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Abstract: In this study, a zearalenone (ZEN) hapten was designed and prepared against the mycotoxin
ZEN, and the original coating ZEN-ovalbumin (ZEN-OVA) was prepared by conjugation with OVA.
Based on the gold nanorods (AuNRs) of uniform size and stable properties synthesized by the seed-
mediated method, the indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and the
AuNRs growth-based multicolor ELISA for detecting ZEN toxin were further established. Under
the optimal experimental conditions, the coating amount of ZEN-OVA: 0.025 µg/well, antibody
(Ab) dilution factor: 32,000 times, blocking solution: 0.5% skimmed milk powder, enzyme-labeled
secondary Ab diluted 10,000 times, and a pH of the PBS buffer at 7.4, the sensitivity (IC50) of the
established ic-ELISA for ZEN detection reached 0.85 ± 0.04 µg/L, and the limit of detection (IC15)
reached 0.22 ± 0.08 µg/L. In the multicolor ELISA based on the growth of AuNRs, as the content
of ZEN increased, the mixed solution exhibited a significant color change from brownish red to
colorless. ZEN concentration as low as 0.1 µg/L can be detected by the naked eye (brown red to
dark gray). This study provided an effective analysis strategy for the rapid screening and accurate
monitoring of the ZEN contaminant in foods.

Keywords: zearalenone; gold nanorods; indirect competitive ELISA; visualized multicolor ELISA

1. Introduction

Zearalenone (ZEN) is a nonsterol estrogen mycotoxin mainly produced by Fusarium
genera, which is widely found in grain crops, such as corn, wheat, and barley [1,2]. The
degree of contamination of food crops by Fusarium mainly depends on the moisture and
temperature conditions; the optimal growth temperature for Fusarium is between 24 and
32 ◦C and the optimal humidity is 40% [3]. Therefore, in areas with sufficient rainfall and
high relative humidity, cereals are likely to be contaminated with Fusarium in all steps of
production, storage, and processing [4]. ZEN can cause excessive estrogen syndrome in
animals such as pig, poultry, and humans, as well as immunotoxicity, genotoxicity, and
suspected carcinogenicity [5,6]. It has been reported that the potential etiological mecha-
nism of breast cancer involves changes in the cytochrome P450 (CYP) enzyme, which is
related to ZEN [7]. Yu et al. have demonstrated that the ZEN on 2,3,7,8-Tetrachlorodibenzo-
p-dioxin (TCDD)-induced CYP1A1 activity and gene expression involved the estrogen
receptor pathway [8]. In addition, due to its similar structure to endogenous estrogen,
ZEN can show estrogen activity in vivo and competitively bind with estrogen receptors,
thus affecting estrogen secretion in humans or animals, resulting in reproductive organ
abnormalities, infertility, abortion, and other diseases [9–11]. At present, many countries
and organizations have regulated the maximum residue levels (MRLs) of ZEN in foods,
although a consistent standard has not yet been obtained (European Union: 20–400 µg/kg

Foods 2021, 10, 2654. https://doi.org/10.3390/foods10112654 https://www.mdpi.com/journal/foods

https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://doi.org/10.3390/foods10112654
https://doi.org/10.3390/foods10112654
https://doi.org/10.3390/foods10112654
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/foods10112654
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods10112654?type=check_update&version=1


Foods 2021, 10, 2654 2 of 12

in different types of foods, Russia: 1000 µg/kg in hard wheat, flour and wheat germ; China:
60 µg/kg in cereals and its products) [12–14]. Therefore, the development of effective
strategies for ZEN detection in foods is of great significance for protecting the health of
humans and animals.

