
brain
sciences

Article

Reduced Effective Connectivity in the Motor Cortex in
Parkinson’s Disease

Emanuela Formaggio 1 , Maria Rubega 1,* , Jessica Rupil 2, Angelo Antonini 3,4 , Stefano Masiero 1,4 ,
Gianna Maria Toffolo 2 and Alessandra Del Felice 1,4

����������
�������

Citation: Formaggio, E.; Rubega, M.;

Rupil, J.; Antonini, A.; Masiero, S.;

Toffolo, G.M.; Del Felice, A. Reduced

Effective Connectivity in the Motor

Cortex in Parkinson’s Disease. Brain

Sci. 2021, 11, 1200. https://doi.org/

10.3390/brainsci11091200

Academic Editors: Mauro Ursino,

Elisa Magosso and Manuela Petti

Received: 22 July 2021

Accepted: 9 September 2021

Published: 12 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Neuroscience, Section of Rehabilitation, University of Padova, Via Gustiniani 3,
35128 Padova, Italy; emanuela.formaggio@unipd.it (E.F.); stef.masiero@unipd.it (S.M.);
alessandra.delfelice@unipd.it (A.D.F.)

2 Department of Information Engineering, University of Padova, Via Gradenigo 6/A,
35131 Padova, Italy; je.rupil@live.it (J.R.); giannamaria.toffolo@unipd.it (G.M.T.)

3 Parkinson and Movement Disorders Unit, Study Centre on Neurodegeneration (CESNE),
Department of Neuroscience, University of Padova, Via Giustiniani 5, 35121 Padova, Italy;
angelo.antonini@unipd.it

4 Padova Neuroscience Center, University of Padova, Via Orus, 35128 Padova, Italy
* Correspondence: maria.rubega@unipd.it

Abstract: Fast rhythms excess is a hallmark of Parkinson’s Disease (PD). To implement innovative,
non-pharmacological, neurostimulation interventions to restore cortical-cortical interactions, we
need to understand the neurophysiological mechanisms underlying these phenomena. Here, we
investigated effective connectivity on source-level resting-state electroencephalography (EEG) signals
in 15 PD participants and 10 healthy controls. First, we fitted multivariate auto-regressive models
to the EEG source waveforms. Second, we estimated causal connections using Granger Causality,
which provide information on connections’ strength and directionality. Lastly, we sought significant
differences connectivity patterns between the two populations characterizing the network graph
features—i.e., global efficiency and node strength. Causal brain networks in PD show overall
poorer and weaker connections compared to controls quantified as a reduction of global efficiency.
Motor areas appear almost isolated, with a strongly impoverished information flow particularly
from parietal and occipital cortices. This striking isolation of motor areas may reflect an impaired
sensory-motor integration in PD. The identification of defective nodes/edges in PD network may be
a biomarker of disease and a potential target for future interventional trials.

Keywords: EEG; Granger causality; MultiVariate AutoRegressive models; global efficiency; sensory-
motor integration

1. Introduction

Parkinson’s disease (PD) main clinical features are motor symptoms, which have a
causal factor in dopamine depletion in the basal ganglia circuit [1]. This degenerative
process translates in abnormally fast oscillatory activity expressed in the cortico-basal
loop, with frequencies ranging up to 200–250 Hz [2]. At scalp level, this activity may
be only recorded as beta frequency, due to the impedance and attenuation processes to
which the travelling signal undergoes while passing through brain tissue, cerebrospinal
fluid and bone. Pathological firing of the basal ganglia entrains oscillations within the
supplementary motor area, lateral premotor cortex, as well as frontal areas in various
electroencephalographic (EEG) frequency bands [3], with beta frequency band being the
most affected.

More recently EEG modulation and connectivity profiling have been proposed to
investigate PD progression stages [2]. Brain connectivity explores physical connections
(structural connectivity), statistical dependencies (functional connectivity), and casual
interactions (effective connectivity) between brain areas. In particular, effective connectivity
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studies the direct influence that one cortical area may exerts over another and describes the
direction of the interaction.

