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Abstract
1.	 Measurement of variation in plant biomass is essential for answering many 

ecological and evolutionary questions. Quantitative estimates require plant de-
struction for laboratory analyses, while field studies use allometric approaches 
based on simple measurement of plant dimensions.

2.	 We estimated the biomass of individual shrub-sized plants, using a low-cost un-
manned aerial system (drone), enabling rapid data collection and non-destructive 
sampling. We compared volume measurement (a surrogate for biomass) and 
sampling time, from the simple dimension measurements and drone, to accu-
rate laboratory-derived biomass weights. We focused on three Australian plant 
species which are ecologically important to their terrestrial and floodplain eco-
systems: porcupine grass Triodia scariosa, Queensland bluebush Chenopodium 
auricomum, and lignum Duma florulenta.

3.	 Estimated volume from the drone was more accurate than simple dimension 
measurements for porcupine grass and Queensland bluebush, compared to es-
timates from laboratory analyses but, not for lignum. The latter had a sparse 
canopy, with thin branches, few vestigial leaves and a similar color to the ground. 
Data collection and analysis consistently required more time for the drone 
method than the simple dimension measurements, but this would improve with 
automation.

4.	 The drone method promises considerable potential for some plant species, al-
lowing data to be collected over large spatial scales and, in time series, increas-
ing opportunities to answer complex ecological and evolutionary questions and 
monitor the state of ecosystems and plant populations.
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1  |  INTRODUC TION

Biomass of plant communities reflects evolutionary (Berner et al., 
2018) and ecological drivers (Westcott et al., 2014), influenced by 
direct (Friedel et al., 2003; Yelenik & D’Antonio, 2013) or indirect 
(McIntyre et al., 2015) anthropogenic pressures. Measurement of 
biomass can help identify changes in states and processes of eco-
systems, but data collection is often intensive and time-consuming, 
limiting large spatial coverage (Ferrier, 2012; Nichols & Williams, 
2006). Ecological monitoring surveys often require biomass estima-
tion for individual plants, rather than the more common biomass per 
area estimation that is used in agricultural production (Proulx et al., 
2015). There are two main approaches to measuring vegetation 
biomass: direct measurements of plants in the field (Catchpole & 
Wheeler, 1992), supported by laboratory analyses, or remote sens-
ing using either aerial photography, satellite imagery, radar or light 
detection and ranging (LiDAR) to estimate biomass with reflectance 
indices (Peng et al., 2019), cover or structural information (Kumar & 
Mutanga, 2017).

Simple measurement of plant volume in the field is often used 
as a surrogate for biomass (Proulx et al., 2015), by estimating height 
and two perpendicular width measurements, providing a convex 
hull for individual plants (Bonham, 1989). Plant volume may also be 
estimated from photographs or quantitative relationships between 
cover and height, varying with age and species of plant (Catchpole 
& Wheeler, 1992; Westcott et al., 2014). Such indirect measures ef-
ficiently sample plant structure and volume, but are limited to mea-
suring overstorey vegetation (Suganuma et al., 2006). Laboratory 
measures of biomass are most accurate, but involve destructive re-
moval of the whole plant then oven drying and weighing to estimate 
dry weight biomass (Bonham, 1989).

Remotely sensed imagery is also increasingly used to estimate 
above-ground biomass, over long temporal periods, at continental 
and global scales (Lu, 2006), but this approach has significant limita-
tions. Estimates focus on monocultures in agricultural and forestry 
contexts (Kumar & Mutanga, 2017), incorporating phenological 
stage information of the plantation to increase accuracy (Peng et al., 
2019). Some mapping of ecosystem composition has helped to inter-
pret biomass estimates, but has not been undertaken for complex 
plant communities or individual plants (Lu et al., 2016), given that the 
best spatial resolution from satellite remote sensing is about 60 cm 
(e.g., IKONOS, Quickbird). Airborne LiDAR can measure distance of 
the sensor from both the ground and leaf canopy using lasers, pro-
ducing accurate and fine spatial scale remote sensing estimates of 
vegetation biomass (Zolkos et al., 2013), but at considerable cost (Lu, 
2006) and seldom accounting for small branches and leaf canopy 
biomass (Verschuyl et al., 2018; Zolkos et al., 2013). Terrestrial Laser 
Scanning (ground-based LiDAR) can be used to estimate biomass 
for individual trees (Kankare et al., 2013; Shendryk et al., 2016) but 
is time-consuming for stationary equipment, particularly in remote 
areas and steep terrain. Mobile equipment generates complex data, 
limiting application in temporal vegetation surveys, particularly of 
individual plants. There is a need to identify the efficacy of this 

technology for measuring individual plant biomass in ecological sur-
veys, recognizing that it will not necessarily replace field surveys 
unless it is scalable.

