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A key area of research in epilepsy neurological disorder is the characterization of

epileptic networks as they form and evolve during seizure events. In this paper,

we describe the development and application of an integrative workflow to analyze

functional and structural connectivity measures during seizure events using stereotactic

electroencephalogram (SEEG) and diffusion weighted imaging data (DWI). We computed

structural connectivity measures using electrode locations involved in recording SEEG

signal data as reference points to filter fiber tracts. We used a new workflow-based tool

to compute functional connectivity measures based on non-linear correlation coefficient,

which allows the derivation of directed graph structures to represent coupling between

signal data. We applied a hierarchical clustering based network analysis method over

the functional connectivity data to characterize the organization of brain network into

modules using data from 27 events across 8 seizures in a patient with refractory

left insula epilepsy. The visualization of hierarchical clustering values as dendrograms

shows the formation of connected clusters first within each insulae followed by merging

of clusters across the two insula; however, there are clear differences between the

network structures and clusters formed across the 8 seizures of the patient. The analysis

of structural connectivity measures showed strong connections between contacts

of certain electrodes within the same brain hemisphere with higher prevalence in

the perisylvian/opercular areas. The combination of imaging and signal modalities for

connectivity analysis provides information about a patient-specific dynamical functional

network and examines the underlying structural connections that potentially influences

the properties of the epileptic network. We also performed statistical analysis of the

absolute changes in correlation values across all 8 seizures during a baseline normative

time period and different seizure events, which showed decreased correlation values

during seizure onset; however, the changes during ictal phases were varied.

Keywords: epileptic seizure networks, diffusion tensor imaging, stereotactic EEG, functional connectivity,

structural connectivity, hierarchical clustering, integrative brain network analysis
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INTRODUCTION

Brain connectivity measures are widely used to study and
characterize both normal brain functions and changes that occur
in serious neurological disorders such as Alzheimer’s disease
and epilepsy (Bettus et al., 2010; van Diessen et al., 2012;
Burggren and Brown, 2014; Bartolomei et al., 2017). Although
traditional approaches for analyzing brain connectivity have
often exclusively used either functional connectivity measures or
structural brain connectivity measures, there are an increasing
number of studies that use these two complementary measures
together (Guye et al., 2010; Tertel et al., 2011). Structural
connectivity measures derived from diffusion weighted imaging
(DWI) data represent stable white matter tracts. Functional
connectivity measures derived from functional imaging data or
electrophysiological signal data represent coupling between brain
activity recorded from different regions (Friston, 2011).

Although, structural and functional networks represent
complementary views of brain connectivity, accurate
characterization of the interactions between these two types
of networks is difficult. For example, certain brain regions
are highly connected by white matter tracts and have stable
long-term functional connections between them. However,
transient connections also exist and functional connectivity
can change from moment to moment depending on the state
of the brain and the task being performed (Bassett et al., 2011;
Hutchison et al., 2013; Di and Biswal, 2015). In addition,
structural network connections are capable of slowly changing
over time as new skills are learned or brain injury/pathology
appears and forces the formation of new pathways (Meier et al.,
2016; Voss et al., 2017). Therefore, a better understanding of
the interaction between structural and functional networks,
especially in severe neurological disorders, can provide
important insights into the progression and evolution of
these diseases.

Functional and structural connectivity studies have revealed
differences in a wide range of neurological conditions. For
example, using resting-state magnetoencephalography (MEG)
data, differences in functional connectivity were found in
obsessive compulsive disorder patients as compared to healthy
controls (Koh et al., 2018). Similarly, changes detected in white
matter structural connectivity of epilepsy patients have been
used to differentiate epilepsy patients with and without cognitive
degeneration (Vaessen et al., 2011) and resting-state functional
network analysis has been used to evaluate seizure networks in
presurgical evaluation of medial temporal lobe epilepsy (Bettus
et al., 2010). In this article, we describe the development
of an integrative approach to characterize the dynamics of
network motifs formed during epileptic seizures using functional
connectivity and correlate the results with structural connectivity
measures derived from pre-surgical DWI.

Epilepsy is a serious neurological disorder affecting more
than 60 million persons worldwide with disruption of brain
networks that may or may not involve the presence of brain
pathology (Berg et al., 2010; Richardson, 2012; Chowdhury
et al., 2014). Similar to other brain connectivity research studies,
there is increasing interest in using network analysis techniques

to characterize epileptic networks where brain locations are
represented as nodes and association between these nodes (fiber
tracts or functional correlation) are represented as edges (van
Diessen et al., 2012). Network analysis of brain connectivity data
provides important insights into the network organization of
brain regions at both local and global levels (Rubinov and Sporns,
2010; Kramer and Cash, 2012). There has been significant work in
the use of network analysis methods to study epileptogenic zone
extent using functional network data (Ponten et al., 2007; Kramer
and Cash, 2012; van Diessen et al., 2012; Bartolomei et al., 2013,
2017). In addition, many studies have characterized changes in
the structural networks of epilepsy patients, including cortical
and subcortical atrophy (McDonald et al., 2008; Bonilha et al.,
2010; Otte et al., 2012; Whelan et al., 2018).