Currently, traditional instrumental methods based on liquid chromatography (LC),
gas chromatography (GC), and mass spectrometry (MS) have been widely applied in the
detection of ZEN contaminant in foods and animal feed samples [15–20]. However, these
techniques require sophisticated instruments, professional and experienced operators, and
long test time, which limits the practical application to a certain extent. Engvall and Perl-
mann achieved the quantitative detection of a solid phase enzyme immunoassay for the
first time, marking the successful construction of an enzyme linked immunosorbent assay
(ELISA) [21,22]. The ELISA has the characteristics of simple operation, high specificity,
and low cost, and has gradually become the mainstream technology in the field of rapid
detection [23,24]. Improving the sensitivity and lowering the detection limit of ELISA can
promote the further application of this effective technology [25,26]. Signal amplification has
been demonstrated by many researchers to improve the sensitivity of ELISA. In particular,
the introduction of various nanomaterials has further improved the performance of tradi-
tional ELISA. For example, Zhang et al. synthesized CdTe/CdS/ZnS quantum dots (QDs)
in the aqueous phase and developed a fluorescent immunoassay (FLISA) for detecting ZEN
in corn [27]. Xiong et al. reported an advanced enzyme-assisted etching method in which
gold nanorods (AuNRs) were applied as the signal carrier for aflatoxin B1 (AFB1) in corn
samples to amplify the ELISA signal [28]. Liu et al. constructed a horseradish peroxidase
(HRP)-mediated ratio fluorescence ELISA based on gold and silver bimetallic nanoclusters
(Au-AgNCs) to detect zearalenone, which significantly improved the detection limit [29].

In this study, we successfully prepared the ZEN hapten and ZEN coating antigen
(ZEN-ovalbumin (ZEN-OVA)) and developed an indirect competitive-ELISA (ic-ELISA)
strategy using monoclonal antibodies (anti-ZEN-Abs) with high sensitivity and specificity.
On this basis, a visual multicolor ELISA was developed based on alkaline phosphatase
(AP) converting ascorbic acid–phosphate (VcP) to ascorbic acid (Vc) to control the growth
of AuNRs. Compared with traditional ic-ELISA for ZEN, the visualized multicolor ELISA
based on AuNRs growth offered a more convenient and intuitive strategy for the detection
of ZEN contaminant (Scheme 1).
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2. Materials and Methods
2.1. Material and Apparatus

Hexadecyl trimethyl ammonium bromide (CTAB, 99%) was purchased from Solarbio
(Beijing, China). Chloroauric acid (HAuCl4) for the synthesis of AuNRs was obtained
from Sigma-Aldrich (St. Louis, MO, USA). Silver nitrate (AgNO3), Vc, VcP, and sodium
borohydride (NaBH4) for the synthesis of AuNRs, 1-ethyl-3-[3-(dimethylamino) propyl]
carbodimide (EDC) and OVA for the synthesis of the conjugate of ZEN-OVA were obtained
from the Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Pyridine and car-
boxymethoxylamine (CMO) were purchased from TCI Development Co. Ltd. (Shanghai,
China). The anti-ZEN monoclonal antibody (anti-ZEN-Ab, 1.0 mg/mL) was purchased
from Shandong Lvdu Biotechnology Co. Ltd. (Shandong, China). 3,3,5,5-tetramethylbenzi-
dine (TMB), HRP goat anti-mouse IgG conjugated (1.0 mg/mL), AP goat anti-mouse
IgG conjugated (3.5 mg/mL), AFB1, ZEN and the structural analogues (α-zearalenol, α-
zearalanol, β-zearalenol, zearalanone, β-zearalanol) (1.0 mg/L) were also purchased from
Sigma-Aldrich (St. Louis, MO, USA). T-2 toxin, ochratoxin A (OTA), and fumonisin B2
(FB2) were purchased from Toronto Research Chemicals (Toronto, ON, Canada).

The microplate reader for reading the absorbance values was purchased from Thermo
Fisher Scientific (Waltham, MA, USA). The UV-visible spectrophotometer (Cary 50 Bio)
was obtained from Varian (Salt Lake, CA, USA). The 96-well polystyrene microplates, mul-
tichannel pipettes (100–300 µL), and single-channel pipettes (2.5–1000 µL) were obtained
from Thermo Fisher Scientific (Waltham, MA, USA). The transmission electron microscopy
(TEM) images were obtained from Talos G2 200X electronic microscope (Thermo Fisher
Scientific (Waltham, MA, USA). A vortex machine (HQ-60) was purchased from North
Tongzheng Biotechnology Development Company (Beijing, China). Milli-Q Ultrapure
Water System was purchased from Milli-Q Millipore, (Bedford, MA, USA).

