

A general outline for the development of this modeling solution is presented, followed by

an elaboration of the detailed steps. In Section 2, we introduce the current modeling equations

and a list of mathematical data fitting models along with the position of the proposed model

among the power curve models in the literature. We first address the previous related work on

three trends according to their application within green energy areas: wind, solar and load

power profiles in a residential application. Then, the VF algorithm is described and reviewed

as the method to be modified and on which this work is based. In Section 3, we provide a sur-

vey of vector fitting, while in Section 4, the methodology of the research used to develop the

BEVF algorithm, depicted by a diagram to demonstrate the concept, is presented. The pro-

posed algorithm is divided into three phases, Input Adaptor, VF Process, and Output Adaptor,

to produce the proposed system equations. In Section 4, the paper presents the models for four

features of the power profiles in green energy applications: two in the wind energy application

area, one in the solar power field, and one in the modeling of the load demand power curve.

These cases were selected based on the availability of their data and previous studies. The

results of the proposed technique and a comparative evaluation is also presented. Finally, Sec-

tion 5 provides concluding remarks as well as future studies.

The current modeling equations

Interpolation and the least squares method are two commonly used techniques for curve fit-

ting and modeling. Interpolation has normal polynomials and spline representations, while
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the least squares curve fitting also uses a simple polynomial and is a general approach that per-

mits additional choices of least squares fitting functions such as Chebyshev or spline series.

Other fitting methods in the literature include the spline function, which is a curve built from

polynomial segments that are subjected to the conditions at their joints. [1] presented an algo-

rithm that includes the cubic smoothing spline. The common model names and their associ-

ated equations can be classified as shown in Table 1.

Table 1 provides a list of the common fitting equations that MATLAB is based on; some of

the listed equations may fit one set of data, but not others, and the fitting accuracy depends on

the selection of the equation order. There is no dominant fitting approach for the types of

observations, even for physical applications. Therefore, it is essential to consider the perfor-

mance of several statistical methods to fit a particular power curve to select the best one for a

given measured data set. A brief classification of most power curve models, with the position

of the proposed algorithm included among them, is shown in Fig 1.

Vector fitting, a survey

Vector fitting (VF) is a robust numerical method for extracting a rational approximation in

the frequency domain. The name ‘Vector Fitting’ stems from how the method may be easily

generalized to simultaneously fit a vector of system transfer functions [2].

VF is a state equation approximation; thus, the time and the frequency domain approxima-

tions are parameterized exactly the same as in the solution of the state matrix. The only differ-

ence in the calculation is the basis used during the least squares of the method. The definition

of a vector fitting (VF) algorithm is a mathematical method for sampled response-matching

system identification, in which the algorithm includes an iterative procedure for solving linear

Table 1. A List of some mathematical data fit model equations.

Model Names Degree Equations

Polynomial Model 1

2

3

8

Y = p1x + p2

Y = p1x2 + p2x + p3

Y = p1x3 + p2x2 + . . . + p4

Y = p1x9 + p2x8 + . . . + p10

Exponential Model 1

2

Y = aebx

Y = aebx + cedx

Fourier Series Model 1

2

3

.8

Y = ao + a1cos(xp) + b1sin(xp)

Y = ao + a1cos(xp) + b1sin(xp). . .+a2cos(2xp) + b2sin(2xp)

Y = ao + a1cos(xp) + b1sin(xp). . .+a3cos(3xp) + b3sin(3xp)

Y = ao + a1cos(xp) + b1sin(xp). . .+a8cos(8xp) + b8sin(8xp)

Gaussian Model 1

2

3

4

Y ¼ a1e
�

x� b1
c1

� �2

Y ¼ a1e
�

x� b1
c1

� �2

þ a2e
�

x� b2
c2

� �2

Y ¼ a1e
�

x� b1
c1

� �2

þ . . .þ a3e
�

x� b3
c3

� �2

Y ¼ a1e
�

x� b1
c1

� �2

þ . . .þ a8e
�

x� b8
c8

� �2

Power Model 1

2

Y = axb

Y = axb + c
Rational Model 02

12

55

Y ¼ p1

ðx2þq1xþq2Þ

Y ¼ ðp1x2þp2xþp3Þ

ðxþq1Þ

Y ¼ ðp1x5þ...þp6Þ

ðx5þ...þq5Þ

Sum of Sine Model 1

2

3

.8

Y = a1sin(b1 � x + c1)

Y = a1sin(b1x + c1) + a2sin(b2x + c2)

Y = a1sin(b1x + c1)+. . .+a3sin(b3x + c3)

Y = a1sin(b1x + c1)+. . .+a3sin(b8x + c3)

https://doi.org/10.1371/journal.pone.0191478.t001
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Fig 1. Power curve models and the position of the proposed model.

https://doi.org/10.1371/journal.pone.0191478.g001
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least squares by using partial fraction expansion roots. This technique covers a wide range of

variation in frequency domains (from 0-GHz), avoiding ill-conditioned computations and

therefore working in a more robust and efficient manner. VF is used in modeling of different

electrical systems [3] and other areas such as in filter design [4, 5], in power network analysis

[4, 6] and in the field of electromagnetic simulation [7].