Computation of Functional and Structural
Connectivity Measures in Epilepsy
Functional connectivity measures to study epileptic network
are often derived from electroencephalography (EEG) data
recorded from scalp electrodes, subdural electrodes, and depth
electrodes (Bartolomei et al., 2017). In particular, stereotactic
EEG (SEEG) recorded using intracranial depth electrodes
provide fine granularity signal data that are not affected by
barriers, such as scalp or dura mater between the electrode and
site of electrophysiological event (Rosenow and Lüders, 2001).
During evaluation for surgical resection in focal epilepsy, SEEG
data is recorded from intracranial depth electrodes to localize
seizure foci. Additionally, high resolution magnetic resonance
(MR) imaging is typically carried out before implantation to assist
with surgical planning. Diffusion weighted images, in particular,
aid in the planning of surgical resection to minimize damage
to major white matter structural pathways. However, diffusion
weighted images can be used to gain more detailed information
and a number of different structural connectivity metrics have
been developed. Most commonly used metrics are the fractional
anisotropy (a measure of the direction of diffusion) and mean
diffusivity (how much water has diffused in a particular region).
The additional application of tensors (Basser et al., 2000), or
other mathematical constructs (Behrens et al., 2003), allow for
a voxel-wise estimation of the overall direction of diffusion.

This detailed information enables white matter pathways
to be traced from voxel-to-voxel throughout the brain and
the major tracts to be reconstructed. Although probabilistic
tracking algorithms provide a higher probability of the tracts
being true as compared to deterministic tracking, they are
still subject to the same limitations as deterministic tracking.
Diffusion images are typically acquired at a resolution of
a few millimeters and each voxel will contain many white
matter fibers, often orientated in many different directions.
Therefore, tracking algorithms may struggle to resolve crossing
or touching fibers within the individual voxels. The application of
techniques such as spherical deconvolution are able to improve
the estimation of directionality by allowing multiple directions
to exist (Alexander et al., 2002). In this paper, we use the
electrode contacts used for recording SEEG as end points
to compute fiber tracts between the electrode contacts and
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analyze the resulting structural connectivity network together
with functional network information.

There are several significant challenges for integrative analysis
of epileptic network, including: (1) the large volume of SEEG
data that need to be processed and mapped to specific events
(e.g., seizure onset, ictal phases); and (2) computation of white
matter fiber tracts from structural and diffusion MRI data
at different resolutions and in a common anatomical space
without degradation of the data. In this paper, we describe the
development of an integrative analysis approach for epileptic
networks using seizure events as a frame of reference and the
use of a new workflow-based tool for efficient processing as
well as analysis of SEEG data. We describe the graph motifs
formed during 27 seizure events using clustering-based network
analysis and correlate these functional connectivity features with
the structural connectivity measures. In addition, we perform
statistical analysis of the changes in coupling measures between
brain regions during multiple events, including ictal events. Ictal
events occur during seizure and they include phases (labeled
as ictal 1 phase, ictal 2 phase etc.) representing propagation
of abnormal activity to other parts of the brain following
seizure onset.

Related Work
We performed a PubMed search in August 2018 with
keywords (stereotactic EEG and tractography) OR (SEEG and
tractography) and the result included only two publications. One
of the publications described the use of intraoperative MRI and
functional navigation to address surgical challenges associated
with tumors located in the eloquent brain regions (Sommer
et al., 2014). The second publication describes the creation of a
database to compare deep brain stimulation target areas using a
common coordinate system (Höflich et al., 2013). However, some
studies have described the correlation of electrocorticography
(ECoG) and diffusionMRI to characterize structural connectivity
measures in the context of ECoG data. For example, a study
by Swann et al. describes the use of task-based ECoG data,
diffusion MRI, macrostimulation, and cortico-cortical evoked
potentials (CCEPs) to study the network control between pre-
supplementary motor area (preSMA) and right inferior frontal
gyrus (rIFG) (Swann et al., 2012). A study that is similar
to our work presented in this paper used ECoG constrained
tractography to correlate structural connectivity derived from
DTI data with ECoG data recorded during a working memory
task (Tertel et al., 2011).

In contrast, our study uses functional connectivity networks
formed during seizure events using SEEG data, which has
a higher resolution than ECoG, and explores the correlation
between the functional network and structural connectivity
measures. In addition, our study leverages a new informatics
tool called the Neuro-Integrative Connectivity (NIC), which was
developed by us to process and analyze large-scale EEG data
(Sahoo et al., 2020). To the best of our knowledge, there are no
existing informatics tools that use a workflow system to process
SEEG signal data for automated computation of functional
connectivity measures and network analysis of epileptic networks
(Mouček et al., 2014; Bigdely-Shamlo et al., 2016). Further, there

has been limited work in the development of an interoperable
data representation format for electrophysiological signal data.
In our previous work, we developed the Cloudwave Signal
Format (CSF) (Jayapandian et al., 2015), which is used as a
common abstraction model for signal data in the NIC platform
for the computation of signal coupling measures and for
network analysis.

Various measures have been proposed to characterize the
coupling between signal data recorded from different brain
regions during clinical events, including linear or non-linear
correlation measures using signal amplitude and coherence
measures based on signal frequency (Bartolomei et al., 2017).
In particular, non-linear correlation coefficient values have been
shown to be effective in characterizing functional connectivity
between brain regions with the ability to derive directionality of
connections (Pijn et al., 1989; Pijn and da Silva, 1993). These
correlation values together with directionality information are
increasingly being used to generate directed graph networks,
which can be used to study functional networks (Kramer and
Cash, 2012; Stam and van Straaten, 2012; vanDiessen et al., 2012).
Similarly, structural network changes in epilepsy have also been
studied using network analysis measures (Besson et al., 2014;
Abdelnour et al., 2015).

