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Abstract
1.	 Measurement	 of	 variation	 in	 plant	 biomass	 is	 essential	 for	 answering	 many	

ecological and evolutionary questions. Quantitative estimates require plant de-
struction for laboratory analyses, while field studies use allometric approaches 
based on simple measurement of plant dimensions.

2. We estimated the biomass of individual shrub- sized plants, using a low- cost un-
manned aerial system (drone), enabling rapid data collection and non- destructive 
sampling. We compared volume measurement (a surrogate for biomass) and 
sampling time, from the simple dimension measurements and drone, to accu-
rate	laboratory-	derived	biomass	weights.	We	focused	on	three	Australian	plant	
species which are ecologically important to their terrestrial and floodplain eco-
systems: porcupine grass Triodia scariosa, Queensland bluebush Chenopodium 
auricomum, and lignum Duma florulenta.

3. Estimated volume from the drone was more accurate than simple dimension 
measurements for porcupine grass and Queensland bluebush, compared to es-
timates from laboratory analyses but, not for lignum. The latter had a sparse 
canopy, with thin branches, few vestigial leaves and a similar color to the ground. 
Data collection and analysis consistently required more time for the drone 
method than the simple dimension measurements, but this would improve with 
automation.

4. The drone method promises considerable potential for some plant species, al-
lowing data to be collected over large spatial scales and, in time series, increas-
ing	opportunities	to	answer	complex	ecological	and	evolutionary	questions	and	
monitor the state of ecosystems and plant populations.
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1  |  INTRODUC TION

Biomass of plant communities reflects evolutionary (Berner et al., 
2018) and ecological drivers (Westcott et al., 2014), influenced by 
direct	 (Friedel	 et	 al.,	2003;	Yelenik	&	D’Antonio,	2013) or indirect 
(McIntyre	 et	 al.,	2015)	 anthropogenic	 pressures.	Measurement	 of	
biomass can help identify changes in states and processes of eco-
systems, but data collection is often intensive and time- consuming, 
limiting	 large	 spatial	 coverage	 (Ferrier,	 2012; Nichols & Williams, 
2006). Ecological monitoring surveys often require biomass estima-
tion for individual plants, rather than the more common biomass per 
area	estimation	that	is	used	in	agricultural	production	(Proulx	et	al.,	
2015). There are two main approaches to measuring vegetation 
biomass: direct measurements of plants in the field (Catchpole & 
Wheeler, 1992), supported by laboratory analyses, or remote sens-
ing using either aerial photography, satellite imagery, radar or light 
detection	and	ranging	(LiDAR)	to	estimate	biomass	with	reflectance	
indices	(Peng	et	al.,	2019), cover or structural information (Kumar & 
Mutanga,	2017).

Simple measurement of plant volume in the field is often used 
as	a	surrogate	for	biomass	(Proulx	et	al.,	2015), by estimating height 
and	 two	 perpendicular	 width	 measurements,	 providing	 a	 convex	
hull for individual plants (Bonham, 1989).	Plant	volume	may	also	be	
estimated from photographs or quantitative relationships between 
cover and height, varying with age and species of plant (Catchpole 
& Wheeler, 1992; Westcott et al., 2014). Such indirect measures ef-
ficiently sample plant structure and volume, but are limited to mea-
suring overstorey vegetation (Suganuma et al., 2006). Laboratory 
measures of biomass are most accurate, but involve destructive re-
moval of the whole plant then oven drying and weighing to estimate 
dry weight biomass (Bonham, 1989).