2.2. Preparation of the Coating Antigen—The Conjugate of ZEN-OVA

The preparation method of ZEN-CMO was modified according to the previous liter-
ature [30]. Briefly, 10.0 mg of ZEN was dissolved in 200 µL of methanol and mixed well.
Then, 20.0 mg of CMO and 1.0 mL of anhydrous pyridine were sequentially added into
the above mixed solution. The mixture was stirred and reacted under nitrogen protection
for 24 h. After the reaction was completed, the mixture was placed in a vacuum oven at
80 ◦C to remove pyridine and store at 4 ◦C for later use. We mixed 9.78 mg of the above
conjugate ZEN-CMO and 14.0 mg of EDC, successively dissolved it in 1.0 mL of DMF, and
stirred and activated it overnight at 4 ◦C. In total, 10.0 mg of OVA was dissolved in 2.0 mL
of NaHCO3 (130 mmol/L) and precooled. The activated product was added dropwise
under ice bath conditions. Two hours later, the product was placed under 4 ◦C overnight
and dialyzed against PBS buffer solution for 72 h and stored at −20 ◦C.

2.3. Test Procedure of ic-ELISA

The antigen ZEN-OVA was dissolved in the coating solution and mixed evenly. The
mixture was added to a microplate (0.025, 0.05, 0.1 µg/well, 100 µL/well), and incubated
overnight at 4 ◦C. After washing the plate with PBST (0.01 mol/L PBS and 0.1% Tween-20)
3 times, the blocking solution (PBS containing 0.5% skimmed milk powder, 200 µL/well)
was added, and we incubated the mixture at 37 ◦C for 1 h. After washing, the mixture of
ZEN standards were diluted to different concentrations (50 µL) and anti-ZEN Ab (50 µL)
was added and reacted at 37 ◦C for 1 h. Then, 100 µL of HRP goat anti-mouse IgG was
added into each well and incubated for 0.5 h. After washing the plate with PBST 5 times,
100 µL of the TMB substrate solution was added into each well. After incubation for
15–30 min, the reaction was terminated with 50 µL of H2SO4 (1.25 mol/L). Then, the
absorbance was measured at 450 nm using a microplate reader.
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2.4. Specificity of ic-ELISA

The specificity of Abs is related to the structure of the antigenic determinant and
is expressed as the cross-reactivity rate. Ten mycotoxins including ZEN, five structural
analogs of ZEN (α-zearalenol, β-zearalenol, α-zearalanol, β-zearalanol, and zearalanone),
and four common mycotoxins (AFB1, OTA, T-2 toxin, and FB2) were used as competing
standards to determine the cross-reactivity rate to anti-ZEN-Ab by ic-ELISA. The mentioned
analytes were diluted with PBS to the following concentrations (1000, 333.3, 111.11, 37.03,
12.34, 4.11, 1.37, 0.45, 0.15, 0.05, and 0.016 µg/L). The following equation was used to
calculate the cross-reaction rate.

CR (%) = IC50 (50% inhibitory concentration (ZEN))/IC50 (50% inhibitory
concentration (competitor)) × 100%

(1)

2.5. AuNR Growth-Based Multicolor ELISA for ZEN

Preparation of AuNRs seed liquid. The AuNRs were synthesized by the seed-
mediated method in this study. A total of 1.0 mL of CTAB (0.2 mol/L) and 1.0 mL of
HAuCl4 (0.5 mmol/L) were added into a round-bottom flask and mixed thoroughly. Then,
120 µL of NaBH4 (0.01 mol/L) was added and stirred gently for 2 min. The obtained
mixture was used as the seed liquid for AuNR growth.

Effect of Vc dosage on AuNR growth. The mixed solution containing 125 µL of
CTAB (0.2 mol/L), 1.5 µL of AgNO3 (0.01 mol/L), and 12.5 µL of HAuCl4 (0.01 mol/L) was
added to each well of the enzyme-labeled plate. After mixing, the Vc (0.01 mol/L) solution
of different volumes (0–20 µL) was added to control the total volume of the solution to
240 µL. Next, 10 µL of the seed solution was added to mediate the production of AuNRs.
After mixing evenly, the mixture was incubated at room temperature for 1 h, and UV
absorption spectra of the grown AuNRs were recorded.