We derive structural connectivity from DWI tractography
between contacts of depth electrodes involved in recording
seizure events. There are many tools for processing DWI data
and for deriving deterministic as well as probabilistic measures
corresponding to structural networks, for example FMRIB
(Functional Magnetic Resonance Imaging of the Brain) Software
Library (FSL) Diffusion Toolbox diffusion module, Diffusion
Spectrum Imaging (DSI) Studio, Camino and MRtrix. However,
there has been limited work in integrative analysis of signal
data from SEEG electrodes and DWI data for characterizing the
properties of epileptic networks as described in this paper.

MATERIALS AND METHODS

This study analyses SEEG and DWI data from a patient
with diagnosis of refractory left insula epilepsy of 5 years
duration with normal developmental history. The patient
suffered 4–10 seizures per day and underwent routine evaluation
for surgical resection of the seizure generating tissues. This
included routine pre-surgical MRIs and computer tomography
(CT) before depth electrodes were stereotactically implanted
in the insula, opercular and mesial temporal regions of
both the right and left hemispheres (we refer to Lacuey
et al., 2015, 2016 for more details). Prior to conducting
the study, ethical approval was obtained from the Internal
Review Board at University Hospital Cleveland Medical Center
(UHCMC), Cleveland, Ohio. As a retrospective chart review
study of anonymized data, informed consent was not required.
Retrospective anonymized clinical data, including MRIs, CTs,
depth electrode recordings and patient notes, were retrieved from
the UHCMC Epilepsy Center.

The lead location of the depth electrodes was confirmed via
CT images acquired within 24 h of insertion. The electrodes
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consisted of platinum-iridium contacts with a diameter of
1.1mm by 2.5mm and each lead was 31 cm long with 10–12
electrodes that were placed every 5mm, beginning from the tip.
Based on their role in recording seizure activity (identified during
EEG reading session), 15 electrodes were selected for analysis
in this study and the details of these electrodes are provided in
Table 1. A detailed description of the seizure events, the timeline,
list of electrode contacts involved, and type of events across 8
seizures recorded in the patient during the stay in the epilepsy
center are provided in Table 2. In the following sections, we
describe the method used for data acquisition, processing, and
analysis of both imaging and SEEG signal data using a workflow-
based tool (Figure 1).

Imaging Data Acquisition and Processing
Brain MRI images for surgical planning were acquired with a 3T
MR scanner, these included: (1) a high resolution T1-weighted
MPRAGE scan with gadolinium contrast, using a 288 by 384
field of view (FOV) yielding an in-plane resolution of 0.67 ×

0.67 mm2 and 1mm thick slices, a total of 160 slices were
acquired; and (2) 30-direction diffusion weighted image with a
FOV of 128 × 128 producing a final in-plane resolution of 1.8
× 1.8 mm2 and 3mm slices. Full-brain coverage was achieved
with 64 slices. One B0 image was acquired, and the b factor
was 1,000. A post-surgical brain CT image was also acquired
for localization of electrode positions, the FOV was 512 × 512
producing a voxel resolution of 0.98 × 0.98 × 1 mm3 with
237 slices.

TABLE 1 | Location of electrodes of interest.

Electrode Location

RF1-3 Perisylvian/opercular region

RJ1-2 Posterior short gyrus of the anterior insula

LF1-3 Perisylvian/opercular region

LI1-3 Perisylvian/opercular region

LJ1-3 Middle short gyrus of the anterior insula

LK1-2 Posterior short gyrus of the anterior insula

R, right hemisphere; L, left hemisphere. F, I, J, and K refer to the lead within that

hemisphere. The number represents the electrode location along the lead, counting from

the tip.

CT
The post-surgical CT image was co-registered to the T1 image
using FSL’s FMRIB Linear Image Registration Tool (FLIRT)
module (Jenkinson and Smith, 2001; Jenkinson et al., 2002) and
a rigid-body transform with 6 degrees of freedom was used.
Once in T1 space, the CT image was thresholded to isolate
the electrodes. They appeared as very bright artifacts, with a
value much higher than the rest of the brain structures. Once
isolated, FSL’s image viewer was used to manually delineate
each individual electrode of interest and create a separate NIfTI
(Neuroimaging Informatics Technology Initiative) image for
each one. Each electrode image was multiplied by a unique
number from 1 to 15 and then all electrodes were added together
to form a single image. The numbers were assigned randomly
as the purpose was to create a unique image intensity value
for each electrode so they could be distinguished in the final
single image using the software. The final image was used in the
last stage of the DTI analysis below. The transformation matrix
from T1 space to DTI space was determined using FSL’s flirt
command and applied to the image header only. Only the voxel
grid is translated, not the image itself. This allowed the regions
of interest (ROIs), defined in T1 space, to be translated into DTI
space without altering the image intensities or electrode sizes.

T1
The T1 weighted image containing the T1 to DTI space
transform was initially brain extracted using FSL (Smith,
2002). Segmentation of gray, white matter, cerebrospinal fluid
and subcortical structures was performed using FSL’s FMRIB
Automatic Segmentation Tool (FAST) (Zhang et al., 2001)
and FIRST (Patenaude et al., 2011) functions implemented
through the MRtrix3 software (www.mrtrix.org). FAST is a
fully automated segmentation module that uses Markov random
fieldmodeling. FMRIB Integrated Registration and Segmentation
Tool (FIRST) segments the subcortical structures using a
Bayesian framework to compare the size and shape of intensity
regions to a training set of structures. A composite image was
then composed to inform and anatomically constrain the DTI
tractography (Smith et al., 2012).