A computational approach to estimate effective connectivity is Granger Causality
(GC) [4] measured by MultiVariate AutoRegressive (MVAR) models. This interconnected
representation of the brain can be conveniently treated as a network—i.e., in Mathematics
a graph. Graph analysis constitutes a simple model to decode network structures, cap-
turing their complexity and providing measures to characterize their topological features,
functional organization, and/or the global or local properties of each node.

A network perspective may provide an intervention target on defective nodes: neu-
rostimulation techniques, whether invasive or non-invasive, may restore cortico-cortical
interactions [5–7]. Abnormalities in oscillatory activity reflect alterations in connectivity
in the cortico-striato-thalamo-cortical circuit [8]. Impaired connectivity has also been de-
scribed between cortical areas—e.g., prefrontal and motor cortex [9]. Most of these data
stem from magnetic resonance imaging (MRI) studies, using either functional or structural
connectivity methods [2]. Granger Causality applied to functional Magnetic Resonance
Imaging (fMRI) has been deployed to study cortico-thalamo-striato-cortical connections in
PD [10,11], confirming the weaker interaction between the caudate and the motor cortex.

Cortico-cortical interactions and their directionality in PD are less known [12]. MRI
data focused almost exclusively on motor areas and demonstrated an increased causal
connectivity from the left premotor cortex (PMC) to right primary motor cortex (M1).
Applying GC to EEG data exploits a non-invasive, low-cost, and bed-side functional brain
imaging technique [5–7].

The aim of the present study is to identify causal connectivity among cortical areas
using source-waveforms in a cohort of PD individuals. Our hypothesis is that we may able
to confirm MRI derived connectivity alterations in PD, with a particular involvement of
the motor areas, with EEG-derived data.

2. Materials and Methods
2.1. Participants

Fifteen people with PD (9 M; age in the interval [60–83] years; mean disease duration
6.1 ± 4.6 years; mean L-dopa dose 450 ± 185.2 mg; subjects tested in ON-phase) were
recruited from Movement Disorders Unit at the Neurology clinic of the Padova University
Hospital (Tables 1 and 2). All showed a bradykinetic phenotype. Inclusion criteria were:
diagnosis of idiopathic PD within the last five years; stable dose of antiparkinsonian therapy
for at least four weeks; off-medication motor Hoehn and Yahr 1–2 at enrolment. Exclusion
criteria were: psychiatric disorder; benzodiazepine and neuroleptic treatment; Mini Mental
State Examination (MMSE) < 23; contraindications to neurostimulation. Subjects were
part of a randomized controlled trial to study the effect of neurostimulation and motor
rehabilitation [13]. EEG data used for the present analysis were collected at baseline to
avoid any interference with intervention. Control data from ten healthy volunteers (3 M;
age in the interval [51–71] years) were obtained using the same EEG system. All participants
provided written informed consent. The Ethics Committee of Padova University Hospital
approved the protocol (protocol n. 3507/AO/15).

2.2. EEG Data

Five minutes of eyes-open resting state EEG signal (32-channels system; BrainAmp
32MRplus, BrainProducts GmbH, Munich, Germany) were acquired using an analogic
anti-aliasing band pass-filter at 0.1–1000 Hz and converted from analog to digital using a
sampling rate of 5 KHz. The reference was between Fz/Cz and ground anterior to Fz. The
data were processed in Matlab R2018b (MathWorks, Natick, MA) using personalized scripts
based on EEGLAB toolbox (http://www.sccn.ucsd.edu/eeglab (accessed on 1 September
2020) [14] and in Brainstorm (https://neuroimage.usc.edu/brainstorm (accessed on 1
September 2020) [15].

http://www.sccn.ucsd.edu/eeglab
https://neuroimage.usc.edu/brainstorm
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EEG data were band-pass filtered from 1 to 30 Hz using a even-order linear phase
FIR filter avoiding phase-distortion and down-sampled using a sampling rate of 500 Hz
by using Brainstorm software. Artefacts—i.e., eye movements, cardiac activity, and scalp
muscle contraction—were visually identified and removed using independent component
analysis implemented in EEGLAB (Infomax). The EEG data were further processed using
a common average reference. Source-reconstructed time-series were obtained by using
Brainstorm software [15]. First, a head model was created using a symmetric boundary
element method based on the anatomy derived from the ICBM152 brain [16]. Time-series
of neuronal activity were reconstructed using minimum norm algorithm. Sources were
constrained to the cortex and the reconstructed time-series were projected onto regions of
interest (ROIs) as defined by the Brodmann atlas [17], where time-series for voxels within a
ROI were averaged and used for connectivity analysis. Eight ROIs were defined merging
Brodmann areas (BA) in frontal, central, parietal and occipital regions, grouped separately
for left and right hemisphere, defined as follow: central areas—BA 1, 2, 3, 4, 6; frontal
areas—BA 8, 9, 10, 11, 44, 45, 46; parietal areas—BA 5, 7, 30, 39, 40, 43; occipital areas—BA
17, 18, 19. Time-series were divided into non-overlapping epochs of 2 s.