VF was an idea first introduced for the modeling of power transmission lines as transient

response-measured data in [8]. The fundamental idea of VF is to update the proposed or ini-

tialized poles with estimated values as an improved set of poles through the technique of pole

relocation, improving the approximation iteratively. VF has the capability to estimate an origi-

nal system as a new model by means of partial fraction roots of real, complex conjugate, or

mixed poles. For better integration and performance of VF, several simplifications and expan-

sions have been considered with special classification [9–17].

Proposed mathematical modeling algorithm

The Bode equation vector fitting (BEVF) method is a modified algorithm in which the vector

fitting (VF) algorithm has been adopted due to its robust numerical fitting property. However,

VF provides a state space modeling representation for measured input data in the frequency

domain; therefore, the proposed effort investigates the ability of this method to develop a new

mathematical model by relying on mathematical assumptions, set as adaptors, to match any

measured or calculated data points using the VF process. Thus, the proposed algorithm can be

divided into three phases, Input Adaptor, VF Process, and the Output Adaptor, which produce

the proposed system’s mathematical equations (Fig 2).

Input adaptor

This stage represents the assumptions for synthesizing the input data to frequency-domain

based algorithm (VF algorithm in this case) and to initialize the parameters required for the

second stage. Appendix A shows the software steps with example of empirical data.

Fig 2. Block diagram of the proposed algorithm.

https://doi.org/10.1371/journal.pone.0191478.g002

Mathematical modeling by Bode equations and vector fitting

PLOS ONE | https://doi.org/10.1371/journal.pone.0191478 January 19, 2018 5 / 29

https://doi.org/10.1371/journal.pone.0191478.g002
https://doi.org/10.1371/journal.pone.0191478


Fig 2 depicts the proposed algorithm in which the input data or observations must first be

expressed in terms of Cartesian coordinates f(x)k + j0 = rk, with zero imaginary part (j0) or can

be represented by one of the two selections in polar form expressed in (1).

f ðxÞ ¼ Data ¼

Cartesian; f ðxÞk þ j0 ¼ rk; y ¼ 0

Polar;

(
f ðxÞk ¼ yk ¼ rk

f ðxÞk ¼ yk; rk ¼ 0 or constant

ð1Þ

8
>>>>>>>><

>>>>>>>>:

where the index k = 1, 2, 3. . . (number of data points).

The data are now ready to be processed by the conventional VF algorithm.

VF process

VF provides a model system expressed by its state space. Therefore, the VF algorithm can be

defined as a method to determine the state space representation of measured or calculated data

points [18]. The polynomial expression of the transfer function can be expressed as:

f sð Þ ¼
a0 þ a1sþ a2sþ . . .þ ansn

b0 þ b1sþ b2sþ . . .þ bnsn
ð2Þ

The rational approximate function of (2) can be expressed as:

h sð Þ ¼
Pn

j¼1

rj
s � pj

þ K ð3Þ

where the term k is a constant and is optional, rj represents the residues and pj represents the

poles.

Based on (1), which represents the assumption of data, the algorithm transforms the state

space model into a Rational Approximation Function (RAF), which can be seen in (3), and

then transforms each fraction of (3) into a sum of 1st order fractions. The aim of transforming

the fractions into a sum of 1st order fractions is to be able to easily transform them back into

either Bode magnitude form or Bode phase form, as explained in Fig 2. Furthermore, the

matching process is based on the assumption of the input data being either in Polar or Carte-

sian form and then being processed as a complex quantity with zero imaginary parts, as

described above in (1).

As explained in [18], the VF method first recognizes the poles by solving the problem in the

least squares sense of the linear problem:

sðsÞhðsÞ ¼ f ðsÞ ð4Þ

where

s sð Þ ¼
Pn

j¼1

�rj
s � qj

þ 1 ð5Þ

f sð Þ ¼
Pn

j¼1

rj
s � qj

þ K ð6Þ

qj is the initial pole set. (All poles and residues in (5) and (6) are real or complex conjugate

pairs, while k is a real number). The assumption that VF adopts is that the poles of h(s), given

Mathematical modeling by Bode equations and vector fitting
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in (3), should be equal to the zeros that can be calculated as the eigenvalues of a matrix as in

(7) [19], page 612.

fpjg ¼ eigðA � B:CTÞ ð7Þ

In (7), A represents a diagonal matrix with the initial poles qj, while B is a column of ones

vector, and CT is a row vector with the residues f�rjg.
The procedure is applied in an iterative mode where (4) to (7) are solved iteratively with the

new poles {pj} substituting the previous poles {qj}. This pole relocation process typically con-

verges in 2–3 iterations. After identifying the poles, the residues of (3) are calculated by solving

the equivalent least squares (LS) problem with the new known poles.

Furthermore, the objective of the vector fitting method is to calculate the unknown poles,

residues and constant of the rational approximation function equivalent to (3).

h sð Þ ¼
r1

s � p1

þ
r2

s � p2

þ . . . :: . . .þ
rn

s � pn
þ K ð8Þ

where r is the residue and p is the pole of the fraction from h(s). n, is assigned by trial and

error based on an appropriate RMS error and is therefore selected in a way that provides an

accurate fitting and represents the order of the resultant RAF.