DTI
The diffusion weighted images were pre-processed using both
FSL and MRtrix. Initially, MRtrix’s denoising function was

TABLE 2 | Details of seizure events recorded during stay of patient in epilepsy monitoring unit.

Seizure ID Onset frequency Duration Seizure onset Ictal 1 phase Ictal 2 phase Ictal 3 phase

1 Rhythmic delta 4–5Hz 45 s LJ1-3, LK1-2 LF 1-3, RF1-3

2 Rhythmic delta 4–5Hz 56 s LJ 1-3, LK1-2 LF1-3, RF1-3 RJ 1-2 LI 1-2

3 Rhythmic delta 4–5Hz 58 s LJ 1-3, LK1-2 RF 1-3 LF 1-3, RJ 1-2 LI 1-2

4 Rhythmic delta 4–5Hz 42 s LJ1-3, LK 1-2 LF 1-3, RF1-3, RJ 1-2 RJ 1-2 LI 1-2

5 Rhythmic delta 4–5Hz 49 s LJ 1-3, LK 1-2 LF 1-3, RF 1-3 LI 1-2

6 Rhythmic delta 4–5Hz 50 s LJ 1-3, LK 1-2 LF 1-3, RF 1-3 RJ 1-2 LI 1-2

7 Rhythmic delta 4–5Hz 44 s LJ 1-3, LK 1-2 LF 1-3, RF 1-3, RJ 1-2 LI 1-2

8 Rhythmic delta 4–5Hz 43s LJ 1-3, LK 1-2 LF 1-3, RF1-3, RJ 1-2 LI 1-2
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FIGURE 1 | Workflow-based approach for integrative analysis of structural (L) and functional (R) connectivity networks in epilepsy. The structural connectivity workflow

(on the left) involves image processing, registration, and use of electrode contacts as constraints for fiber tracting. The functional connectivity workflow (on the right)

uses a new signal data format called CSF for computing coupling measures between signal recorded from different brain locations.

applied (Veraart et al., 2016a,b). This creates a noise map
based on the PCA (principle component analysis) domain and
allows for extraneous signals to be removed. Motion correction
and eddy current correction was performed using FSL’s “eddy”
command (Andersson and Sotiropoulos, 2016) implemented
through the “dwipreproc” script in MRtrix. A whole brain
mask was applied to remove voxels outside the brain before
estimating the response functions for spherical deconvolution
using the Tournier algorithm. This is an iterative algorithm for
single fiber voxel selection (Tournier et al., 2013). Finally, the
fiber orientation distribution was estimated using constrained
spherical deconvolution (Tournier et al., 2008). This allows the
direction of the water motion to be estimated as a composite of
directions and it is able to detect crossing fibers more readily than
the tensor calculations typically used in DTI analyzes.

Whole brain probabilistic tractography was performed in
MRtrix using second order integration over the fiber orientations
distributions (iFOD2 algorithm) (Tournier et al., 1992). The

tracking was anatomically constrained using the segmented
composite T1 image described in the previous section. This
prevents tracking into gray matter and areas of cerebrospinal
fluid. The electrode image was then applied to the resulting tracks
to determine the number of connections that existed between
each electrode and every other electrode.

Signal Data Processing and Analysis
Signal Data Processing
SEEG data was acquired from the 15 depth electrodes described
earlier and data was stored in files using the European Data
Format (EDF) (Kemp et al., 1992; Kemp and Olivan, 2003; Kemp
and Roessen, 2013). To address the challenges associated with
using EDF files to derive functional connectivity measures, CSF
files were generated from the EDF files using the NIC tool. The
NIC tool features a function to generate CSF files from EDF files
with user-defined parameters, for example duration of signal data
segment stored in a CSF file, and number of segments stored in
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a CSF file. In this study, the EEG data recorded from the patient
was stored in 12 EDF files and these EDF files were processed
using the NIC tool to generate 204 CSF files. These CSF files
were subsequently processed by the NIC tool to derive non-
linear correlation coefficient values as a measure of functional
connectivity (Pijn et al., 1989).

Derivation of Graph Model of Functional Networks
There are multiple measures of functional connectivity that
are based on the degree of synchronization between brain
activity recorded over time either during task-based or resting-
state events (van Diessen et al., 2012). In epilepsy, functional
connectivity measures derived from signal data are based on an
assumption of linear correlation (Brazier, 1983; Pijn and da Silva,
1993) or coherence of signal frequency (Brazier, 1983; Da Silva
and Mars, 1987), or non-linear correlation (Marshall et al., 1983;
Pijn et al., 1989). In this paper, we use a non-linear correlation
coefficient measure h2 developed by Pijn et al. that is based on
estimation of amplitude y of signal Y from amplitude x of signal
X assuming predicted value of y for given value of x is a regression
curve (Pijn et al., 1989). The non-linear correlation coefficient h2

is asymmetric, that is h2(x|y) 6= h2(y|x), which allows us to derive

directionality together with strength of coupling between two
signal values.