More recently drones are used to collect remotely sensed data 
at low cost (Anderson & Gaston, 2013). Drone-based methods utilize 
Structure from Motion (SfM) techniques to create three-dimensional 
(3D) point clouds, typically predicting the volume of a solid object 
(Dandois & Ellis, 2010). Development of SfM techniques has pre-
dominantly focused on industry such as precision agriculture (Torres-
Sánchez et al., 2015), but they are increasingly useful for mapping 
natural vegetation communities (Cruzan et al., 2016), including bio-
mass of leaf litter in Australia (Wallace et al., 2017) and shrubs in 
semi-arid United States (Cunliffe et al., 2016). Developments in au-
tomating data collection, processing, and analysis could potentially 
provide data relevant for quantifying variation in plant size among 
species.

Despite this promise, estimates are often based on fewer data 
than manual methods, using only height (Cunliffe et al., 2021). 
Often the accuracy of vegetation biomass estimates from drones is 
poorly known. We aimed to estimate dry weight biomass of three 
plant species with contrasting growth forms (porcupine grass Triodia 
scariosa, Queensland bluebush Chenopodium auricomum, and lignum 
Duma florulenta) in the mid stories of semi-arid woodlands, using 
drone-collected data. The species occupy different landscape set-
tings (floodplain, terrestrial) in semi-arid zone plant communities. 
Our objective was to compare drone-based estimates of dry weight 
biomass and their time costs for these species, with those based on 
simple dimension measurements and laboratory analyses.

2  |  MATERIAL S AND METHODS

2.1  |  Field sampling

We collected biomass data in two locations in semi-arid Australia: 
Mallee Woodlands (33° 24’ S, 141o 10’ E), sampled in Spring (October 
2017) and North-west Floodplain Woodlands (29o 15’ S, 145o E), sam-
pled in Autumn (April 2017). The former comprised low woodlands 
of mallee trees (ridge-fruited mallee Eucalyptus costata subsp. mur-
rayana, white mallee E. dumosa, and red mallee E. socialis), dispersed 
with cypress pines Callitris verrucosa, semi-sclerophyl shrubs (Acacia, 
Beyeria, Triodia and Vittadinia genera) and a discontinuous hummock 
grass layer of porcupine grass (Keith, 2004; Yates et al., 2017). The 
second plant community comprised an open canopy of floodplain 
eucalypts (yapunyah E. ochrophloia, coolabah E. coolabah, and black 
box E. largiflorens), a sparse shrub layer of lignum, Queensland blue-
bush and a continuous grassy ground cover, including rat's tail couch 
Sporobolus mitchellii, Warrego summer grass Paspalidium jubiflorum 
and purple lovegrass Eragrostis lacunaria (Catford et al., 2017; Hunter 
& Hunter, 2016; Keith, 2004). The floodplain woodland had variable 
grass height surrounding the targeted mid-story vegetation.

We defined three size classes for our three mid-story species 
(Table 1), representing typical structure in the field, to ensure that 
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the method captured the full range of plant sizes of each species. 
As well as the intrinsic value of the species in their ecosystems, 
we selected them because they are functionally important to an-
imal species. On the Dune Mallee Woodlands, we selected the 
perennial domed hummock forming porcupine grass, given its im-
portance for fire management (Bradstock & Gill, 1993; Wright & 
Clarke, 2007) and value as cover for small vertebrates (Menkhorst 
& Bennett, 1990). The North-west Floodplain Woodlands included 

Queensland bluebush and lignum. Queensland bluebush is a com-
pact to open-canopied shrub targeted by floodplain grazing (Capon, 
2003) and lignum is a wiry shrub with sparse foliage, functionally 
important as habitat for waterbird breeding colonies on wetlands 
(Brandis et al., 2011).