Table 1. Demographic characteristics of included participants.

Subject (S) Age Sex Education

1 72 y Male 16 y
2 64 y Female 5 y
3 73 y Male 13 y
4 79 y Male 5 y
5 80 y Female 13 y
6 69 y Male 8 y
7 61 y Female 11 y
8 75 y Male 13 y
9 71 y Male 17 y
10 63 y Male 10 y
11 68 y Male 17 y
12 60 y Male 17 y
13 65 y Female 5 y
14 66 y Female 17 y
15 83 y Female 5 y

Table 2. Clinical characteristics of included participants.

S Duration L-Dopa Dose UPDRS III Bradykinesia Tremor Axial Symptoms

1 2 y 800 mg 36 4 1 1
2 2 y 450 mg 28 6 0 1
3 1 y 200 mg 30 2 0 1
4 10 y 300 mg 31 4 2 0
5 3 y 300 mg 37 5 0 0
6 9 y 750 mg 35 1 0 2
7 11 y 600 mg 36 0 0 0
8 18 y 600 mg 29 3 0 1
9 6 y 400 mg 35 4 1 1
10 7 y 450 mg 32 2 0 2
11 2 y 300 mg 27 1 0 2
12 2 y 200 mg 38 2 1 1
13 8 y 400 mg 32 3 2 1
14 6 y 600 mg 35 3 0 0
15 4 y 400 mg 36 3 0 1

MVAR Model and Time-Domain Formulation of Granger Causality Index

Analysis was performed for each epoch using the MultiVariate Granger Causality
Matlab® Toolbox (MVGC) [18]. MVAR models represent a parametric method for discrete-
time signal description. They extend to multiple time-series the AutoRegressive (AR)
approach, which expresses the current value of a time-series as a weighted sum of its
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previous p values, plus a noise term. Under the assumption of having m stochastic processes
yi(n); i = 1. . . , m; n = p + 1, . . . , N (in our study, m = 8 as the number of ROIs, N = 1000,
i.e., the number of samples for each epoch), MVAR models allow to take into account and
reconstruct the evolution of each of them in terms of its past history, the past history of all
the other signals and a contribution from white noise. Our MVAR model, thus, consists of
m linear equations, which can be conveniently written in matrix form as:

y(n) =
p

∑
k=1

Ak · y(n− k) + u(n) (1)

where y(n) is the vector of the n-th sample of the m processes, which has a deterministic
component accompanied by the contribution of u(n) that represents the m-dimension
vector of input white noise, with zero mean and diagonal covariance matrix Σu . The term p
and the Ak matrices are respectively the model order and the matrices of model coefficients.
The model order defines the number of previous samples, from all the processes, that
contribute to the expression of the current samples y(n); the weights of these samples are
defined by the corresponding elements of the Ak matrices, namely Ak(i, j), and represents
the influence of yj(n− k) on yi(n). The elements of the Ak(i, j) matrices, together with the
variances of the input noise appearing on the main diagonal of the Σu matrix, represent
the model parameters (their number is equal to 64× p + 8) to be identified on EEG data of
the eight ROIs.

According to Granger definition, a cause-effect relationship exists between two time-
series yi(n) and yj(n), with i 6= j, if the variance of the prediction error of yi(n), estimated
with a MVAR model including all the m time-series of y(n) (unrestricted model), is lower
than the one resulting from a MVAR model from which yj(n) is excluded (restricted model).
Hence, the Granger causality from yj(n) to yi(n) can be measured with Geweke’s Granger
Causality index, defined as:

GCij = GCyj→yi/y = ln
σ̃i

2

σ2
i

(2)

where σ̃i
2 and σ2

i are the variance of predicted error ui(n) for restricted and unrestricted
model regression, respectively.