To generate a more concise representation of the correlation
values, significant values were computed using a threshold
value derived from the average and standard deviation of h2

values computed using signal data recorded 20 s before the
onset of seizure (selected by a domain expert). This threshold
value was computed once and consistently used for computing
the significant values in all 27 events across 8 seizures. The
temporal bin for individual h2 values corresponds to the
duration of clinically defined and distinct events, including
seizure onset, ictal 1 phase, ictal 2 phase etc. The significant
values together with directionality information from the h2

values were used to generate directed graph models for all the 8
seizures recorded from the patient during the patient’s stay in the
epilepsy monitoring unit. The graph model consisted of nodes
corresponding to electrode contacts and edges corresponding
to interactions between the nodes. The significant values
derived from the non-linear correlation values are modeled as
directed edges with solid edges representing values >2 standard
deviations and dashed edges representing values >1 standard
deviation from baseline, respectively (using an approach similar
to Wendling et al. for computing significant values Wendling
et al., 2009). Using this directed graph network model, we
computed hierarchical clustering measure to characterize the
organization of brain regions involved in epileptogenicity during
seizure onset and ictal phases (corresponding to propagation of
abnormal brain activity to other parts of the brain following
seizure onset).

Characterizing the Formation of Graph Motifs in

Seizure Network Using Hierarchical Clustering
Several studies on brain connectivity have shown a hierarchical
organization of brain networks for both human and non-
human subjects (Bassett et al., 2010; Stam, 2014). In epilepsy,

various studies have identified the formation and destruction of
network structures during epileptic seizure (Kramer and Cash,
2012). Kramer et al. used ECoG signal data to derive functional
connectivity networks and identified a dominant subnetwork
that formed during seizure, which disbanded toward the end
of the seizure (Kramer et al., 2010). In this paper, we use the
hierarchical clustering method to detect “communities of brain
regions” (corresponding to electrode contacts) that form during
seizure events by clustering nodes based on their similarity
measures (Newman, 2018). We used cosine similarity measure
in this paper to compute the similarity between all vertices in
the directed graphs corresponding to 27 events, including seizure
onset and ictal phases, across 8 seizures.

The cosine similarity is measured as the dot product between
the rows of the adjacency matrix corresponding to a pair of
vertices (Salton, 1989). Given two vertices x, y, and Mxk and Mky
are the rows of the adjacency matrix M representing the directed
graph of a seizure event, the cosine similarity is computed as:

σxy =

∑

kMxkMky
√

∑

kM
2
xk

√

∑

kM
2
ky

(Newman, 2018). Once the cosine similarity values are measured
for all pair-wise vertices, we generate the hierarchical clustering
by combining vertices with the highest similarity followed by
aggregating groups of vertices, again, using their similarity values.
These steps are repeatedly applied until all the vertices are
aggregated into a single group. The resulting hierarchical clusters
are represented as dendrograms, which allows easy interpretation
of the formation of groups in the vertices corresponding to
electrode contacts.

Evaluation of Correlation Changes During Seizure

Events
The modules formed during seizure events (described in the
previous section) represent patterns of coupling between brain
regions that occur during seizure events. Previous studies have
found that seizures events are not associated with consistently
hypersynchronous state (Kramer et al., 2010) and that there is
increased degree of coupling during seizure onset followed by
decreased coupling during ictal phases (Bartolomei et al., 2001,
2017). However, there is limited data available to systematically
characterize the changes in correlation values that occur during
seizure events as compared to the inter-ictal period. To determine
whether these correlation patterns vary significantly from the
inter-ictal period, we performed a signed-rank test using a pre-
ictal time duration as baseline normative event, which was
identified during EEG reading by a research fellow. We evaluated
the changes in correlation values between contacts on distinct
electrodes during seizure onset and subsequent ictal phases as
compared to the baseline event.

Using the correlation data for each pair of contacts that
are not on the same electrode, we generated a vector of h2

values for the seizure onset and subsequent ictal phases in each
seizure. The difference values of the correlation values at each
seizure stage were computed by subtracting corresponding h2

values computed during a control period non-seizure activity
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as described above. This control period served as a baseline
reference for h2 values for each pair of electrode contact.
The sign-rank test was used to assess whether the respective
differences in the stage vs. control period h2values per electrode
pair are significantly different than zero, with the seizures
providing replication of observation. Two-sided p-values were
computed using Matlab software (The MathWorks, Inc.) In
addition, to adjust for multiple comparisons, we employed the
Benjamini-Hochberg (B-H) false discovery rate method with
a false discovery rate of 0.05 to compute the B-H critical
value (Benjamini and Hochberg, 1995). The original p-values
and corresponding adjusted B-H p-value cutoffs are listed in
the (Supplementary Tables 1–4). Results are interpreted relative
to the adjusted thresholds. We discuss the results in the
next section.

RESULTS

Functional Connectivity and Modularity
Analysis
Figure 2 shows a panel view of: (1) correlation values
(represented as heat map) that were computed for 27 events; (2)
the directed graph structures derived from the correlation values;
and (3) dendrograms showing formation of graph motifs during
seizure onset and subsequent ictal phases. The directed graph
models for the 27 events show that a variety of graph motifs are
formed during seizure onset with additional motifs being formed
as well as disintegrating during subsequent ictal phases.

Similar to results reported in earlier work by Kramer et al.
using undirected graphmodels (Kramer et al., 2010), the directed
graph motifs in Figure 2 are formed during the seizure onset
phase with a significant number of connections occurring during
ictal 1 phase. There are common patterns in terms of the
subgraph motifs formed during events across the 8 seizures,
for example the contacts on electrodes LF and RF form highly
connected subgraphs during seizure onset across the 8 seizures
(Figure 2). During seizure 2, seizure 3, and seizure 4, there are
multiple instances of formation of cliques or all-to-all connected
graph motifs involving electrodes in perisylvian/opercular, short
gyrus of the anterior insula. These densely interconnected graph
motifs disintegrate during ictal 2 phase in most of the seizures
with the graph network showing similarities to the sparse
interconnections of the baseline normative event in Figure 2.