Referring to (8), the general numerical expression of rn, and pn, can be expressed in complex

form as:

rn ¼ imðrnÞjþ reðrnÞ; pn ¼ imðpnÞjþ reðpnÞ ð9Þ

where im(rn) and re(rn) are the imaginary and real parts of rn, respectively. The same applies

for im(pn) and re(pn).

Applying the inverse Laplace transform on (8) yields h(t) in (10):

hðtÞ ¼ r1e
p1t þ r2e

p2t þ � � � . . . . . . . . . . . . rne
pnt þ kdt ð10Þ

Selection of initial poles. To measure data with resonance peaks, complex conjugates

with weak attenuation must be selected as initial poles and the imaginary parts (β) must be set

to cover the range of frequencies of interest. Weak attenuations guarantee that the least squares

(LS) problem is solved, and the allocation of the pair over the frequency range reduces the

probability that the poles must be relocated a long distance, avoiding the need for many

iterations.

The pairs of poles should normally be chosen as follows:

an ¼ � aþ jb; anþ1 ¼ � a � jb; a ¼ b=100 ð11Þ

Usually, β is assigned to be linearly spaced over the frequency range of interest (recom-

mended choice). In some instances, a logarithmic distribution results in a faster convergence.

Output of VF. The fitting process output of the VF algorithm is a state space of the fitted

trace, but as a result, it is simple to transform it into the Rational Approximation Function

(RAF) form by using a specified MATLAB function.

Output adaptor

It is worth mentiond that the VF has been addressed in time-based environment as a Time-

Domain VF (TDVF) method for macromodeling the multiport linear system and supported

with accurate validations, as described in [20]. This research proposes not only different

approach towards the macromodeling of experimentally-based data system in time-domain,

Mathematical modeling by Bode equations and vector fitting
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but also generalize the VF algorithm to be applied for all power curves and measured data

within any domain.

The main aim of the proposed modifications to the VF is to generalize the VF algorithm

from the s-domain (frequency environment) to the time-domain, or even for any domain

application. Thus, the RAF must be converted back into a time-based formula. Therefore, the

first step of this stage is to change the state space of the VF output into an RAF form, as in (8),

followed by the second step, which is to substitute jw for each s (h(s) = h(jw)). The final step is

to retrieve the originality of the input or measured data points of the modeled system; this step

depends on the preliminary assumption that was adopted in (1) to describe the measured data.

Thus, the resultant modeling equations can be expressed in two forms: magnitude and/or

phase. In the final steps of Appendix A, the software shows this stage details and the resultant

modeling formula of an empirical data in terms of magnitude representation.

Magnitude model

If the preliminary assumption of the measured data points in (1) is magnitude data in polar

form, the BEVF output result is in a time-domain based modeling equation, as in the following

form (12):-

Magnitude of hðsÞ ¼ Magnitude of hðjwÞ ¼ jhðjwÞj ð12Þ

For; hn jwð Þ ¼ rn
jw� pn

; for rn, and pn, real numbers, at n = 1; then:

jh1ðjwÞj ¼ ðr1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ p1

2
p

Þ ð13Þ

In general, substitute (13) and (12) in (8) for |h(t)|, the result would be as follows:-

hðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

imðr1Þ
2
þ reðr1Þ

2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt � imðp1ÞÞ
2
þ reðp1Þ

2

q

0

B
@

1

C
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

imðr2Þ
2
þ reðr2Þ

2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt � imðp2ÞÞ
2
þ reðp2Þ

2

q

0

B
@

1

C
Aþ � � � . . .

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

imðrnÞ
2
þ reðrnÞ

2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt � imðpnÞÞ
2
þ reðpnÞ

2

q

0

B
@

1

C
Aþ jKj ð14Þ

Thus, in more general h(t), can be in a form (15):

h tð Þ ¼
Pn

c¼1

jrcjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt � imðpcÞÞ
2
þ reðpcÞ

2

q

0

B
@

1

C
Aþ jKj ð15Þ

Where the index c represents the counter of the equation fractions counts till reach the

index n which denotes the modeling order.

Phase model

If the preliminary assumption regarding the measured data points in (1) is that phase data are

in polar form, the BEVF output result is a time domain-based modeling equation, as in the fol-

lowing form (16):

Phase of hðsÞ ¼ Phase of hðjwÞ ¼ ;ðhðjwÞÞ ð16Þ

Mathematical modeling by Bode equations and vector fitting
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For example, for n = 1 in (16),

; h1ðjwÞð Þ ¼ tan� 1 imðr1Þ

reðr1Þ

� �

� tan� 1 w � imðp1Þ

reðp1Þ

� �

ð17Þ

In general, substituting (17) and (16) into (8) for ;(h(t)) results in the following:

h tð Þ ¼ tan� 1 imðr1Þ

reðr1Þ

� �

� tan� 1 t � imðp1Þ

� reðp1Þ

� �

þ tan� 1 imðr2Þ

reðr2Þ

� �

� tan� 1 t � imðp2Þ

� reðp2Þ

� �

þ � � � . . . . . .þ tan� 1
imðrnÞ
reðrnÞ

� �

� tan� 1
t � imðpnÞ
� reðpnÞ

� �

þ tan� 1 Kð Þ ð18Þ

h tð Þ ¼
Pn

k¼1
tan� 1 imðrkÞ

reðrkÞ

� �

� tan� 1 t � imðpkÞ
� reðpkÞ

� �

þ tan� 1 Kð Þ ð19Þ

Thus, (15) and (19) are the mathematical modeling representation of the experimentally

measured data for a particular system that is in the time domain in this analysis.