For each subject of each group the analysis was firstly carried out epoch-wise. At first,
the order of MVAR model was selected: Akaike parsimony criterion (AIC) was used for
this purpose [19]. AIC optimum order was evaluated for each epoch with an upper bound
of p = 20. The order that was most frequently selected (p = 9, i.e., 18 ms) was then fixed for
all epoch/subjects. Equation (2) was evaluated for all the possible pairs of the eight ROIs
defined in this study and the 8 × 8 matrix of GC indices represents causal strength among
them—i.e., the (i, j) element of the GC matrix represents the strength of the influence that
ROI j exerts on ROI i. F-test with Bonferroni correction was applied to check the statistical
significance of each index (p < 0.000892): if the null hypothesis, that error variances were
not significantly different, was accepted, the value of the corresponding GC coefficient was
forced to zero for the current epoch.

The overall estimate of Granger connection magnitudes at a single subject level was
obtained by averaging the GC matrices across all epochs. The percentage of epochs
recognized as significant throughout the whole recording was also monitored for each
subject. In order to graphically represent only the most relevant connections in the network,
a threshold was computed using a surrogate data strategy: on the same dataset, the null
distribution was determined using phase randomization—i.e., the dataset was transformed
in frequency domain via fast Fourier Transform (FFT), randomly shuffled in order to
change phase information and then back transformed in time domain via inverse FFT. This
procedure was iterated 100 times, thus obtaining 100 realizations under the null hypothesis,
and for each realization GC was computed. The threshold was fixed at the 95th percentile.
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2.3. Graph Representation

Once the relevant connections between regions were estimated, the dynamics of
global organization of the network was described using graph theory measures [20]. We
mathematically represented the network as a graph—i.e., a set of vertices (or nodes)
that represent our variables (ROIs) and a set of edges representing effective connections
among them. The obtained graph was directed—i.e., the edges had a directionality—and
weighted—i.e., the edges had variable weights measured by the magnitude of the Granger
coefficients. The graph was exhaustively characterized by its adjacency matrix which shows
the existing links among nodes. In our case of weighted directed graph, the adjacency
matrix is non-symmetrical, thus allowing the differentiation between the incoming and
outgoing connections of a node.

To obtain statistical inference regarding groups’ differences in non-threshold connec-
tivity matrices (GC values), a Mann-Whitney-Wilcoxon test (p < 0.05) was performed. The
significant connections, corresponding to p < 0.05, were plotted onto a MRI template using
the BrainNet Viewer toolbox [21].

2.4. Graph Analysis

Graph analysis describes the network model properties by quantifying topologies of
the network representation. Starting from the matrix, different topological measures can be
derived for graph description [22]. To characterize the brain networks, parameters related
to global efficiency and node strength were calculated by using an open-source toolbox
(Brain Connectivity Toolbox, https://sites.google.com/site/bctnet/Home; accessed date:
1 December 2020). Global efficiency was computed as the inverse of the shortest weighted
path length and evaluates the ability of the brain to rapidly combine specialized informa-
tion from distributed brain regions. Structural networks usually are similarly organized
and share a high global efficiency, whereas functional network have weaker connections
between modules and consequently a weaker global efficiency [23,24]. Node strength was
computed as the sum of weights of links connected to the node: the in-strength is the sum
of inward link weights and the out-strength is the sum of outward link weights. In brain
networks, this basic feature is not distributed homogeneously across the nodes since some
nodes have a very high strength, marking them as putative network hubs [25].

A Mann-Whitney-Wilcoxon test (p < 0.05) was applied to statistically compare global
efficiency and node strength between the two groups.

3. Results

Average results from GC analysis are summarized in Figure 1 for healthy controls
(left panels) and PD participants (right panels): matrices of GC indices representing causal
strength among the eight ROIs (upper panels), matrices of the percentage of epochs recog-
nized as significant (medium panels), brain networks showing the connections significant
in at least 79% of epochs (lower panels), where 79% is the threshold selected on surrogate
data. Controls showed a higher number of connections; almost all of them, regardless of
their origin, were directed to bilateral central regions (the motor cortex: BA 1, 2, 3, 4, 6)
(Figure 1). The PD participants’ graph was overall poorer; only the connections from left
parietal to left central node exceeded the threshold.