Procedure of visualized multicolor ELISA based on AuNR growth. The encapsula-
tion process of the ZEN-OVA conjugate and its competitive binding with anti-ZEN Abs
were the same as ic-ELISA. The difference was that 100 µL of AP-goat anti-mouse IgG
diluted 10,000 times with Tris-HCl buffer (1 mmol/L pH 7.4) was added to each well. After
incubation at 37 ◦C for 30 min and full washing, 80 µL of VcP (15 mmol/L) was added
into each well. After full mixing, the mixture was incubated at 37 ◦C for 1 h. Then, 50 µL
of the above reaction solution was mixed evenly with the solution containing 125 µL of
CTAB (0.2 mol/L), 1.5 µL of AgNO3 (0.01 mol/L), and 12.5 µL of HAuCl4 (0.01 mol/L)
and controlled to 240 µL with ultrapure water. After 10 µL of seed solution was added,
the mixture was incubated at room temperature for 1 h and tested by naked eye and UV
absorption spectroscopy.

3. Results and Discussion
3.1. Preparation and Characterization of ZEN-CMO and ZEN-OVA Conjugate

In this study, the prepared ZEN-CMO (Mr: 391.28) was analyzed by mass spectrom-
etry (Figure S1). In an anionic environment, the characteristic ion peaks of ZEN-CMO
[M-1]¯ at 390.40 and [2M-1]− at 781.80 were observed, proving the successful preparation
of the hapten ZEN-CMO with acceptable purity. The ZEN-CMO product was further
conjugated with OVA to obtain ZEN-OVA conjugate, the concentration of which was deter-
mined to be 3.85 mg/mL by a commercial BCA kit. Furthermore, the prepared ZEN-OVA
conjugate was tested for its conjugate ability to anti-ZEN Abs (Table S1). When the Abs was
diluted 16,000 times, the OD450 value reached 1.253, and the inhibition rate reached 98.92%,
indicating the successful coupling of ZEN-CMO and OVA, and the obtained ZEN-OVA
conjugate could be used for subsequent immunoassay experiments.

3.2. Conditions Optimization of Traditional ELISA

Dilution times of ZEN-OVA conjugate and anti-ZEN Abs. Different amounts of
ZEN-OVA conjugate were coated on a 96-well microtiter plate to optimize the dilution
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times through ic-ELISA. According to the results shown in Table S2, when the coating
amount of the ZEN-OVA conjugate was 0.1 µg/well and the Ab dilution factor was 64,000,
the OD450 value reached 0.858, and the IC50 was 2.68 µg/L. When the coating amount was
0.05 µg/well and 0.025 µg/well, the dilution factor was 32,000, the corresponding OD450
and IC50 values were 1.078 and 0.793, 1.06 µg/L and 0.85 µg/L, respectively. It can be
clearly seen that the IC50 increased with the increase in the coating amount of ZEN-OVA,
which was because the excessive amount of ZEN-OVA bound to the Ab led to the decrease
in detection sensitivity. When the coating amount was 0.025 µg/well and the Ab dilution
factor was 32,000, the color development was relatively stable and the IC50 reached the
lowest value, which was selected as the optimal condition for subsequent experiments.

Blocking Solution. The blocking solution was applied to block the excess binding
sites in the micropores. A higher concentration of the blocking solution may affect the
subsequent binding between the antigen and Ab, thereby reducing the sensitivity of the
method. In the study, the IC50 values of the ic-ELISA method using different concentrations
(0.5% and 1%) of skimmed milk powder as the blocking solution were compared (Table S3).
The 0.5% skimmed milk powder had an IC50 of 0.85 µg/L, less than using 1% skimmed
milk powder (2.41 µg/L), which was selected as the blocking solution.

pH value of PBS diluent. PBS buffers with different pH values (5.7, 7.4, and 8.5) were
used for Ab dilution and ic-ELISA tests were performed (Table S4). When PBS was used at
pH 7.4, the IC50 value was only 0.85 µg/L, which was significantly lower than that obtained
at pH 5.7 and 8.5 (2.95 µg/L and 1.86 µg/L). At this time, the corresponding absorbance
value (λ = 450 nm) was also significantly higher than the other two pH values, because
the acidic or alkaline environment affected the binding reaction between the antigen and
Ab as well as enzyme-labeled antibody, resulting in the reduction in detection sensitivity.
Therefore, a PBS buffer of pH 7.4 was chosen as a diluent for Ab and ZEN standards.