Remotely sensed imagery is also increasingly used to estimate 
above- ground biomass, over long temporal periods, at continental 
and global scales (Lu, 2006), but this approach has significant limita-
tions. Estimates focus on monocultures in agricultural and forestry 
contexts	 (Kumar	 &	 Mutanga,	 2017), incorporating phenological 
stage	information	of	the	plantation	to	increase	accuracy	(Peng	et	al.,	
2019). Some mapping of ecosystem composition has helped to inter-
pret	biomass	estimates,	but	has	not	been	undertaken	 for	complex	
plant communities or individual plants (Lu et al., 2016), given that the 
best spatial resolution from satellite remote sensing is about 60 cm 
(e.g.,	IKONOS,	Quickbird).	Airborne	LiDAR	can	measure	distance	of	
the sensor from both the ground and leaf canopy using lasers, pro-
ducing accurate and fine spatial scale remote sensing estimates of 
vegetation biomass (Zolkos et al., 2013), but at considerable cost (Lu, 
2006) and seldom accounting for small branches and leaf canopy 
biomass (Verschuyl et al., 2018; Zolkos et al., 2013). Terrestrial Laser 
Scanning	 (ground-	based	 LiDAR)	 can	 be	 used	 to	 estimate	 biomass	
for individual trees (Kankare et al., 2013; Shendryk et al., 2016) but 
is time- consuming for stationary equipment, particularly in remote 
areas	and	steep	terrain.	Mobile	equipment	generates	complex	data,	
limiting application in temporal vegetation surveys, particularly of 
individual plants. There is a need to identify the efficacy of this 

technology for measuring individual plant biomass in ecological sur-
veys, recognizing that it will not necessarily replace field surveys 
unless it is scalable.

More	recently	drones	are	used	to	collect	remotely	sensed	data	
at	low	cost	(Anderson	&	Gaston,	2013). Drone- based methods utilize 
Structure	from	Motion	(SfM)	techniques	to	create	three-	dimensional	
(3D) point clouds, typically predicting the volume of a solid object 
(Dandois & Ellis, 2010).	 Development	 of	 SfM	 techniques	 has	 pre-
dominantly focused on industry such as precision agriculture (Torres- 
Sánchez et al., 2015), but they are increasingly useful for mapping 
natural vegetation communities (Cruzan et al., 2016), including bio-
mass	of	 leaf	 litter	 in	Australia	 (Wallace	et	 al.,	2017) and shrubs in 
semi- arid United States (Cunliffe et al., 2016). Developments in au-
tomating data collection, processing, and analysis could potentially 
provide data relevant for quantifying variation in plant size among 
species.

Despite this promise, estimates are often based on fewer data 
than manual methods, using only height (Cunliffe et al., 2021). 
Often the accuracy of vegetation biomass estimates from drones is 
poorly known. We aimed to estimate dry weight biomass of three 
plant species with contrasting growth forms (porcupine grass Triodia 
scariosa, Queensland bluebush Chenopodium auricomum, and lignum 
Duma florulenta) in the mid stories of semi- arid woodlands, using 
drone- collected data. The species occupy different landscape set-
tings (floodplain, terrestrial) in semi- arid zone plant communities. 
Our objective was to compare drone- based estimates of dry weight 
biomass and their time costs for these species, with those based on 
simple dimension measurements and laboratory analyses.

2  |  MATERIAL S AND METHODS

2.1  |  Field sampling

We	collected	biomass	data	 in	 two	 locations	 in	semi-	arid	Australia:	
Mallee	Woodlands	(33°	24’ S, 141o 10’ E), sampled in Spring (October 
2017)	and	North-	west	Floodplain	Woodlands	(29o 15’ S, 145o E), sam-
pled	in	Autumn	(April	2017).	The	former	comprised	low	woodlands	
of mallee trees (ridge- fruited mallee Eucalyptus costata subsp. mur-
rayana, white mallee E. dumosa, and red mallee E. socialis), dispersed 
with cypress pines Callitris verrucosa, semi- sclerophyl shrubs (Acacia, 
Beyeria, Triodia and Vittadinia genera) and a discontinuous hummock 
grass layer of porcupine grass (Keith, 2004; Yates et al., 2017). The 
second plant community comprised an open canopy of floodplain 
eucalypts (yapunyah E. ochrophloia, coolabah E. coolabah, and black 
box	E. largiflorens), a sparse shrub layer of lignum, Queensland blue-
bush and a continuous grassy ground cover, including rat's tail couch 
Sporobolus mitchellii, Warrego summer grass Paspalidium jubiflorum 
and purple lovegrass Eragrostis lacunaria (Catford et al., 2017; Hunter 
& Hunter, 2016; Keith, 2004). The floodplain woodland had variable 
grass height surrounding the targeted mid- story vegetation.