Comparison between the average GC matrices in the two groups (Figure 2) indicated
significantly stronger connections (p < 0.05) in controls vs. PD participants for the edges
from the left (L) frontal to the right (R) central node; from the R frontal to the R central and
R parietal nodes; form L central to R central node; from the R occipital to R and L central,
and to R frontal nodes; from L occipital to L central and R frontal nodes; from the L parietal
to the R central node; and from the R parietal to the R central node.

https://sites.google.com/site/bctnet/Home
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Figure 1. (a,b) Grand-average GC matrices for (a) controls and (b) PD participants. Element (i,j) -
where i indicates the row and j the column - represents the weight of the connection from ROI j to ROI
i. CR and cL denote central areas of right (R) and left (L) hemisphere, fR and fL frontal areas, pR and
pL parietal areas and oR and oL occipital areas. The diagonal elements of the matrix are set to zero,
since they represent connections from a ROI to itself (loops). (c,d) Grand-average percentage matrices
for (c) controls (d) and PD participants: values in the matrix are reported as the result of the ratio, e.g.,
0.77 = 77

100 which corresponds to 77%. Element (i,j) represents the percentage of epochs where the
connection from ROI j to ROI i was recognized as significant throughout the whole recording. (e,f)
Connectivity networks for (e) controls and (f) PD participants. Only the most relevant connections
are depicted, i.e., the ones recognized as significant in at least 79% of epochs. Circles stand for
the eight ROIs and arrows for directed connections. Colorbars represent the magnitude of the
brain connections.
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Figure 2. Statistically significantly different edges (p < 0.05) in controls vs. PD participants as
calculated from the GC matrices. Edges values are derived from the Mann-Whitney-Wilcoxon test,
which compares the non-threshold connectivity matrices between the two groups. Only the p-values
of the significant connections (p < 0.05) were plotted onto the MRI template. Colorbar represents
p values.

Comparing Figure 1e with Figure 2 only 4 connections are not represented in Figure 1e
(i.e., from R frontal node to R parietal node; from L occipital node to R frontal node, from R
central node to R frontal node, from R occipital node to R frontal node). It has to be noted
that the different threshold could affect the comparison: the 79% used to select significant
connections within the group may be more stringent than the 0.05 p-value threshold used
to select significant connections between the two groups.

Global efficiency, a graph global measure expressed by a single value per network,
was higher in controls (0.035) compared to PD participants (0.017) (Figure 3a), although
the difference was not statistically significant. Node strength, a node-level measure based
on the number of connections that a given node has with any other node of the network,
showed higher values both for nodes with in-coming and out-coming information flow in
controls (Figure 3b,c). The significant larger information flow to/from the motor nodes
was clearly visible in both groups: for the in-coming information flow over R central node
(p = 0.025), for the out-coming over R central (p = 0.0407) and R occipital (p = 0.0024) nodes,
for the overall information flow over R frontal (p = 0.0327), central (p = 0.0043) and occipital
(p = 0.0368) nodes (Figure 3b). The larger information flow to/from the motor nodes was
clearly visible in both groups, especially for the in-coming flow (Figure 3b).
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Figure 3. (a) Global efficiency and (b) in-going, (c) out-going (d) and overall strength for each node,
in controls and PD participants. Indices were computed after applying the threshold at GC matrices
for each subject. (a–d) represent the grand average. The error bar in (a) represents the standard
deviation. The size of the node is proportional to the value of the index.

4. Discussion

Causal brain networks in PD, computed at a source level from EEG data, show overall
poorer and weaker connections, calculated as a reduction of global efficiency, although the
difference was not statistically significant, most likely due to the intra-subjects variability.
Measuring cortical areas reciprocal interactions, we observed a striking isolation of motor
areas in PD, especially for the information flow from the parietal and occipital areas to the
motor cortices.