3.3. ic-ELISA Standard Curve

Under the optimal conditions: coating amount of ZEN-OVA 0.025 µg/well, Ab dilu-
tion 32,000 times, blocking solution 0.5% skim milk powder in PBS, PBS buffer (pH 7.4) as
diluent, the standard curve of ic-ELISA for ZEN is shown in Figure 1. The sensitivity (IC50)
and limit of detection (IC15) reached 0.85 ± 0.04 µg/L and 0.22 ± 0.08 µg/L, indicating
that this method can provide accurate and sensitive analysis for the ZEN toxin.
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3.4. Specificity of Traditional ELISA

In order to evaluate the specificity of the established ic-ELISA method to ZEN, five
ZEN structural analogs (α-zearalanol, β-zearalanol, α-zearalenol, β-zearalenol, and zear-
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alenone) and four common mycotoxins (AFB1, OTA, FB2, and T-2 toxin) were selected
and analyzed (Table 1). The cross-reaction rate of four structural analogs α-zearalanol,
β-zearalanol, α-zearalenol, and β-zearalenol were 35.27%, 45.70%, 29.72% and 17.93%,
respectively; the cross-reaction rate of zearalenone was only 1.58%; and there was no
obvious cross-reaction with other mycotoxins. These results proved that the established
ic-ELISA method had high specificity.

Table 1. Cross-reacting of ZEN with other mycotoxins.

Determinand Structure IC50 (µg/L) Cross-Reaction Rate

Zearalenone
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3.5. Multicolor ELISA Based on AuNRs Growth

The AuNRs used in the study were prepared by a traditional seed-mediated method.
The amount of Vc had a very important effect on the morphology and properties of the
prepared AuNPs. Figure 2a shows the results of AuNRs obtained under different Vc
solution additions. When a small amount of Vc solution was added (No. 1–6), the mixed
solution appeared yellow, and the corresponding UV-visible absorption spectrum had a
significant absorption peak at 400 nm, which was the characteristic absorption of HAuCl4.
With the increase in Vc solution volume, the color of the solution gradually lightened.
When the added amount was 12.0 µL, the solution was colorless by naked eye observation.
Meanwhile, no significant absorption was observed in the wavelength range greater than
500 nm. This was because when the amount of Vc was low, only Au(III) was reduced to
colorless Au(I) (No. 7). When the amount of Vc further increased, a new and gradually
enhanced UV absorption peak was formed at 500–800 nm, indicating that AuNRs gradually
grew (No. 8–11), which also proved that the Vc supplemental level played a very important
role in regulating AuNRs growth.
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Figure 2. (a) UV-visible absorption spectra of AuNRs grown with different volumes of Vc; (b) UV-vis spectra and visual
results of the AuNRs growth solution before and after adding excessive VcP (a: before; b: after).