We defined three size classes for our three mid- story species 
(Table 1), representing typical structure in the field, to ensure that 
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the method captured the full range of plant sizes of each species. 
As	well	 as	 the	 intrinsic	 value	 of	 the	 species	 in	 their	 ecosystems,	
we selected them because they are functionally important to an-
imal	 species.	 On	 the	 Dune	 Mallee	 Woodlands,	 we	 selected	 the	
perennial domed hummock forming porcupine grass, given its im-
portance	 for	 fire	management	 (Bradstock	&	Gill,	1993; Wright & 
Clarke, 2007)	and	value	as	cover	for	small	vertebrates	(Menkhorst	
& Bennett, 1990).	The	North-	west	Floodplain	Woodlands	included	

Queensland bluebush and lignum. Queensland bluebush is a com-
pact to open- canopied shrub targeted by floodplain grazing (Capon, 
2003) and lignum is a wiry shrub with sparse foliage, functionally 
important as habitat for waterbird breeding colonies on wetlands 
(Brandis et al., 2011).

We estimated dry weight biomass by measuring volume with 
two field methods: a simple dimension measurement and a drone. 
Volume was not directly comparable between methods, as the drone 

TA B L E  1 Mean	estimates	(±SE) of volumes of plants estimated using simple dimension measurements and drone measurements and wet 
and dry weight biomass from laboratory analyses for three individuals from three different size classes of three plant species from semi- arid 
Australia

Species Size class
Simple dimension 
volume (m3) Drone volume (m3)

Laboratory analysis

Wet biomass (g)
Dry 
biomass (g)

Queensland bluebush Small (2– 10 cm high) 0.0009 (0.0004) 0.0005 (0.0004) 16.6 (6.93) 8.93 (3.75)

Medium	(11–	23	cm	high) 0.0019 (0.0005) 0.0006 (0.0004) 22.2 (5.15) 13.9 (3.34)

Large (24– 73 cm high) 0.107 (0.0070) 0.217 (0.0496) 681 (88.1) 525 (71.7)

Lignum Small (5– 20 cm high) 0.0008 (0.0003) 0.0001 (0.0000) 10.1 (1.22) 6.26 (0.809)

Medium	(21–	53	cm	high) 0.0178 (0.0033) 0.0096 (0.0055) 41.0 (2.96) 21.8 (2.01)

Large (59– 137 cm high) 2.10 (0.256) 3.17 (0.804) 6350 (1030) 4570 (766)

Porcupine	grass Small (30– 40 cm high) 0.0174 (0.0045) 0.0395 (0.0134) 503 (196) 428 (166)

Medium	(40–	50	cm	high) 0.0303 (0.0055) 0.0763 (0.0176) 120 (211) 1060 (192)

Large (50– 76 cm high) 0.123 (0.0311) 0.275 (0.0582) 376 (519) 3330 (491)

F I G U R E  1 Measurement	of	an	
individual from three species of semi- arid 
plants (a) porcupine grass (b) Queensland 
bluebush and (c) lignum species, showing 
for each: (i) height and (ii) two width 
measurements for simple dimension 
measurements, which were measured 
with a field with a ruler; (iii) the resulting 
point cloud from the drone image, after 
processing	in	Pix4D	and;	(iv)	the	point	
cloud after manual removal of nearby 
vegetation in CloudCompare. Lignum 
features scale constraint markers spaced 
2 m apart. Other species used markers 
that have been cropped out to focus on 
the smaller plant size
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method detected detailed structure, not simple dimensions, and so 
we harvested samples destructively to quantify dry weight biomass. 
We randomly stratified sampling using each size class and species’ 
combination, ensuring individuals (n = 3) were under full sunlight and 
in good health, representative of most individuals in the field.