Our results highlight a critical parietal and occipital disconnection in PD and are in
line with recent MRI data showing resting-state changes in dynamic functional connectivity
and reduced number of transition between states in more severely compromised PD [26].
Other imaging studies suggest alterations of these areas: a Positron Emission Tomography
(PET) investigation revealed that PD participants showed significantly lower relative
cerebral blood flow in the bilateral occipital and posterior parietal cortex [27]. The parieto-
occipital network oversees visual and sensory integration, processing the information to be
incorporated into the motor program and action. The strict interplay between motor and
visual system in the complex process of motor control appears impaired in PD [28,29] and
is one of the core neuropsychological features of PD disease progression.

Impaired sensory-motor integration, reflected by the weakening of connections be-
tween parietal and central areas, is also confirmed by clinical signs: altered proprioception—
i.e., the capability of recognizing body segment position in space—is considered a potential
contributor to some peculiar PD clinical pictures—i.e., Pisa syndrome—and becomes even
more evident as in the end stages of disease.
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We observed a defective incoming information flow at the right motor area in PD. An
interesting hypothesis rests on the differential function of dominant and non-dominant
limb [30–32]. In reaching movements, the non-dominant arm appears better adapted for
achieving accurate final positions and the dominant one for specifying initial trajectory
features, such as movement direction and peak acceleration. According to this view, the
visuo-spatial integration inflow to the right motor cortex, even at rest, may signal the more
detailed visuo-spatial control exerted on the left arm, which reaches targets with more
accuracy. In fact, people with PD show hypometria in reach-to-grasp tasks [33], interpreted
as a deficit of sequential implementation of complex movements. Recent work reported
also a difference in body representation during action in PD, which in fact rests, according
to the authors, on complex cognitive integrative functions [34].

We noticed a reduction of network global efficiency in PD. The efficiency of a network
is a measure of how efficiently it exchanges information across the whole set of edges.
This finding suggest that overall information flow is defective in PD. Similar results have
been observed in network topology analysis based on MRI data [35] and correlate with
cognitive [36] and motor symptoms [37]. These observations confirm the reliability of
GC computation based on EEG source analysis reconstruction; they may pave the way
for a more widespread use of EEG data, which are part of clinical practice and low-cost,
for this kind of analysis. Supporting this thesis, in our previous study [38], resting state
relative power of the same PD group was compared to the relative power of a different
group of healthy participants in each frequency band. All PD participants showed a
statistically significant increase of beta rhythm over sensorimotor areas and a substantial
decrease in delta range compared with healthy subjects (p < 0.05). These results are in line
with emerging theories suggesting PD is characterized by excessive synchronization in
the beta frequency band. The relationship between beta rhythm and clinical state is less
clear but some studies have shown strong correlations with rigidity and bradykinesia at
rest [39,40]. The average Montreal Cognitive Assessment (MoCA) score in PD participants
was 24.79 [38], suggesting a slight degree of cognitive deficit. We did not analyze a single
subject correlation between EEG power spectra and cognitive performance at MoCA. In
fact, a progressive increase of slow (theta and delta) rhythms is a well known feature in
PD. On this ground, the detection of beta band excess may be considered an even stronger
finding considering the likely relative increase in this cohort of slow rhythms.

The abnormal oscillatory activity may be modulated by Deep Brain Stimulation (DBS)
to stop the extrapyramidal tremor [41]. Based on the same concept, extradural motor cortex
stimulation was evaluated in PD with the objective to entrain the pathological circuit at
the cortical site [42]. Lastly, non-invasive brain stimulation techniques, namely repetitive
transcranial magnetic stimulation (rTMS) and transcranial direct current/alternating stimu-
lation (tDCS/tACS), have been deployed with the same rationale and to extend the efficacy
of cognitive rehabilitation [13,43,44]. Given the results that non-invasive stimulation can
reduce abnormal brain activity, results from the EEG connectivity could be potentially used
to direct the stimulation and optimize restoration of connectivity.

Since recent work [45,46] provided direct evidence that scalp EEG can sense both corti-
cal and subcortical signals, the promising results of this preliminary study support a future
data acquisition with high-density EEG systems (≥64 channels), exploiting individual head
models based on magnetic resonance imaging.