During ictal 3 phase in seizure 2, 3, and 4, there is re-formation
of highly interconnected graph motifs. However, these graph
motifs formed during ictal 3 phase do not show the high level
of interconnectivity that are seen during seizure onset or ictal 1
phase. In this patient, there are no consistent patterns of graph
motifs in events, such as seizure onset, ictal 1 phase, and ictal
2 phase, across all the 8 seizures, which makes it challenging to
apply network analysis measures to infer seizure onset zone for
this patient.

Figure 2 also shows the formation of a connected motifs
among the vertices represented as dendrograms, which were
computed based on the hierarchical clustering method using
cosine similarity measures of group vertices. The x-axis of the

dendrograms (leaves) consists of the electrode contacts and the
level at which two sets of vertices merge along the y-axis. The y-
axis represents the dissimilarity between two sets of vertices. The
color of the connecting edges in the dendrograms represents the
similarity between the sets of vertices, which is computed using
cosine similarity measure as described in the previous section
Signal Data Processing and Analysis. Figure 2 shows that there is
maximum activity related to merging of different sets of vertices
during seizure onset and ictal 1 phase followed by ictal 3 phase
with limited or no formation of clusters during ictal 2 phase. For
example, during seizure onset phase in seizure 4 the electrode
contacts on LJ (in middle short gyrus) and LK (in posterior short
gyrus) progressively form connected clusters.

During ictal 1 phase of the same seizure (seizure 4), the
electrode contacts in each insula form clusters of graph motifs
before merging with clusters of other graph motifs across the
two insula. It is interesting to note that electrode contacts LF3
(perisylvian/operculum region of the left insula) and LK1 in the
posterior short gyrus of the left insula have higher similarity
compared to adjacent contacts on the same lead, that is, LF1,
LF2, and LK2. Similarly, in the right insula the electrode contact
RF3 has higher similarity with electrode contacts RJ1 and RJ2 as
compared to contacts on the same electrode, that is, RF1 and RF2.
The formation of clusters declines significantly during ictal 2 and
ictal 3 phases in seizure 4.

Figure 3 illustrates the distribution of count of the electrode
contact pairs for different values of cosine similarity measures
that is used to generate the dendrograms described above. It is
interesting to note that the highest and second highest count of
electrode contact pairs (41 and 36, respectively) correspond to
the cosine similarity measure of 1 and 0.5. These counts may be
interpreted as the occurrence of a large number of interactions
between brain regions with high degree of structural similarity.
To gain a better understanding of the distribution of these
cosine similarity measure in the baseline period as well as other
seizure events, we grouped the cosine similarity values by events
across all the 8 seizures. Figure 4A shows the aggregated cosine
similarity values during baseline event, seizure onset, ictal 1, ictal
2, and ictal 3 phases across the 8 seizures.

Figure 4A clearly shows that there are significant differences
between the baseline period and other events with ictal 1
phase in particular showing a cluster of cosine similarity values
between 1 (high degree of similarity) and 0.16 (low degree of
similarity). In contrast to the baseline phase, the seizure onset
and ictal phases show hierarchical organization of interacting
brain regions, which is consistent with previously reported
results describing a hierarchical organization of connectivity
between brain regions with respect to epileptogenicity
(Bartolomei et al., 2017; Shine et al., 2017). The large
number of electrode contacts with high cosine similarity
measure of 1 during seizure onset, ictal 1, and ictal 3 phases
are consistent with the proposed theory that seizures are
characterized by a hypersynchronous state and that the level
of synchronization decreases toward end of seizure (Kramer
et al., 2008; Kramer and Cash, 2012). Table 3 lists the specific
electrode contact pairs corresponding to the cosine similarity
value and the seizure events during which the electrode
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FIGURE 2 | Continued
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FIGURE 2 | Adjacency matrix representation of correlation values between electrode contacts during 27 events across 8 seizures derived from non-linear correlation

coefficient measures using color to represent strength of coupling (red denotes stronger correlation and blue denotes weaker correlation). The directed graph

structures derived from the correlation matrices using significant values with dashed lines representing lower and solid lines representing higher values. The modularity

of the vertices in the graph are characterized using hierarchical clustering and visualized as dendrograms.
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FIGURE 3 | The distribution of the aggregated count of electrode pairs corresponding to cosine similarity values that are used to compute clustering of brain regions

in 27 events across 8 seizures to generate dendrograms shown in the previous figure.

contact pairs have a specific cosine similarity value across the
8 seizures.

In addition to analyzing the distribution of cosine similarity
values, we analyzed their association with correlation values
for seven pairs of electrode contacts (contacts were not on
the same electrode), which has non-zero cosine similarity
values across seizure events (in addition to ictal 1 phase).
Figure 4B shows that high correlation values do not correspond
to high cosine similarity value and vice-versa. In addition,
Figure 4B shows an absence of an overall trend in the scatter
plot of cosine similarity and correlation (h2) values. However,
it is interesting to note that during both ictal 1 and ictal
3 phases, there are a number of electrode pairs with high
correlation and cosine similarity value. In particular, electrode
contacts on LJ (in middle short gyrus) and LK (in posterior
short gyrus), that is, [LJ3, LK2], [LJ1, LK2], [LJ2, LK1], and
[LJ3, LK1] have high correlation as well as cosine similarity
values. In addition, it is notable that during the ictal 1
phase, only two electrode contact pairs [RF3 and RJ2] and
[LJ3, LF1] have high correlation and cosine similarity values.
Therefore, Figure 4B shows that electrode contact pairs with
high correlation values do not form clusters of connected brain
regions (detected by the cosine similarity values) during different
ictal phases.