For	simple	dimension	measurements,	we	measured	height	from	
ground level to the tallest plant part and crown circumference, using 
the longest horizontal dimension of the plant and its perpendicular 
axis	to	produce	a	3D	octahedron.	This	allowed	estimation	of	volume	
(see Bonham, 1989). We then surveyed each individual plant, using 
a	DJI	Phantom	3	professional	drone	(DJI,	Shenzhen,	China)	with	its	
standard	 mounted	 camera	 (12	megapixel	 (MP)	 camera,	 fixed	 lens	
and	 focal	 length,	mounted	with	 a	 stabilizing	unit).	Ground	 control	
points of known dimensions were placed for each plant, to gener-
ate two perpendicular scale constraints, increasing the accuracy of 
the resulting point cloud (Figure 1). We flew a manually navigated 
grid pattern at 10 m above ground and within 3 h of solar midday to 
minimize shadows, using a combination of downwards (nadir) and 
angled (non- nadir) images, with at least 70% overlap of each image. 
Where plants were close together, multiple plants were surveyed in 
one flight. The elevation provided about 40 high- resolution images 
(<1 mm ground sample distance) for each plant, recorded as red, 
green	and	blue	(RGB)	 jpeg	files	 in	the	visible	spectrum	(Figure 1b). 
Our methods were similar to those used to estimate biomass with 
drone	photogrammetry	in	a	global	experiment	(Cunliffe	&	Anderson,	
2019),	except	we	used	a	low-	cost	consumer-	level	drone	(not	survey-	
grade	equipment),	and	relative	space	(not	precision	GPS).

After	collecting	 field	measurements,	we	destructively	 sampled	
each plant for laboratory measurements of dry and wet biomass by 
harvesting	all	above-	ground	plant	matter.	Plants	were	stored	in	plas-
tic bags with moist paper towels for transport. Subsequently, wet 
weight biomass of each plant was measured (stems and leaves amal-
gamated)	before	drying	it	 in	an	oven	(70°C	for	at	 least	72	h),	after	
which	dry	biomass	was	weighed	(Pérez-	Harguindeguy	et	al.,	2013). 
There was a very strong relationship between wet (in- field) and dry 
weight measurements of biomass among any of the three species 
(log dry weight =	−0.31	+ 1.06 log wet weight, R2 = .99, p < .01, 
Appendix	Figure	S1).

2.2  |  Drone image analysis

We	 used	 SfM	 (using	 Pix4Dmapper	 software,	 Pix4D	 SA,	 2018) to 
generate	a	3D	model	of	each	plant	(point	cloud,	Gross	&	Heumann,	
2016), allowing estimation of volume. Each plant point cloud was set 
with scale constraints from the ground control points to improve 
measurement precision (Figure 1). Unconstrained point cloud meas-
urements had an average error of 1.90% (±0.23% SE), compared to 
point clouds constrained by ground control points and so we used 
scale	constraints	to	generate	a	3D	model	for	each	plant,	exported	as	
a point cloud (Figure 1). We manually selected each plant from point 
clouds using CloudCompare (V2.8.1, 2018), ensuring that nearby 
plants (e.g., grasses) were not included (Figure 1). This step can be 

omitted where canopy height models delineate individuals from sur-
rounding vegetation (see Cunliffe et al., 2016) but, on the floodplain 
environment, ephemeral plants significantly masked the ground sur-
face	and	overlapped	with	 the	plants	of	 interest.	We	exported	 the	
point cloud for each plant into the R statistical software environ-
ment (R Core Team, 2018)	and	calculated	the	minimum	convex	hull	
of the plant using RLiDAR (Silva et al., 2017), the same measure used 
in standard in- field biomass estimation (Bonham, 1989).

2.3  |  Statistical analyses

We compared estimates of plant volume based on simple dimensions 
and drone- derived point clouds to our laboratory estimates of dry 
weight biomass. We fitted a linear model for each species, specify-
ing our estimates of laboratory dry weight biomass as the response 
variable and separately analyzing relationships with predictor vari-
ables of simple dimension and drone measures in the R software 
environment (R Core Team, 2018). Data were pooled for analyses 
with size class as a covariable within species to ensure that methods 
and models were applicable to the whole size range for each species. 
For	Queensland	bluebush	and	lignum	data,	we	log-	transformed	and	
added a square term to ensure that assumptions of normality and 
variance homogeneity were met; no transformation was required 
for porcupine grass. We used k- fold cross validation of each linear 
model to compare resulting errors and slopes between the estima-
tion techniques, allowing us to identify the estimation technique 
with	 the	 lowest	 root	mean	 square	 error	 (RMSE)	 for	 each	 species.	
We also compared the amount of time to derive dry weight biomass 
estimates	from	the	two	field	methods	in	the	North-	west	Floodplain	
Woodlands (lignum and Queensland bluebush), including capture 
and processing of images, plant harvesting, computation time, and 
time spent selecting individual plants from the 3D point cloud.