Therefore, the proposed BEVF algorithm provides the coefficient values (rn, pn, and K) for

Eqs (15) and (19), where n denotes the order of the proposed modeling equations and the asso-

ciated system. The designed method also provides a comparison with the standard modeling

equations and shows the fitting convergence of the process. The flow chart of the proposed

algorithm can be described as shown in Fig 3.

Case studies

This paper presents the modeling of the four features of power profiles in green energy appli-

cations: two in wind energy applications, one in solar power applications, and one regarding

the load demand power curve. These cases were selected based on the availability of data and

previous related studies.

Wind power profile modeling

Overview. A wind turbine generator transforms wind power into electric power. Its out-

put power varies over a wide range from zero to the full capacity value based on the wind

speed variation. The varying power generation and the uncertainty related to the power level

result in considerable challenges in the planning and management of a power system to meet

the demand-accepted level of power reliability. One of the most important tools in the wind

energy industry is the accurate modeling of wind turbine power curves that significantly aid in

the evaluation and monitoring of turbine power system performance, forecasting, and sizing

the capacity of the wind energy storage.

The power of air movement of a mass of air flowing through a particular area A with a

speed of v at a specific time t is given by:

P tð Þ ¼
1

2
rAvðtÞ3 ð20Þ

where ρ is the air density and is approximately 1.22 kg/m3 and the energy in kWh is:

E ¼ P tð ÞT ¼
1

2
rADt

XN

i¼1

v3

i

Therefore, when the fluctuations of the wind are taken into account, the energy obtained

from a flow of air over a period of time (t) is given by the sum of the overall wind speeds at
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Fig 3. Flowchart of the proposed algorithm.

https://doi.org/10.1371/journal.pone.0191478.g003
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proportional time intervals. Usually, the hourly speeds are measured as an average (24 time

buckets per day).

Since the power of the wind is proportional to the cubic wind speed according to (20), it is

important to have detailed information regarding the geographic site’s wind characteristics

because small errors in wind speed prediction can have large effects on the aggregated energy.

Wind power related studies. Several studies have evaluated statistical algorithms to fit

the wind power empirical curve [21]. A few previous related studies classify the methods into

parametric and non-parametric algorithms to model the wind turbine generator [21–23]. Non-

parametric techniques do not impose a particular model and can be adapted to produce an esti-

mate of the power curve, which should be fitted to the observed data. Such techniques have an

important advantage over parametric techniques because they can accurately model a wide range

of shapes of power curves of the system. The use of a neural network is considered a non-paramet-

ric technique utilized in back propagation and feed-forward multilayer perceptron as a general-

ized mapping regression procedure [24, 25] while the fuzzy logic method, as described in [25], is

used to forecast the output power of a wind turbine generator as a fuzzy cluster model.

The use of the polynomial regression method to model and fit the power curve is well

known. This technique has been attempted extensively in previous studies, but suffers from its

global nature and sensitivity to anomalies in observations. Therefore, a high degree polynomial

regression model is required to provide a good fit to the measured data points [26], but the

obtained power curve of this technique may closely track the noise of the measured power data

points. Therefore, a locally weighted polynomial regression, presented by [27], is used as a

non-parametric method to avoid such problems. Other research have studied wind power

curve fitting [28, 29] and considered the Cubic Spline Regression as another non-parametric

technique. However, issues include choosing the number and location of what is called knots

to fit the cubic spline model. Furthermore, though these models have good performance for

fitting the wind turbine power curves that are smooth, this performance could be undesirable

when the knots fall outside the boundary. In [30], the author proposed modifications to the

natural cubic spline to improve the fit of the cubic spline regression model, which has been

similarly addressed by [19,30–33].

Most of the methods mentioned above have good flexibility and are simple to implement

and less sensitive to observable anomalies, but they either are not clear about the modeling

equations, such as those of non-parametric techniques, or have insufficient modeling accuracy,

especially when the observation data have sharp fluctuations. The proposed technique provides

a robust method to extract the modeling equations and smooth data. The proposed Bode equa-

tion vector fitting (BEVF) algorithm may also be used to obtain the characteristic power curve

of the wind turbine generator for power forecasting and real-time monitoring comparison.

In this research, the main objective is to model the wind turbine power curve with the dif-

ferent modeling equations listed in Table 1 and then extract the proposed modeling equations

of BEVF as a new alternative modeling method to validate the obtained results and compare

the RMS error values.

Wind power modeling. This section discusses, analyzes and evaluates the most current

fitting and modeling methods available and compares them with the proposed modeling tech-

nique, which is implemented on two sub-case studies: the first one is the wind turbine FL-255

power curve, and the other is the wind speed pattern.