We estimated dry weight biomass by measuring volume with 
two field methods: a simple dimension measurement and a drone. 
Volume was not directly comparable between methods, as the drone 

TA B L E  1 Mean estimates (±SE) of volumes of plants estimated using simple dimension measurements and drone measurements and wet 
and dry weight biomass from laboratory analyses for three individuals from three different size classes of three plant species from semi-arid 
Australia

Species Size class
Simple dimension 
volume (m3) Drone volume (m3)

Laboratory analysis

Wet biomass (g)
Dry 
biomass (g)

Queensland bluebush Small (2–10 cm high) 0.0009 (0.0004) 0.0005 (0.0004) 16.6 (6.93) 8.93 (3.75)

Medium (11–23 cm high) 0.0019 (0.0005) 0.0006 (0.0004) 22.2 (5.15) 13.9 (3.34)

Large (24–73 cm high) 0.107 (0.0070) 0.217 (0.0496) 681 (88.1) 525 (71.7)

Lignum Small (5–20 cm high) 0.0008 (0.0003) 0.0001 (0.0000) 10.1 (1.22) 6.26 (0.809)

Medium (21–53 cm high) 0.0178 (0.0033) 0.0096 (0.0055) 41.0 (2.96) 21.8 (2.01)

Large (59–137 cm high) 2.10 (0.256) 3.17 (0.804) 6350 (1030) 4570 (766)

Porcupine grass Small (30–40 cm high) 0.0174 (0.0045) 0.0395 (0.0134) 503 (196) 428 (166)

Medium (40–50 cm high) 0.0303 (0.0055) 0.0763 (0.0176) 120 (211) 1060 (192)

Large (50–76 cm high) 0.123 (0.0311) 0.275 (0.0582) 376 (519) 3330 (491)

F I G U R E  1 Measurement of an 
individual from three species of semi-arid 
plants (a) porcupine grass (b) Queensland 
bluebush and (c) lignum species, showing 
for each: (i) height and (ii) two width 
measurements for simple dimension 
measurements, which were measured 
with a field with a ruler; (iii) the resulting 
point cloud from the drone image, after 
processing in Pix4D and; (iv) the point 
cloud after manual removal of nearby 
vegetation in CloudCompare. Lignum 
features scale constraint markers spaced 
2 m apart. Other species used markers 
that have been cropped out to focus on 
the smaller plant size



4 of 10  |     McCANN et al.

method detected detailed structure, not simple dimensions, and so 
we harvested samples destructively to quantify dry weight biomass. 
We randomly stratified sampling using each size class and species’ 
combination, ensuring individuals (n = 3) were under full sunlight and 
in good health, representative of most individuals in the field.

For simple dimension measurements, we measured height from 
ground level to the tallest plant part and crown circumference, using 
the longest horizontal dimension of the plant and its perpendicular 
axis to produce a 3D octahedron. This allowed estimation of volume 
(see Bonham, 1989). We then surveyed each individual plant, using 
a DJI Phantom 3 professional drone (DJI, Shenzhen, China) with its 
standard mounted camera (12 megapixel (MP) camera, fixed lens 
and focal length, mounted with a stabilizing unit). Ground control 
points of known dimensions were placed for each plant, to gener-
ate two perpendicular scale constraints, increasing the accuracy of 
the resulting point cloud (Figure 1). We flew a manually navigated 
grid pattern at 10 m above ground and within 3 h of solar midday to 
minimize shadows, using a combination of downwards (nadir) and 
angled (non-nadir) images, with at least 70% overlap of each image. 
Where plants were close together, multiple plants were surveyed in 
one flight. The elevation provided about 40 high-resolution images 
(<1  mm ground sample distance) for each plant, recorded as red, 
green and blue (RGB) jpeg files in the visible spectrum (Figure 1b). 
Our methods were similar to those used to estimate biomass with 
drone photogrammetry in a global experiment (Cunliffe & Anderson, 
2019), except we used a low-cost consumer-level drone (not survey-
grade equipment), and relative space (not precision GPS).

After collecting field measurements, we destructively sampled 
each plant for laboratory measurements of dry and wet biomass by 
harvesting all above-ground plant matter. Plants were stored in plas-
tic bags with moist paper towels for transport. Subsequently, wet 
weight biomass of each plant was measured (stems and leaves amal-
gamated) before drying it in an oven (70°C for at least 72 h), after 
which dry biomass was weighed (Pérez-Harguindeguy et al., 2013). 
There was a very strong relationship between wet (in-field) and dry 
weight measurements of biomass among any of the three species 
(log dry weight = −0.31 + 1.06  log wet weight, R2 =  .99, p  <  .01, 
Appendix Figure S1).