The choice of the quantification of causal interactions through the time domain for-
mulation of Granger causality in the source-waveforms domain enabled us to overcome
some interpretation caveats and common pitfalls that may arise when performing effective
connectivity on scalp EEG [47]. Among them, (1) the large distance between EEG sensors
and neural sources, and the spatial blurring effect of the skull on the electrical potential
EEG distribution —i.e., volume conduction, which causes spurious correlation values
between sensors; (2) the differences in signal-to-noise (SNR) ratio—i.e., impedances are
equated as much as possible prior to data recordings, but in practice they cannot be equal
for all sensors and stationary during the entire recording between signals, which can drive
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the asymmetries in the causality estimation; (3) common inputs (not included in the com-
putational model), which can lead to spurious inference. Granger causality in the source
domain allows to mitigate the adverse effect of volume conduction, also by discarding the
interactions at 0◦ phase and to putatively provide all the common inputs/generators of
EEG scalp data. In our model, signals are a combination of the signal-of-interest and a
superimposed noise to minimise the effect of variable SNR.

Eventually, to evaluate how much the system is fault tolerant and how much the
communication is efficient, the causal interactions were modelled as the weighted edges of
a graph: strength and global efficiency of the nodes—i.e., brain regions—of the graph were
estimated and compared between PD participants and controls.

The use of threshold is a typical approach for eliminating the weakest connections.
This methodology is still not universally accepted, because it may influence the number of
links included in the graph analysis and could affect the indices extracted from the network.
We used an automatic method based on surrogate and uncorrelated data that enables us to
control for spurious findings.

Our study has some limitations. First, the accuracy of EEG source-waveforms recon-
struction depends on a sufficient sampling of the surface potential field and increases as
the sampling density and coverage increases [48]. Second, despite the method for source
reconstruction is computationally cheap and easy to implement, it is based on ad-hoc
assumptions and constraints: different assumptions embedded in the source localization
method used to solve the inverse problem might lead to different results. Results might be
also influenced by the choice of the brain parcellation and the method used to deal with
the dipole orientation of all solution points in the same region of interest [49].

In summary, the use of MVAR models and a consolidated index such as the Granger
Causality index in the time domain allowed to assess alteration in brain connectivity in
PD participants. Future studies might finalize the analysis by using extended version
of Granger causality, e.g., to account for the frequency features of the connections and
minimize the volume conduction artefact—e.g., partial Granger causality [50], conditional
Granger causality [51,52], directed transfer function [53] or partial directed coherence and
their derivatives [54,55].

5. Conclusions

Our results provide evidence of an overall resting-state cortico-cortical reduced con-
nectivity in PD: motor areas appear almost isolated, with a strongly impoverished informa-
tion flow particularly from parietal and occipital cortices. The identification of defective
nodes/edges of a network may provide a therapeutic target for future interventional trials.

Author Contributions: Conceptualization and supervision: A.A., S.M., G.M.T., A.D.F.; Data collec-
tion: E.F.; A.D.F.; Data analyses: E.F., M.R., J.R.; Original draft preparation: E.F., M.R.; Funding
acquisition: A.D.F., S.M.; All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the ITALIAN MINISTRY FOR FOREIGN AFFAIRS grant
number PGR-01045 - SoftAct (call “Progetti di Grande Rilevanza Internazionale”).

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Institutional Ethics Committee of Padova University
Hospital (protocol n. 3507/AO/15, 10 September 2015).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. Written informed consent was obtained from the subjects to publish this paper.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to patients’ privacy.

Acknowledgments: The authors thank Leonora Castiglia and Michele Tonellato for data collection.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.



Brain Sci. 2021, 11, 1200 11 of 13

Abbreviations
The following abbreviations are used in this manuscript:

PD Parkinson’s Disease
EEG ElectroEncephaloGraphy
MVAR MultiVariate AutoRegressive
MRI Magnetic Resonance Imaging
fMRI functional Magnetic Resonance Imaging
PMC PreMotor Cortex
M1 Primary Motor Cortex
GC Granger Causality
MMSE Mini Mental State Examination
ROI Region Of Interest
BA Brodmann Areas
MVGC MultiVariate Granger Causality
AIC Akaike parsimony criterion
FFT Fast Fourier Transform
tDCS/tACS transcranial Direct Current/Alternating Stimulation
rTMS repetitive Transcranial Magnetic Stimulation
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