Case one: Wind turbine FL-255 power curve. The wind speed versus the output power

data set (v_k,p_k) is plotted from the manufacturer’s power curve. The wind turbine model

FL-255, manufactured by Vestas Wind System A/S with a power of 250 kW, is considered to

present the power curve. Fig 4(A) represents the theoretical power curves for the turbine (see

S1 File).
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Fig 4 shows the modeling of the turbine FL-255 power data with the different parametric

modeling equations. The detailed results of the fitting process in this case study, which include

the model equations, associated parameter values, and the RMS error, are listed in S1 Table.

Case two: Wind speed pattern. The wind speed pattern may be represented as a spectrum

of wind speeds. Higher values of this pattern indicate a considerable variation in wind speed

over the equivalent time interval [34]. Such patterns are important for wind power aggregation

estimations and forecasting. Fig 5 shows the application of various parametric modeling equa-

tions for this case study as well as for the implementation of the proposed BEVF modeling (see

S2 File).

Load power curve estimation

Overview. From previous studies, several accurate models describing the time-varying

behavior was investigated in both physical and empirical systems. However, a more general

mathematical modeling algorithm to interpret most physical measurements of power systems

is still required. There is also a need to accurately model the collective load at different power

collection points in the generation and consumption network [35]. It is possible to determine

the model of a particular load and bring it to higher levels, but as the number of appliances

increases or perhaps only the variety of individual consumption increases, the complexity of

the model also increases [36]. Therefore, the proposed method is considered an efficient alter-

native modeling method for this application.

The data of a load power are crucial for managing electricity generation and consumption

within the network to predict the optimal production capacity. Therefore, an accurate under-

standing of the appliance power is important, especially when small scale energy is optimally

sized in terms of the network or demand. This understanding is also useful for managing

medium scale networks for residential applications. The measured data from the electrical net-

work of the utility for the domestic electricity consumption do not include sufficient informa-

tion about its characteristics. The power curve data are usually aggregated appliance

consumptions without information about the occurrences in the individual appliances. There-

fore, the fluctuation in electricity consumption remains hidden, as does the distinction of con-

sumption among different types of appliances [37–39].

P. Price [40] offered a few suggestions about the graphical display of the power data to

describe the load power shape and introduced some techniques to describe the shape of the

power load statistically based on linear regression modeling of real data to adjust for the

weather effects. The load data profiles that contain details regarding the consumption can be

created with bottom-up load models [41]; here, the load is constructed from elementary power

components that could be a load system or individual appliances. In [41], a few to up to a few

thousands of appliances were examined on an hourly basis. Finally, actual wind and load

power estimated data over a period of 24 hours were studied in [42].

Electric load shape and its variability. In this case study, we apply the proposed model-

ing method to electric load curve data and the variation of power consumption over a daily

time period with a sampling rate of 15 min/sample to improve our understanding of power

load variable characterization and the correlations between the source power and load.

Fig 4. The modeling of FL-255. (a) Manufacturer’s power curve. (b) Polynomial of degree 2–8 models with RMS error = 2.8463. (c)

Exponential of degrees 1 and 2 and RMS error = 26.1715. (d) Fourier series of degrees 2–8 and RMS error = 0.85997. (e) Gaussian of degrees 1–3

and RMS error = 3.1356. (f) Rational with degrees 02, 12 and 55 and best RMS error = 1.6787. (g) Sum of sine of degrees 2–8 and best RMS

error = 1.6654. (h) Proposed (BEVF) modeling of 8 degrees and RMS error = 0.66706. The red circle curves represent the theoretical power

curves from the manufacturer.

https://doi.org/10.1371/journal.pone.0191478.g004
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Fig 5. The modeling of the wind speed pattern. (a) Polynomial of degree 2–8 regression models and best RMS error = 0.1468. (b)

Exponential with degrees 1 and 2 and best RMS error = 0.2162. (c) Fourier series from degrees 2, 5 and 8 and best RMS error = 0.0709. (.)

Gaussian not applicable. (d) Rational with degrees 02, 12 and 55 and best RMS error = 0.11947. (e) Sum of sine with degrees 1–3 and best

RMS error = 0.0889. (f) Proposed (BEVF) modeling with 16 degrees and RMS error = 0.0204. The red circle curves represent the theoretical

wind speed pattern.

https://doi.org/10.1371/journal.pone.0191478.g005
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The objective of this research is to expand on an alternative-based modeling approach that

has the ability to predict the power consumption of aggregated appliances and solve the com-

plexity problem of sharp variations in load power curves. As a case study in this branch of

applications, we used the online power data of real-time measurements of production from

France’s National Control Center (CNES); the information provides load curve data points

and the forecast generated every day [43], (see S3 File), as shown in Fig 6.

PV power forecasting

Overview. PV systems are highly influenced by the two main challenges of their penetra-

tion rates: uncertainty and variability. Therefore, a PV output reveals the variability over the

year, which is difficult to estimate, similarly for the uncertainty. The method used to address

these challenges is PV forecasting. The fundamental concept of this typical approach is shown

in Fig 7.