2.2  |  Drone image analysis

We used SfM (using Pix4Dmapper software, Pix4D SA, 2018) to 
generate a 3D model of each plant (point cloud, Gross & Heumann, 
2016), allowing estimation of volume. Each plant point cloud was set 
with scale constraints from the ground control points to improve 
measurement precision (Figure 1). Unconstrained point cloud meas-
urements had an average error of 1.90% (±0.23% SE), compared to 
point clouds constrained by ground control points and so we used 
scale constraints to generate a 3D model for each plant, exported as 
a point cloud (Figure 1). We manually selected each plant from point 
clouds using CloudCompare (V2.8.1, 2018), ensuring that nearby 
plants (e.g., grasses) were not included (Figure 1). This step can be 

omitted where canopy height models delineate individuals from sur-
rounding vegetation (see Cunliffe et al., 2016) but, on the floodplain 
environment, ephemeral plants significantly masked the ground sur-
face and overlapped with the plants of interest. We exported the 
point cloud for each plant into the R statistical software environ-
ment (R Core Team, 2018) and calculated the minimum convex hull 
of the plant using RLiDAR (Silva et al., 2017), the same measure used 
in standard in-field biomass estimation (Bonham, 1989).

2.3  |  Statistical analyses

We compared estimates of plant volume based on simple dimensions 
and drone-derived point clouds to our laboratory estimates of dry 
weight biomass. We fitted a linear model for each species, specify-
ing our estimates of laboratory dry weight biomass as the response 
variable and separately analyzing relationships with predictor vari-
ables of simple dimension and drone measures in the R software 
environment (R Core Team, 2018). Data were pooled for analyses 
with size class as a covariable within species to ensure that methods 
and models were applicable to the whole size range for each species. 
For Queensland bluebush and lignum data, we log-transformed and 
added a square term to ensure that assumptions of normality and 
variance homogeneity were met; no transformation was required 
for porcupine grass. We used k-fold cross validation of each linear 
model to compare resulting errors and slopes between the estima-
tion techniques, allowing us to identify the estimation technique 
with the lowest root mean square error (RMSE) for each species. 
We also compared the amount of time to derive dry weight biomass 
estimates from the two field methods in the North-west Floodplain 
Woodlands (lignum and Queensland bluebush), including capture 
and processing of images, plant harvesting, computation time, and 
time spent selecting individual plants from the 3D point cloud.

3  |  RESULTS

There were clear differences between simple dimension and drone 
measures in representing the complexity of plants (Figure 1). Simple 
dimension measurements only captured three measures of each 
plant (height and two width measures, Figure 1); therefore, quite dif-
ferently shaped plants could have the same volume. This contrasted 
the complex 3D structures in the form of a point cloud measured 
using drone imagery (Figure 1). Point clouds captured a truer shape 
of each plant but relied on detecting thin branches from photo-
graphs, a weakness for lignum branches.

The simple dimension measurements for porcupine grass 
showed relatively invariant estimates of height and width, given the 
similar facets of the plant. Drone measures reflected this uniformity 
in form, but the point cloud showed considerable complexity in finer 
plant detail. Individuals of porcupine grass were uniformly shaped, 
whereas Queensland bluebush were not. Typically, small plants were 
narrow and large plants had a round but irregular shape. This was not 
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captured in simple dimension measurements but was apparent in the 
two-lobed point cloud shape (Figure 1).

Lignum plants were highly variable in shape, often with thin 
branches protruding from the main plant form. This resulted in large 
volume measurements for simple dimension measurements but a 
relatively low dry weight biomass, compared to the other species. 
For lignum, the simple dimension measurement of width was longer 
in one plane than the other in Figure 1. Visual assessment showed 
that point cloud reconstructions underestimated the true size of lig-
num plants, not reliably reconstructing plant parts under one cen-
timeter in diameter and inadequately capturing the full plant width 
(Figure 1).