3  |  RESULTS

There were clear differences between simple dimension and drone 
measures	in	representing	the	complexity	of	plants	(Figure 1). Simple 
dimension measurements only captured three measures of each 
plant (height and two width measures, Figure 1); therefore, quite dif-
ferently shaped plants could have the same volume. This contrasted 
the	complex	3D	structures	 in	 the	 form	of	a	point	cloud	measured	
using drone imagery (Figure 1).	Point	clouds	captured	a	truer	shape	
of each plant but relied on detecting thin branches from photo-
graphs, a weakness for lignum branches.

The simple dimension measurements for porcupine grass 
showed relatively invariant estimates of height and width, given the 
similar facets of the plant. Drone measures reflected this uniformity 
in	form,	but	the	point	cloud	showed	considerable	complexity	in	finer	
plant detail. Individuals of porcupine grass were uniformly shaped, 
whereas Queensland bluebush were not. Typically, small plants were 
narrow and large plants had a round but irregular shape. This was not 
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captured in simple dimension measurements but was apparent in the 
two- lobed point cloud shape (Figure 1).

Lignum plants were highly variable in shape, often with thin 
branches protruding from the main plant form. This resulted in large 
volume measurements for simple dimension measurements but a 
relatively low dry weight biomass, compared to the other species. 
For	lignum,	the	simple	dimension	measurement	of	width	was	longer	
in one plane than the other in Figure 1. Visual assessment showed 
that point cloud reconstructions underestimated the true size of lig-
num plants, not reliably reconstructing plant parts under one cen-
timeter in diameter and inadequately capturing the full plant width 
(Figure 1).

Simple dimension and drone measures of volume for the same 
plant varied considerably (Figure 2).	For	porcupine	grass,	 relation-
ship between dry weight biomass and volume estimated from our 
two measures was considerably different (Figure 2); simple dimen-
sion measurement had a steeper and more contracted relationship 
compared to our drone measure (Figure 2). Our simple dimension 
measurement and its volumetric surrogate was a useful measure of 
dry	weight	biomass,	with	most	of	 the	variance	explained	 (p < .01, 
Table 2, Figure 2). Volume of porcupine grass estimated with the 
drone method was also a good predictor of dry weight biomass, 

with	the	same	amount	of	variation	explained	by	a	fitted	linear	model	
(p < .01, Table 2, Figure 2). The individual with the largest volume 
was	 an	 outlier,	 influencing	 both	 relationships.	 Examination	 of	 the	
residuals for these two models, across the different size classes, in-
dicated no obvious pattern related to size class of porcupine grass 
(Appendix	Figure	S2).	Cross	 validation	of	 these	models	 for	porcu-
pine	grass	showed	that	the	drone	method	was	superior,	explaining	a	
higher proportion of variance than simple dimension measurement 
(RMSE,	Table 2).

For	 Queensland	 bluebush,	 there	 was	 a	 slight	 difference	 be-
tween the two methods relationships between volume and dry 
weight biomass, with both models having a similar shaped curve 
(Figure 2).	 Our	 simple	 dimension	 measurements	 explained	 less	
variation, with its fitted linear model (p < .01, Table 2, Figure 2) 
than	the	drone	method,	which	explained	more	of	the	variation	in	
dry weight biomass (p < .01, Table 2, Figure 2).	Examination	of	re-
sidual plots for the models in relation to size classes indicated that 
mid- size classed individuals (Table 1) tended to be underestimated 
for	the	simple	dimension	measurements	method	(Appendix	Figure	
S2). Both methods were good predictors of dry weight biomass 
for	Queensland	bluebush.	Model	cross	validation	showed	that	the	
drone method model performed better than the simple dimension 

F I G U R E  2 Fitted	linear	models	for	
three plant species, porcupine grass, 
Queensland bluebush and lignum and 
relationships between dry weight 
biomass, measured in the laboratory and 
measures of volume, using drone imagery 
and associated point clouds (yellow) and 
simple dimension measurements (blue), 
taken in the field for individuals. Negative 
volume values for Queensland bluebush 
and lignum plots reflect logged values
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measurement	model,	 explaining	 a	 higher	 proportion	 of	 variance	
(Table 2).