The major variables controlling the output PV power are the irradiance and the ambient

temperature of PV modules. Other variables, such as the incidence angle and the spectral dis-

tribution of radiance, are integrated for some PV modules. Based on data availability, the PV

modules may either be fitted via historical data, as described in [44], or may be based on the

manufacturer’s specifications, as in [45, 46].

Referring to Fig 1, the two major types of modeling that can be utilized to estimate the out-

put power from given inputs are as follows:

1. Parametric modeling, which considers the PV as a known box and uses several parameters

to construct the model.

2. Non-parametric modeling, which considers the PV as a black box and does not include any

information about the properties of the system. However, this type of modeling is based

mainly on the data to estimate the performance of the system from historical statistical data

over time for a series of inputs/outputs. Examples of this type of modeling include artificial

neural networks (ANN), data mining, the adaptive network-based fuzzy inference system

(ANFIS) mode, clustering methods, wavelet support vector machines, and the joint proba-

bility of wind speed and power.

The two approaches could use the same effective inputs, such as irradiation and tempera-

ture, based on the same output.

Several studies addressed the forecasting of the PV power. The mismatch power losses in PV

systems are mainly caused by the partial shading of solar arrays but can be reduced by replacing

the module connections of a PV array [47]. The field data measurements are utilized to identify

module parameters individually and for all system elements [48]. Short term hourly solar PV

forecasts for horizons between 0 and 48 h ahead based on the Global Environmental Multiscale

model are studied over a one-year period to train the forecast of the PV solar array as in [48,49].

Since the PV array output power depends on solar irradiation and ambient temperature,

the full use of this power is achieved when the Maximum Power Point Tracking (MPPT) is

adopted. One of the techniques employed to use this process is the Perturb and Observe

method, which is simple in its control structure but suffers from the steady-state oscillations

that appear from the perturbation. Thus, one of the solutions is to build a forecasting model of

MPPT supported by the Perturb and Observe method [50].

Regression modeling is used in a PV array condition monitoring system in an on-line

parameterization process that is based on the PV array irradiance and module temperature. By

using the predicted and measured PV array output power values, this monitoring system is

able to detect power losses of 5% in the PV array [51].
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Fig 6. The modeling of the power observation data from the RTE information system that shows the variations in quarter hourly

points of French power consumption during the day of 20/8/2016. (a) Polynomial of degree 2–8 regression models and best RMS

error = 627.9829. (b) Exponential with degrees 1 and 2 and best RMS error = 2.9238e+03. (c) Fourier series of degrees 2–8 and best RMS

error = 434.4140. (d) Gaussian and best RMS error = 598.6974. (.) Rational with degrees 02 and 12 not applicable. (e) Sum of sine with
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One of the motivations for this research originated when our previous study exposed diffi-

culties with the solar power profile in PV-powered home systems through the design of a new

charge controller, as mentioned in [52], and with household power consumption curves when

a DC voltage matching concept was used, highlighting a need for modeling the power system

curves [53].

Thus, to address the cyclic and unpredictable variations of PV array output power, the

BEVF algorithm is used in this paper as a solution to extract the modeling equations that gov-

ern these variations to achieve good fitting convergence and forecasting results.

Forecasting photovoltaic array power and modeling. For solar cells, a single-diode

model is commonly used to model the crystalline silicon solar module. Many studies have

described the modeling of the solar cell, as mentioned in the literature above, and the single-

diode equivalent circuit is shown in Fig 8.

In this paper, we discuss the generation power curve modeling for monitoring and forecast-

ing purposes. Many factors significantly affect the power curve shape in solar power genera-

tion systems such as the fluctuation of light shading and the ambient temperature changes.

This research evaluates the modeling of aggregate forecasts of PV solar power generation

over several days. The data of the solar observations have been collected from an official on-

line website belonging to the Elia Group, which is Belgium’s high-voltage transmission system

operator (30 kV to 380 kV) [54]. This website offers published forecasts that are day-ahead

forecasts up until three days into the future and one intraday forecast, updated once a day at

11 am. The latest information for both types of forecasts are obtainable through the website’s

data-export functionality.

degrees 2–8 and best RMS error = 462.3307. (f) Proposed (BEVF) modeling with 30 degrees and RMS error = 191.4442. The red circle

curves represent power observation data.

https://doi.org/10.1371/journal.pone.0191478.g006

Fig 7. The typical approach for generating a PV power forecast.

https://doi.org/10.1371/journal.pone.0191478.g007
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The solar observations versus the power output data set are plotted from the on-line Elia

website and represent the long term solar power curve. Fig 9 shows the application of the dif-

ferent parametric modeling equations in the case of one week and 15 minutes per sample [54],

(see S4 File).

Fitting results evaluation

Several metrics for statistical data can be considered to appropriately measure the model per-

formance in the fitting of power observations such as the Root Mean Squared Error (RMS

error). In this research, we use the RMSE formula as in (21):

RMS error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
Pn

i¼1
ðpi � peiÞ

2

r

ð21Þ

where pi is the observed power data and pei is the estimated value of this power.