Simple dimension and drone measures of volume for the same 
plant varied considerably (Figure 2). For porcupine grass, relation-
ship between dry weight biomass and volume estimated from our 
two measures was considerably different (Figure 2); simple dimen-
sion measurement had a steeper and more contracted relationship 
compared to our drone measure (Figure 2). Our simple dimension 
measurement and its volumetric surrogate was a useful measure of 
dry weight biomass, with most of the variance explained (p <  .01, 
Table 2, Figure 2). Volume of porcupine grass estimated with the 
drone method was also a good predictor of dry weight biomass, 

with the same amount of variation explained by a fitted linear model 
(p <  .01, Table 2, Figure 2). The individual with the largest volume 
was an outlier, influencing both relationships. Examination of the 
residuals for these two models, across the different size classes, in-
dicated no obvious pattern related to size class of porcupine grass 
(Appendix Figure S2). Cross validation of these models for porcu-
pine grass showed that the drone method was superior, explaining a 
higher proportion of variance than simple dimension measurement 
(RMSE, Table 2).

For Queensland bluebush, there was a slight difference be-
tween the two methods relationships between volume and dry 
weight biomass, with both models having a similar shaped curve 
(Figure 2). Our simple dimension measurements explained less 
variation, with its fitted linear model (p <  .01, Table 2, Figure 2) 
than the drone method, which explained more of the variation in 
dry weight biomass (p < .01, Table 2, Figure 2). Examination of re-
sidual plots for the models in relation to size classes indicated that 
mid-size classed individuals (Table 1) tended to be underestimated 
for the simple dimension measurements method (Appendix Figure 
S2). Both methods were good predictors of dry weight biomass 
for Queensland bluebush. Model cross validation showed that the 
drone method model performed better than the simple dimension 

F I G U R E  2 Fitted linear models for 
three plant species, porcupine grass, 
Queensland bluebush and lignum and 
relationships between dry weight 
biomass, measured in the laboratory and 
measures of volume, using drone imagery 
and associated point clouds (yellow) and 
simple dimension measurements (blue), 
taken in the field for individuals. Negative 
volume values for Queensland bluebush 
and lignum plots reflect logged values
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measurement model, explaining a higher proportion of variance 
(Table 2).

For lignum, both methods explained significant variation in dry 
weight biomass estimates, with the drone method fitting a flatter 
curve (Figure 2). The fitted curve can be explained by different par-
titioning between dense stems and light branches with plant size. 
Simple dimension measurements were a more accurate predictor of 
dry weight biomass (p < .01, Table 2, Figure 2), explaining more varia-
tion than the drone method (p < .01, Table 2, Figure 2). Residuals did 
not show any clear pattern in size classes for lignum (Appendix Figure 
S2). Model cross validation showed the simple dimension measure-
ment method was a better method for lignum, with a lower RMSE, 
explaining a higher proportion of the variance of volume (Table 2).

Field data collection was the least time-consuming step for each 
of the three methods (Figure 3), whereas data processing and anal-
ysis were the most time-consuming tasks. For the drone method, 
fieldwork took only 4% of overall time, with 75% taken by computer 
processing which needed no human intervention. The smaller size 
and closer spacing of sampled Queensland bluebush allowed photo-
graphing in two flights, reducing the time taken to land and launch 
between sampling, resulting in shorter field sampling and image 
analysis time per plant. The laboratory method was least time-
efficient. Weighing each plant on laboratory scales took 91% of the 
laboratory method processing time.

For the two species analyzed for time (lignum and Queensland 
bluebush), there were significant differences between simple 

TA B L E  2 Summary of linear analyses, including cross validation analyses (root mean square error, RMSE) of separate relationships 
between our response variable, dry weight biomass (y variable), and volume estimates from the simple and drone measure (x variables), 
measured in the laboratory for individual plants of porcupine grass, Queensland bluebush and lignum

Plant species Technique Linear relationship Variance RMSE

Porcupine grass Simple dimension 
measurement

y = −218.75 + 44270.61x − 96854.22x2 0.988 1,332,406

Drone y = −100.27 + 15810.91x − 11429.54x2 0.988 31,531

Queensland bluebush Simple dimension 
measurement

log(y) = 8.72 + 1.19 log(x) + 0.03 log(x)2 0.973 0.344

Drone log(y) = 7.23 + 0.48 log(x) 0.976 0.228

Lignum Simple dimension 
measurement

log(y) = 7.31 + 1.35 log(x) + 0.08 log(x)2 0.997 0.035

Drone log(y) = 7.74 + 0.9 log(x) + 0.03 log(x)2 0.970 0.507

Note: Low values in Queensland bluebush and lignum plots are the result of log values in their models. All models were significant (p < .001).