For	 lignum,	both	methods	explained	significant	variation	 in	dry	
weight biomass estimates, with the drone method fitting a flatter 
curve (Figure 2).	The	fitted	curve	can	be	explained	by	different	par-
titioning between dense stems and light branches with plant size. 
Simple dimension measurements were a more accurate predictor of 
dry weight biomass (p < .01, Table 2, Figure 2),	explaining	more	varia-
tion than the drone method (p < .01, Table 2, Figure 2). Residuals did 
not	show	any	clear	pattern	in	size	classes	for	lignum	(Appendix	Figure	
S2).	Model	cross	validation	showed	the	simple	dimension	measure-
ment	method	was	a	better	method	for	lignum,	with	a	lower	RMSE,	
explaining	a	higher	proportion	of	the	variance	of	volume	(Table 2).

Field	data	collection	was	the	least	time-	consuming	step	for	each	
of the three methods (Figure 3), whereas data processing and anal-
ysis	were	 the	most	 time-	consuming	 tasks.	 For	 the	 drone	method,	
fieldwork took only 4% of overall time, with 75% taken by computer 
processing which needed no human intervention. The smaller size 
and closer spacing of sampled Queensland bluebush allowed photo-
graphing in two flights, reducing the time taken to land and launch 
between sampling, resulting in shorter field sampling and image 
analysis time per plant. The laboratory method was least time- 
efficient. Weighing each plant on laboratory scales took 91% of the 
laboratory method processing time.

For	the	two	species	analyzed	for	time	(lignum	and	Queensland	
bluebush), there were significant differences between simple 

TA B L E  2 Summary	of	linear	analyses,	including	cross	validation	analyses	(root	mean	square	error,	RMSE)	of	separate	relationships	
between our response variable, dry weight biomass (y variable), and volume estimates from the simple and drone measure (x variables), 
measured in the laboratory for individual plants of porcupine grass, Queensland bluebush and lignum

Plant species Technique Linear relationship Variance RMSE

Porcupine	grass Simple dimension 
measurement

y =	−218.75	+ 44270.61x	−	96854.22x2 0.988 1,332,406

Drone y =	−100.27	+ 15810.91x	−	11429.54x2 0.988 31,531

Queensland bluebush Simple dimension 
measurement

log(y) = 8.72 + 1.19 log(x) + 0.03 log(x)2 0.973 0.344

Drone log(y) = 7.23 + 0.48 log(x) 0.976 0.228

Lignum Simple dimension 
measurement

log(y) = 7.31 + 1.35 log(x) + 0.08 log(x)2 0.997 0.035

Drone log(y) = 7.74 + 0.9 log(x) + 0.03 log(x)2 0.970 0.507

Note: Low	values	in	Queensland	bluebush	and	lignum	plots	are	the	result	of	log	values	in	their	models.	All	models	were	significant	(p < .001).

F I G U R E  3 Average	data	collection	and	analysis	(field,	computer,	laboratory)	time	(±SE) for simple dimension (green) and drone (orange) 
measures	and	laboratory	analysis	of	nine	Queensland	bluebush	and	lignum	individual	plants	in	semi-	arid	Australia.	Laboratory	drying	took	an	
additional 72 h (4320 min) for both species
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dimension and drone measures (analysis of variance, F1,2df = 31787, 
p < .01). Simple dimension measurements were the most rapidly col-
lected data for each plant (Figure 3) followed by the drone method. 
The laboratory analysis took the longest time, with 72 additional 
hours of oven drying, omitted from this analysis. Time spent measur-
ing in the field was lower for our simple dimension measurements, 
but our drone flight covered 2500 square meters in 33 min. The 
time spent collecting data in the field would be similar between the 
simple dimension measurements and drone measurement if there 
were 110 plants in this area (density of one plant per ~22.7 square 
meters). Time spent decreased relatively with the drone method 
when	plants	exceeded	this	density.	Plant	species	had	little	effect	on	
data collection times for simple dimension measurement and drone 
measurement, but large lignum plants took longer to harvest and 
pack for laboratory analysis (25 min ±2.9 SE) than the smaller sized 
Queensland bluebush (large size class 4.7 min ±0.3	SE).	Analysis	time	
was similar for lignum and Queensland bluebush, but computer pro-
cessing analysis took longer for lignum reflecting the larger plant size 
(Figure 3).