Sign-Rank-Test Results
We performed sign-rank-test to evaluate the significance of
changes in correlation values during baseline and seizure events.
Figures 5A–D shows boxplots of difference between correlation

values per electrode pair and for each seizure event, that
is baseline as compared to seizure onset (Figure 5A), ictal
1 phase (Figure 5B), ictal 2 phase (Figure 5), and ictal 3
phase (Figure 5D) that were generated using Matlab software
(MathWorks, Inc.) For each ictal stage, we present boxplots
of the difference in correlation values from baseline. For a
given stage, boxplots correspond to the 25 pairs with smallest
p-values in the testing of whether or not the difference in
correlation values is zero. Boxplots are based on data from all
8 seizures.

The figures show that some of the electrode contact pairs
have higher degree of correlation as compared to baseline period
during seizure onset (Figure 5A). However, the changes in
correlation values during ictal 1 and ictal 2 phases are all negative,
that is, there is decreased correlation values between electrode
contacts during these two stages as compared to the baseline
stage (Figures 5B,C). Finally, there is greater correlation between
electrode contact pairs during ictal 3 phase represented by
positive changes (Figure 5D). These results of the sign-rank-test
show that there are statistically significant increases in correlation
values between specific electrode contacts during seizure onset.
Further, there is a trend toward decreased correlation values
during ictal 1 and ictal 2 phases followed by increased correlation
values during ictal 3 phase; however, these are not statistically
significant. The results of the B-H false discovery rate show
that the highest p-value that is less than B-H critical value is
for the [LI1, LF2] pair of electrode contacts; therefore, the first
set of 51 tests are significant during the seizure onset event
(Supplementary Tables 1–4).
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FIGURE 4 | (A) The clustering of cosine similarity values for electrode pairs according to baseline, seizure onset, and ictal events in 27 events across 8 seizures shows

significant increase in interactions between electrode pairs during ictal 1 phase as compared to any other event (including baseline event) The figure does not include a

bin for cosine similarity value of 0 (a figure with bin for cosine similarity value of 0 is available as Supplementary File). (B) For seven pairs of electrode contacts that

had non-zero cosine similarity values across multiple seizure events (in addition to ictal 1 phase) there is no association between correlation values and cosine

similarity values.
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TABLE 3 | Grouping of electrode contact pairs by cosine similarity values with

corresponding seizure events.

Similarity Electrode

Pairs

Events

1 [LF1, LF3] Seizure 1 Onset; Seizure 1 Ictal 1 phase;

Seizure 2 Ictal 2 phase; Seizure 3 Onset;

Seizure 3 Ictal 2 phase; Seizure 4 Ictal 2 phase;

Seizure 5 Onset; Seizure 5 Ictal 1 phase;

Seizure 5 Ictal 2 phase; Seizure 6 Onset;

Seizure 6 Ictal 1 phase; Seizure 6 Ictal 2 phase;

Seizure 7 Onset; Seizure 7 Ictal 1 phase;

Seizure 7 Ictal 2 phase; Seizure 8 Ictal 1 phase

[RF1, RF3] Seizure 1 Onset; Seizure 1 Ictal 1 phase;

Seizure 2 Ictal 2 phase; Seizure 2 Ictal 3 phase;

Seizure 3 Ictal 3 phase; Seizure 4 Onset;

Seizure 4 Ictal 2 phase; Seizure 4 Ictal 3 phase;

Seizure 5 Onset; Seizure 5 Ictal 2 phase;

Seizure 6 Onset; Seizure 6 Ictal 1 phase;

Seizure 6 Ictal 2 phase; Seizure 7 Onset;

Seizure 7 Ictal 1 phase; Seizure 8 Onset;

Seizure 8 Ictal 1 phase

[LJ3, LK2] Seizure 2 Ictal 2 phase

[LJ1, LJ3] Seizure 4 Onset; Seizure 6 Ictal 1 phase

0.866025 [LK1, LF3] Seizure 4 Ictal 1 phase

0.816497 [RF3, RJ1] Seizure 4 Ictal 1 phase

[RF3, RJ2] Seizure 4 Ictal 1 phase

0.7071 [LJ3, LF1] Seizure 2 Ictal 1 phase

[LF1, LF3] Seizure 2 Ictal 1 phase

[LJ2, LK1] Seizure 2 Ictal 3 phase; Seizure 3 Ictal 1 phase;

Seizure 3 Ictal 2 phase; Seizure 3 Ictal 3 phase;

Seizure 4 Ictal 3 phase; Seizure 7 Onset

[LJ3, LK1] Seizure 2 Ictal 3 phase

[LJ1, LK2] Seizure 3 Ictal 1 phase; Seizure 4 Onset

[LJ1, LK1] Seizure 3 Ictal 2 phase

[LJ3, LK2] Seizure 3 Ictal 3 phase; Seizure 4 Onset;