F I G U R E  3 Average data collection and analysis (field, computer, laboratory) time (±SE) for simple dimension (green) and drone (orange) 
measures and laboratory analysis of nine Queensland bluebush and lignum individual plants in semi-arid Australia. Laboratory drying took an 
additional 72 h (4320 min) for both species
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dimension and drone measures (analysis of variance, F1,2df = 31787, 
p < .01). Simple dimension measurements were the most rapidly col-
lected data for each plant (Figure 3) followed by the drone method. 
The laboratory analysis took the longest time, with 72 additional 
hours of oven drying, omitted from this analysis. Time spent measur-
ing in the field was lower for our simple dimension measurements, 
but our drone flight covered 2500  square meters in 33  min. The 
time spent collecting data in the field would be similar between the 
simple dimension measurements and drone measurement if there 
were 110 plants in this area (density of one plant per ~22.7 square 
meters). Time spent decreased relatively with the drone method 
when plants exceeded this density. Plant species had little effect on 
data collection times for simple dimension measurement and drone 
measurement, but large lignum plants took longer to harvest and 
pack for laboratory analysis (25 min ±2.9 SE) than the smaller sized 
Queensland bluebush (large size class 4.7 min ±0.3 SE). Analysis time 
was similar for lignum and Queensland bluebush, but computer pro-
cessing analysis took longer for lignum reflecting the larger plant size 
(Figure 3).

4  |  DISCUSSION

Drones are a powerful tool for collecting environmental imagery, 
particularly for identifying landform and structure (Cruzan et al., 
2016). Drones clearly showed promise for the three species in ef-
fectively estimating dry weight biomass, using volume as a surrogate 
(Table 2, Figures 1 and 2). Such effectiveness was demonstrated for 
similar shaped plants and leaf litter in Mediterranean environments 
(Cunliffe et al., 2016; Wallace et al., 2017), and has been developed 
for easily measurable ecosystems (Karpina et al., 2016). Before our 
work, biomass estimated from drone imagery was related to accu-
rate laboratory analysis for area with crops, but not individual plants. 
Measurement of individual plants has important ecological applica-
tions and could be used in studies of plant population dynamics and 
ecological monitoring surveys, supported by field data. Our drone 
measures of biomass were not equally effective among the three 
species and, for small sample sizes, were more costly in terms of time 
than simple dimension measurements. When sample sizes exceed 
110 plants and density exceeds one plant per ~22.7 square meters, 
however, drone measures of biomass become more efficient for the 
time spent in the field. Our drone imagery also provided information 
on structure and form of vegetation that could be further analyzed.

Non-destructive measures are required in projects analyzing 
temporal patterns in states and processes of ecosystems, measuring 
ecosystem health (McIntyre et al., 2015), and identifying ecological 
processes (Moukomla et al., 2018). Nonetheless, some destructive 
sampling to quantify allometric relationships for calibration is de-
sirable if absolute values rather than comparative of biomass are 
required. Simplification of large scale biomass monitoring will help 
address the shortfall in long-term monitoring of such ecological 
characteristics (Belovsky et al., 2004). The absence of measurement 
bias across size classes (Figure 3) indicates potential value to use 

drone imagery to track individual plant changes reliably over time. 
This relative comparison could have wide application for monitoring 
outcomes of ecosystem restoration and measuring impacts of dis-
turbances. For example, estimating biomass after fire could inform 
fire management strategies (Brown et al., 2009). Further, large areas 
of the semi-arid zone are overgrazed (Eldridge & Delgado-Baquerizo, 
2017) and the drone method could track associated biomass and 
structure in response to grazing. There are also opportunities to 
track effects of climate change (Berner et al., 2018), insect damage 
(Stone & Coops, 2004), and disease (Reiter et al., 2004) on vegeta-
tion communities.

Our drone method also captured detailed plant structure, in the 
plant convex hull, compared to simple dimension measurements 
which assume an octahedron (Figure 1). The dense porcupine grass 
provided the best correspondence with biomass for both simple di-
mension and drone measurement (Figure 2). The other two species, 
Queensland bluebush and lignum, had less dense canopies (Figure 1), 
which lost leaves during dry periods (Freestone et al., 2017) further 
reducing canopy density thus measurement accuracy (Figure 2). The 
drone method was no better than the simple dimension measure for 
lignum. It is difficult to measure canopy volume for this shrub re-
gardless of the method used, including LiDAR, because it has a habit 
of fine, long stems with few, small leaves (Capon et al., 2009), making 
assumptions for biomass calculation unreliable. These traits are not 
easily resolved in image processing because the fine stems are a sim-
ilar color to the ground. The drone method shortcomings could be 
offset by flying at a lower altitude to capture adequate image detail 
to delineate branches, or using a higher camera resolution. Structure 
information collected with the drone method may be important be-
yond biomass estimation. For lignum, structural density is important 
for its value as nesting habitat for waterbirds (Brandis et al., 2011), 
which is missed in simple dimension estimates of biomass. Additional 
products of the SfM procedures used in the drone method are ort-
horectified imagery and digital terrain models, which are useful for 
landscape vegetation structure, patch analysis, vegetation mapping, 
and visualizing plant condition.