4  |  DISCUSSION

Drones are a powerful tool for collecting environmental imagery, 
particularly for identifying landform and structure (Cruzan et al., 
2016). Drones clearly showed promise for the three species in ef-
fectively estimating dry weight biomass, using volume as a surrogate 
(Table 2, Figures 1 and 2). Such effectiveness was demonstrated for 
similar	shaped	plants	and	leaf	litter	in	Mediterranean	environments	
(Cunliffe et al., 2016; Wallace et al., 2017), and has been developed 
for easily measurable ecosystems (Karpina et al., 2016). Before our 
work, biomass estimated from drone imagery was related to accu-
rate laboratory analysis for area with crops, but not individual plants. 
Measurement	of	individual	plants	has	important	ecological	applica-
tions and could be used in studies of plant population dynamics and 
ecological monitoring surveys, supported by field data. Our drone 
measures of biomass were not equally effective among the three 
species and, for small sample sizes, were more costly in terms of time 
than	 simple	 dimension	measurements.	When	 sample	 sizes	 exceed	
110	plants	and	density	exceeds	one	plant	per	~22.7 square meters, 
however, drone measures of biomass become more efficient for the 
time spent in the field. Our drone imagery also provided information 
on structure and form of vegetation that could be further analyzed.

Non- destructive measures are required in projects analyzing 
temporal patterns in states and processes of ecosystems, measuring 
ecosystem	health	(McIntyre	et	al.,	2015), and identifying ecological 
processes	 (Moukomla	et	al.,	2018). Nonetheless, some destructive 
sampling to quantify allometric relationships for calibration is de-
sirable if absolute values rather than comparative of biomass are 
required. Simplification of large scale biomass monitoring will help 
address the shortfall in long- term monitoring of such ecological 
characteristics (Belovsky et al., 2004). The absence of measurement 
bias across size classes (Figure 3) indicates potential value to use 

drone imagery to track individual plant changes reliably over time. 
This relative comparison could have wide application for monitoring 
outcomes of ecosystem restoration and measuring impacts of dis-
turbances.	For	example,	estimating	biomass	after	fire	could	inform	
fire management strategies (Brown et al., 2009).	Further,	large	areas	
of the semi- arid zone are overgrazed (Eldridge & Delgado- Baquerizo, 
2017) and the drone method could track associated biomass and 
structure in response to grazing. There are also opportunities to 
track effects of climate change (Berner et al., 2018), insect damage 
(Stone & Coops, 2004), and disease (Reiter et al., 2004) on vegeta-
tion communities.

Our drone method also captured detailed plant structure, in the 
plant	 convex	 hull,	 compared	 to	 simple	 dimension	 measurements	
which assume an octahedron (Figure 1). The dense porcupine grass 
provided the best correspondence with biomass for both simple di-
mension and drone measurement (Figure 2). The other two species, 
Queensland bluebush and lignum, had less dense canopies (Figure 1), 
which	lost	leaves	during	dry	periods	(Freestone	et	al.,	2017) further 
reducing canopy density thus measurement accuracy (Figure 2). The 
drone method was no better than the simple dimension measure for 
lignum. It is difficult to measure canopy volume for this shrub re-
gardless	of	the	method	used,	including	LiDAR,	because	it	has	a	habit	
of fine, long stems with few, small leaves (Capon et al., 2009), making 
assumptions for biomass calculation unreliable. These traits are not 
easily resolved in image processing because the fine stems are a sim-
ilar color to the ground. The drone method shortcomings could be 
offset by flying at a lower altitude to capture adequate image detail 
to delineate branches, or using a higher camera resolution. Structure 
information collected with the drone method may be important be-
yond	biomass	estimation.	For	lignum,	structural	density	is	important	
for its value as nesting habitat for waterbirds (Brandis et al., 2011), 
which	is	missed	in	simple	dimension	estimates	of	biomass.	Additional	
products	of	the	SfM	procedures	used	in	the	drone	method	are	ort-
horectified imagery and digital terrain models, which are useful for 
landscape vegetation structure, patch analysis, vegetation mapping, 
and visualizing plant condition.