AP can induce the conversion of VcP to Vc and then promote the growth of AuNRs.
Figure 2b shows the UV absorption spectra and visual results of the AuNR growth solution
before and after the addition of excessive VcP. It was clearly observed that the addition of
VcP changed the growth solution from yellow (curve a) to colorless (curve b). In addition,
when excessive VcP was added, there was no absorption peak in the wavelength range of
500–800 nm, indicating that VcP could also reduce Au (III) to Au (I) but could not promote
the growth of AuNRs. It was confirmed that the conversion of VcP to Vc by AP was
a necessary prerequisite for promoting AuNR growth. Furthermore, different amounts
of AP-labeled secondary Abs were mixed with a fixed amount of Vc sodium phosphate
and incubated at a certain temperature to generate different amounts of Vc, which then
produced AuNRs with different aspect ratios, colors, and UV absorption spectrum, which
can be used as the basis for visual detection. Figure 3 shows the effect of adding different
volumes of AP-goat anti-mouse IgG enzyme-labeled secondary Ab on the growth of
AuNRs. With the increase in the amount of enzyme-labeled secondary Ab, the color of
the mixed solution gradually became darker, from colorless to reddish brown. The UV
absorption spectra showed that the longitudinal absorption peak of the prepared AuNRs
had a significant red shift. There was a good linear relationship between the amount of AP
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goat anti-mouse IgG conjugated secondary Ab (40–80 µL) and the longitudinal absorption
peak of the AuNRs produced (R2 = 0.995) (Figure 3b).
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Transmission electron micrographs (TEM) of AuNRs prepared with the addition of 120
and 280 µL of enzyme-labeled secondary Abs are shown in Figure 4. The size of the AuNRs
prepared with 120 µL of enzyme-labeled secondary Ab were uniform and moderate, with
an average aspect ratio of 3.5 (Figure 4a,b). When 280 µL of enzyme-labeled secondary
Ab was used, the aspect ratio of AuNRs increased to 4.5 (Figure 4c,d). The results showed
that the addition of AP goat anti-mouse IgG enzyme-labeled secondary Ab had a direct
effect on the increase in the AuNRs aspect ratio. The color and UV-visible absorption
spectrum of the mixed solution showed a linear relationship with the content of AP goat
anti-mouse IgG enzyme-labeled secondary Ab, indicating the feasibility of developing a
visual multicolor ELISA.

3.6. Standard Curve of AuNPs Growth-Based Multicolor ELISA for ZEN Detection

The results of multicolor ELISA based on AuNR growth for ZEN at different concen-
trations (0–200 µg/L) are illustrated in Figure 5. The mixed solution without the addition
of ZEN standard had a distinct brownish red color. As the content of ZEN increased,
the color of the mixture became lighter, from dark gray to green to colorless. When the
ZEN concentration was 0.1 µg/L, the mixed solution showed a color change that can be
recognized by the naked eye (from brownish red to dark gray), which meant the limit
of detection (LOD) of the developed AuNRs growth-based multicolor ELISA for ZEN
was lower than 0.1 µg/L. The UV absorption spectra showed that the longitudinal ab-
sorption peak of AuNRs shifted to blue gradually with the increase in ZEN concentration.
(Figure 5a). As shown in Figure 5b, ZEN concentration had a good linear correspondence
with the longitudinal absorption wavelength of the corresponding AuNRs in the range
of 0.001–100 µg/L, which strongly demonstrated the potential applicability of the devel-
oped visual multicolor ELISA based on AuNRs growth for naked identification of low
concentrations of mycotoxins.
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4. Conclusions

This study developed two detection strategies for the ZEN toxin based on the specific
reaction of antigen–antibody. The established ic-ELISA method had high accuracy, sensitiv-
ity, and specificity, and can provide an effective semiquantitative analysis strategy for ZEN
contaminants in food. The visual analysis strategy based on the growth of AuNRs was
suitable for the rapid screening of a large number of contaminated samples ZEN and can
be extended to the monitoring and control of the content of other harmful substances in
foods. In Table 2, various reported ZEN detection strategies are illustrated to demonstrate
the merits of the developed two methods in this study.

Table 2. Comparison of the published traditional instrumental and immunoassays for ZEN detection.

Method Applied Materials Limit of Detection References

GC-MS - 5 ng/g [15]

LC-MS/MS - 0.02 ng/mL [18]

Lateral flow
immunochromatographic assays

Colloidal gold, quantum dots,
polystyrene microspheres 10, 1, 1 µg/L [22]

Fluorescence-linked
immunosorbent assay CdTe/CdS/ZnS quantum dots 0.012 ng/mL [27]

Multiplexed
immunochromatographic assay

Dual CdSe/ZnS quantum dot
nanobeads 10 ng/mL [31]

ic-ELISA - 0.22 ± 0.08 µg/L (IC15) This work

Visualized multicolor ELISA AuNRs 0.1 µg/L This work

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/foods10112654/s1, Figure S1: Mass spectrum of ZEN-CMO, Table S1: Results of ZEN-OVA binding
to Abs, Table S2: Optimization results of the coating-antigen and Ab, Table S3: Optimization results
of the blocking buffer, and Table S4: Optimization results of pH value of PBS buffer.
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