The model relating dry weight biomass to volume could also 
be calibrated to favorable or poor growth conditions, or to other 
species by resampling biomass (Bonham, 1989), making the drone 
method applicable to plants species discernible as an individual 
from above. Published allometry values could then be used in other 
applications. It could be extended to shrubs and grasses that have 
a similar habit to the species measured, with sparse overstoreys, 
such as shrubs in Australia's alpine and heathland areas, and to 
hummock grasslands, as well as other ecosystems with scattered 
trees and open woodland worldwide, such as alpine woody shrub-
lands and Mediterranean open woodlands (Cunliffe et al., 2016; Nie 
et al., 2016). The drone method was most suited to high-density 
growth forms, such as the structurally consistent porcupine grass 
which did not obscure information relevant to biomass and species 
with distinct color differences to underlying substrate. Trees have 
more variation in tissue densities and their canopies can obscure 
an absence of leaves and branches lower on the plant, making them 
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currently less well suited to this method, requiring technology such 
as LiDAR to “see through” the tree canopy to measure trunk volume 
and inconsistent structure.

Drone datasets can be re-analyzed with improved computation 
methods, improving data with future developments. Potentially 
improved resolution and machine learning algorithms could be ap-
plied and allow for increasing accuracy of biomass for a range of 
vegetation communities. Additional to these readily applicable im-
provements, advances in drone technology and automated shape 
recognition may further improve accuracy. As consumer-grade 
drone cameras increase in resolution above 12 MP, finer plant parts 
will be resolved in images, reducing error in the dry weight biomass 
to volume relationship. Further, automatic shape recognition and 
separation of the plant in the 3D model from the ground surface 
will increase efficiency as it has for 3D airborne laser scanning data 
(Shendryk et al., 2016), increasing the potential for automated data 
processing and analysis for species identification and size variation.

Regardless of the method, biomass must be measured in the 
laboratory to develop an allometric relationship for calibration. The 
drone and simple dimension estimates will both have the same cost 
for this survey establishment, but will comparatively reduce with the 
scale of study. The drone method would therefore become compara-
tively more efficient with greater survey size. There are also likely to 
be efficiencies in data collection and processing. The drone method 
was more time-consuming but required less effort than the simple 
dimension measurement (Figure 3). This is likely to significantly im-
prove. First, by sampling many plants in each flight, as the longest 
time was taken when the drone was separately launched for each 
plant. Second, structuring automatic flight plans can be more effi-
cient than manual piloting. Finally, the number of markers required 
to delineate scale may be reduced by sampling plants close together, 
sharing scale constraints, and by utilizing equipment with precise 
positioning (GPS error correction) which reduces scale constraints 
required for each 3D model. Improvements in automation could 
reduce manual labor in selecting plants from point clouds, reduc-
ing processing time for the drone method. More automated drone 
methods also have potential for improving assumptions about varia-
tion in species size for other applications of biomass estimates.

5  |  CONCLUSIONS

Our drone method performed well. It estimated plant dry weight 
biomass more effectively than existing methods used in ecological 
surveys. This technique appears to be applicable to similar vegeta-
tion species in ecosystems with similar canopy structures world-
wide. We found the drone method to be most reliable for plants with 
dense, compact growth forms and least reliable for plants with dif-
fuse growth forms and fine branches. It is important to test method 
effectiveness against traditional high precision methods as we have 
done to ensure that the technique delivers useful data. We expect 
the accuracy, popularity, and applicability of the drone method to 
improve with technology. We have calculated that limitations of time 

inefficiencies (relative to simple dimension measurement) should di-
minish. This new method will improve existing estimates of plant bi-
omass and could address the shortfall in monitoring biomass change 
across large areas over long time frames by increasing data collec-
tion efficiency.
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