Regarding the performance of the error analysis, the values of the RMS error of the polyno-

mial regression (Poly), exponential regression (exp), Fourier series (Fourier), Gaussian

(gauss), rational (rate), sum of sine (sin), and proposed (BEVF) methods are analyzed here, as

shown in Fig 10.

In this paper, we present a mathematical modeling approach to enhance the understanding

of mathematical modeling of measured or calculated data and to model future energy sources

and load consumption profiles.

For the proposed BEVF algorithm, the order effect on the results accuracy of the modeling

equations has been investigated and presented, as shown in the left of Fig 11, while the effect of

the iteration number on the results is presented in the right of Fig 11. It is evident that the ade-

quacy and accuracy of the modeling improve with the rise in the resultant order and iteration,

but consequently, higher order implies higher complexity of the mathematical equation.

To clarify the effect of the number of sampling data on the modeling, we considered the

data of Case Two (Wind Speed Pattern), the comparison performed under two sets of data,

Fig 8. Equivalent circuit of photovoltaic module.

https://doi.org/10.1371/journal.pone.0191478.g008
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Fig 9. The modeling of seven-day solar output power. (a) Polynomial of degree 2–8 models and best RMS error = 458.2729. (b)

Exponential of degrees 1 and 2 and best RMS error = 493.3065. (c) Fourier series of degrees 2, 5 and 8 and best RMS error = 174.5701.

(d) Gaussian and best RMS error = 402.4050. (e) Rational of degrees 02 and 12 and best RMS error = 495.0226. (f) Sum of sine of

degrees 2–8 and best RMS error = 123.2312. (g) Proposed (BEVF) modeling with 40 degrees and RMS error = 88.5866. The red circle

curves represent the theoretical seven-day solar output power.

https://doi.org/10.1371/journal.pone.0191478.g009
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152 and 152/2 samples. A relation between the RMS error and the modeling equation order,

for the two data sets, is clearly shown in Fig 12.

Conclusions

The complexity of a particular model involves a trade-off between simplicity and accuracy.

This paper proposes a new method with a significant modification to the vector fitting method.

The modification generalizes the application of the VF method to the modeling of any mea-

sured data or field observations, as discussed in the four case studies. Furthermore, this

method can model a wide range of field data in the form of a dependent function f(x), whether

x represents time or another independent variable.

Modeling complexity arises when the measured data are represented by sharp changes

or rapid fluctuations. The method of setting the initial poles and distribution over the

x-axis directly affects the results. The final mathematical equation for the power generation

Fig 10. RMS error bar chart for the four case studies: Wind turbine FL-255 power curve, wind speed pattern, forecasting

photovoltaic array power, and electric load demand.

https://doi.org/10.1371/journal.pone.0191478.g010
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Fig 11. RMS error versus order (left), and versus iteration (right).

https://doi.org/10.1371/journal.pone.0191478.g011
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data is strongly affected by the power profile shape, which provides an indication for parame-

ter settings for the algorithm and, hence, the complexity or the order of the modeling

equation.

In the wind energy field, the performance of the proposed method is evaluated based on

two common wind power analyses using data modeling: wind turbine generator modeling and

wind speed pattern data sets. A wind turbine (FL-255) power curve is selected for the analysis

of the performance of the presented methods to be compared with our proposed BEVF

method. The fit accuracy of each modeling method is evaluated using the RMSE metric. The

result of this analysis can be used in different applications such as wind turbine performance

monitoring, real-time power forecasting, and size estimation for the energy storage capacity of

wind power system integration.

In forecasting photovoltaic array power, the performance of the PV power system is mainly

influenced by the site’s weather, irradiance and temperature. This study also presents the

modeling of a photovoltaic power system based on the (BEVF) algorithm method and com-

pares this modeling with the current modeling equations. More accurate results of the output

power can be obtained by implementing higher orders for the modeling equations. The fitting

evaluation results show that our proposed (BEVF) method is effective and feasible with regard

to time compared with the best fitting results of the common modeling equations.

For the electric load demand, this method has the potential to be further adapted to a vary-

ing electricity consumption background in addition to being applicable to a wider application

range without much intervention. For example, on a daily basis, the sequential dependence

between the daily load power curves is modeled through the assumption that the power curves

from two successive days have a linear association; therefore, the modeling of one day can esti-

mate the next day’s power demand.

Fig 12. The effect of the number of sampling data set on the modeling performance.

https://doi.org/10.1371/journal.pone.0191478.g012
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The validation process has analyzed the performance of the proposed methodology accord-

ing to the accuracy of the fit and the environmental parameters of the system. The main con-

clusions of this analysis are as follows:

• Increasing the number of power system variables may not necessarily lead to an increase in

the accuracy of the modeling or forecast.

• Less complexity implies lower order for the equations of the system model when greater sim-

ilarity of measurements is available for periodic data.

• The number of the sampling data set has no significant impact on the modeling performance

and order.

• The confidence period ability to include all observations is important to achieve higher

modeling performance.

• The proposed algorithm ensures the provision of two mathematical equations in terms of

the logarithm and inverse tangent forms.