The model relating dry weight biomass to volume could also 
be calibrated to favorable or poor growth conditions, or to other 
species by resampling biomass (Bonham, 1989), making the drone 
method applicable to plants species discernible as an individual 
from	above.	Published	allometry	values	could	then	be	used	in	other	
applications.	It	could	be	extended	to	shrubs	and	grasses	that	have	
a similar habit to the species measured, with sparse overstoreys, 
such	 as	 shrubs	 in	 Australia's	 alpine	 and	 heathland	 areas,	 and	 to	
hummock grasslands, as well as other ecosystems with scattered 
trees and open woodland worldwide, such as alpine woody shrub-
lands	and	Mediterranean	open	woodlands	(Cunliffe	et	al.,	2016; Nie 
et al., 2016). The drone method was most suited to high- density 
growth forms, such as the structurally consistent porcupine grass 
which did not obscure information relevant to biomass and species 
with distinct color differences to underlying substrate. Trees have 
more variation in tissue densities and their canopies can obscure 
an absence of leaves and branches lower on the plant, making them 
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currently less well suited to this method, requiring technology such 
as	LiDAR	to	“see	through”	the	tree	canopy	to	measure	trunk	volume	
and inconsistent structure.

Drone datasets can be re- analyzed with improved computation 
methods,	 improving	 data	 with	 future	 developments.	 Potentially	
improved resolution and machine learning algorithms could be ap-
plied and allow for increasing accuracy of biomass for a range of 
vegetation	communities.	Additional	 to	 these	readily	applicable	 im-
provements, advances in drone technology and automated shape 
recognition	 may	 further	 improve	 accuracy.	 As	 consumer-	grade	
drone	cameras	increase	in	resolution	above	12	MP,	finer	plant	parts	
will be resolved in images, reducing error in the dry weight biomass 
to	 volume	 relationship.	 Further,	 automatic	 shape	 recognition	 and	
separation of the plant in the 3D model from the ground surface 
will increase efficiency as it has for 3D airborne laser scanning data 
(Shendryk et al., 2016), increasing the potential for automated data 
processing and analysis for species identification and size variation.

Regardless of the method, biomass must be measured in the 
laboratory to develop an allometric relationship for calibration. The 
drone and simple dimension estimates will both have the same cost 
for this survey establishment, but will comparatively reduce with the 
scale of study. The drone method would therefore become compara-
tively more efficient with greater survey size. There are also likely to 
be efficiencies in data collection and processing. The drone method 
was more time- consuming but required less effort than the simple 
dimension measurement (Figure 3). This is likely to significantly im-
prove.	First,	by	sampling	many	plants	 in	each	flight,	as	the	 longest	
time was taken when the drone was separately launched for each 
plant. Second, structuring automatic flight plans can be more effi-
cient	than	manual	piloting.	Finally,	the	number	of	markers	required	
to delineate scale may be reduced by sampling plants close together, 
sharing scale constraints, and by utilizing equipment with precise 
positioning	 (GPS	error	correction)	which	 reduces	scale	constraints	
required for each 3D model. Improvements in automation could 
reduce manual labor in selecting plants from point clouds, reduc-
ing	processing	time	for	the	drone	method.	More	automated	drone	
methods also have potential for improving assumptions about varia-
tion in species size for other applications of biomass estimates.

5  |  CONCLUSIONS

Our drone method performed well. It estimated plant dry weight 
biomass	more	effectively	than	existing	methods	used	in	ecological	
surveys. This technique appears to be applicable to similar vegeta-
tion species in ecosystems with similar canopy structures world-
wide. We found the drone method to be most reliable for plants with 
dense, compact growth forms and least reliable for plants with dif-
fuse growth forms and fine branches. It is important to test method 
effectiveness against traditional high precision methods as we have 
done	to	ensure	that	the	technique	delivers	useful	data.	We	expect	
the accuracy, popularity, and applicability of the drone method to 
improve with technology. We have calculated that limitations of time 

inefficiencies (relative to simple dimension measurement) should di-
minish.	This	new	method	will	improve	existing	estimates	of	plant	bi-
omass and could address the shortfall in monitoring biomass change 
across large areas over long time frames by increasing data collec-
tion efficiency.
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