• Although, the motivation of considering the vector fitting (VF) algorithm is due to its robust

numerical fitting property as a mathematical method for sampled response-matching system

identification, but, as per the reviewer mentioned, the proposed modification which repre-

sented by the two input and output adaptors can be applied to any algorithms that estimating

models using frequency-domain data to provide state-space or transfer function for the

model.

• This method opens the horizon to implement another mode of system modeling such as pas-

sive component’s representation for some types of load consumption profiles such as those

for motor-based appliances, e.g., pumps, air conditioners, refrigerators, and freezers.

In future studies, it is intended to implement this method into two aspects; analytically,

where the proposed modification which represented by the two input and output adaptors can

be applied to any algorithms that estimating models using frequency-domain data to provide

state-space or transfer function for the model, and experimentally, to investigate and model

household appliances and other various systems in a more detailed manner as well as to utilize

the same modeling results to physically simulate the system with its equivalent RLC modeling.

Appendix A

We Consider here an example to demonstrate the algorithm steps in some details as well as to

provide a proof of concept for the proposed method.

Let us take the Normal Distribution or Bell Curve, which is given by Equation (B.1)

y ¼
1

s
ffiffiffiffiffiffi
2p
p e

� ðx� mÞ2

2s2 ðB:1Þ

Where μ and σ represent the mean and standard deviation respectively. The problem here

is to find the alternative fitting equation that may equivalent to (B.1) by using the proposed

method.

1. Plotting (B.1) in the following commands:

mu = 2; % mean
segma = 0.5; % standard Deviation
x = 1:0.1:5; % range of data
y = (1/(segma�sqrt(2�pi)))�exp(-(x-mu).^2/(2�segma^2));
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figure, plot(x,y)

2. Input adaptor (Assumptions for VF function initialization)

w = x; % let the independent variable x is w
r = y; % let r (magnitude of FR)represents the dependent variable y
th = y; % either to let the phase (th) = y = r or th = 0
[re,m] = pol2cart(th,r); %Transform polar to Cartesian coordinates
f = (re+m�1i); % the VF complex function of the input data.
s = 2�pi�1i.�w; %
Ns = length(s); % Number of data poits
N = 6; % order of approximation
poles = -linspace(1,3,N); % Initial poles
weight = ones(1,Ns); %All frequency points are given equal weight

3. VF method: % provides State Space matrices

A, B, C, D, and E.
Rmserr % root mean square error

4. Output adaptor (Transformation)

[num,den] = ss2tf(A,B,C,D,1);
[r,p,k] = residue(num,den); % Rational Approximation function
parameters
syms t rmag
rmag = 0;
for kk = 1:length(r);

if abs(real(r(kk))/imag(r(kk))) > 1e+5
r(kk) = real(r(kk));

end
if abs(real(p(kk))/imag(p(kk))) > 1e+5

p(kk) = real(p(kk));
end
rmag = rmag + (sqrt((real(r(kk)))^2+(imag(r(kk)))^2)/sqrt((real(p

(kk)))^2+(imag(p(kk))+t)̂ 2));
end
rmag = vpa(rmag)+k;
Mag = simplify(rmag);

Where the Mag is the function that equivalent to y in (B.1), and given as a result of this algo-

rithm as follows:

Mag ¼
2:1156

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððt � 10:441Þ
2
þ 14:233Þ

q þ
2:1156

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððtþ 10:441Þ
2
þ 14:233Þ

q

þ
1:834

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððtþ 14:21Þ
2
þ 13:132Þ

q þ
1:834

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððt � 14:21Þ
2
þ 13:132Þ

q

þ
3:1334

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2 þ 140:43Þ

p þ
79:924

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2 þ 2907:32Þ

p þ 1:0372

The graphical results can be seen in (Fig 13).

To evaluate and show the possibilities to model or simulate a data by the proposed method,

we compared BEVF by the Autoregressive with external input (ARX) model [55][56], which

also reveals a wide range of applicability for identifying the model parameters.

Fig 14, displays the differences among the empirical data of (B.1), from one side, and the

ARX and BEVF from the other side.
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By using system identification functions in MATLAB, the resultant discrete-time ARX

model can be described by the equation:

ARXmod ¼ AðzÞyðtÞ ¼ BðzÞuðtÞ þ eðtÞ where

AðzÞ ¼ 1 � 3:632z� 1 þ 5:136z� 2 � 3:346z� 3 þ 0:8482z� 4

Fig 13. Comparative curves between the data of Normal Distribution curve and the proposed model output.

https://doi.org/10.1371/journal.pone.0191478.g013

Fig 14. Comparison between data of (B.1), ARX and BEVF models.

https://doi.org/10.1371/journal.pone.0191478.g014

Mathematical modeling by Bode equations and vector fitting

PLOS ONE | https://doi.org/10.1371/journal.pone.0191478 January 19, 2018 25 / 29

https://doi.org/10.1371/journal.pone.0191478.g013
https://doi.org/10.1371/journal.pone.0191478.g014
https://doi.org/10.1371/journal.pone.0191478


BðzÞ ¼ 0:01435 � 0:01536z� 3

At a sample time = 0.1 seconds.

Where the RMS error = 0.0126 for the modeling by the proposed 6th order BEVF, while it

is = 0.721 when ARX model is used.
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