Seizure 4 Ictal 3 phase; Seizure 7 Onset

[LJ1, LJ3] Seizure 4 Ictal 1 phase

0.67082 [LF1, LF2] Seizure 4 Ictal 1 phase

[RF1, RF2] Seizure 4 Ictal 1 phase

0.6666 [LF3, LI1] Seizure 4 Ictal 1 phase

[RJ1, RJ2] Seizure 4 Ictal 1 phase

0.59625 [LK2, LF2] Seizure 4 Ictal 1 phase

0.57735 [RF1, RJ1] Seizure 2 Ictal 2 phase

[LJ2, LK1] Seizure 4 Onset

[LJ2, LJ3] Seizure 4 Ictal 1 phase

[LJ2, LF1] Seizure 4 Ictal 1 phase

[LJ3, LF3] Seizure 4 Ictal 1 phase

[LJ3, LI1] Seizure 4 Ictal 1 phase

[LK1, LI1] Seizure 4 Ictal 1 phase

[LF1, LF3] Seizure 4 Ictal 1 phase

[LF1, LI1] Seizure 4 Ictal 1 phase

[RF2, RJ1] Seizure 4 Ictal 1 phase

[RF2, RJ2] Seizure 4 Ictal 1 phase

0.516398 [LJ2, LF2] Seizure 4 Ictal 1 phase

[LF2, LF3] Seizure 4 Ictal 1 phase

[RF1, RJ1] Seizure 4 Ictal 1 phase

[RF1, RJ2] Seizure 4 Ictal 1 phase

(Continued)

TABLE 3 | Continued

Similarity Electrode

Pairs

Events

0.5 [RF1, RF2] Seizure 2 Onset; Seizure 3 Onset; Seizure 3

Ictal 1 phase; Seizure 3 Ictal 2 phase; Seizure 5

Ictal 1 phase; Seizure 6 Ictal 3 phase; Seizure 8

Ictal 2 phase

[RF1, RF3] Seizure 2 Onset; Seizure 3 Onset; Seizure 3

Ictal 1 phase; Seizure 3 Ictal 2 phase; Seizure 5

Ictal 1 phase; Seizure 6 Ictal 3 phase; Seizure 8

Ictal 2 phase

[RF2, RF3] Seizure 2 Onset; Seizure 2 Ictal 1 phase;

Seizure 3 Onset; Seizure 3 Ictal 1 phase;

Seizure 3 Ictal 2 phase; Seizure 5 Ictal 1 phase;

Seizure 6 Ictal 3 phase; Seizure 8 Ictal 2 phase

[LJ3, LF3] Seizure 2 Ictal 1 phase

[RF2, RJ2] Seizure 2 Ictal 1 phase

[RF3, RJ2] Seizure 2 Ictal 1 phase

[LJ2, LJ3] Seizure 2 Ictal 3 phase

[LF1, LF2] Seizure 3 Ictal 1 phase; Seizure 4 Onset;

Seizure 8 Onset

[LF1, LF3] Seizure 3 Ictal 1 phase; Seizure 4 Onset;

Seizure 8 Onset

[LF2, LF3] Seizure 3 Ictal 1 phase; Seizure 4 Onset;

Seizure 8 Onset

[LJ1, LJ2] Seizure 3 Ictal 2 phase

[LJ3, LK1] Seizure 4 Ictal 1 phase

[LJ3, LF1] Seizure 4 Ictal 1 phase

[LK1, LK2] Seizure 4 Ictal 1 phase

[LK1, LF1] Seizure 4 Ictal 1 phase

[LK2, LF1] Seizure 4 Ictal 1 phase

0.447214 [LJ3, LF2] Seizure 4 Ictal 1 phase

[LJ3, RF1] Seizure 4 Ictal 1 phase

[LK1, LF2] Seizure 4 Ictal 1 phase

[LF2, LI2] Seizure 4 Ictal 1 phase

0.408248 [LJ3, LF2] Seizure 2 Ictal 1 phase

[LF2, LF3] Seizure 2 Ictal 1 phase

[RF1, RF2] Seizure 2 Ictal 1 phase

[RF1, RF3] Seizure 2 Ictal 1 phase

[LJ2, LK2] Seizure 2 Ictal 3 phase; Seizure 3 Ictal 2 phase

[LJ3, LK2] Seizure 2 Ictal 3 phase

[LJ1, LK2] Seizure 3 Ictal 2 phase

[LJ1, LJ2] Seizure 4 Ictal 1 phase

[LJ1, LF3] Seizure 4 Ictal 1 phase

[LJ1, LI1] Seizure 4 Ictal 1 phase

0.3849 [LJ2, LK2] Seizure 4 Ictal 1 phase

[LK2, LF3] Seizure 4 Ictal 1 phase

0.353553 [LJ1, LF1] Seizure 4 Ictal 1 phase

[RF2, RF3] Seizure 4 Ictal 1 phase

0.3333 [LJ2, LF3] Seizure 4 Ictal 1 phase

[LJ2, LI1] Seizure 4 Ictal 1 phase

[LK2, LI2] Seizure 4 Ictal 1 phase

0.316228 [LJ1, LF2] Seizure 4 Ictal 1 phase

[LJ1, RF1] Seizure 4 Ictal 1 phase

[RF1, RF3] Seizure 4 Ictal 1 phase

(Continued)
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TABLE 3 | Continued

Similarity Electrode

Pairs

Events

0.288675 [LJ2, LK1] Seizure 4 Ictal 1 phase

0.251899 [LJ2, RF1] Seizure 4 Ictal 1 phase

[LF2, LI1] Seizure 4 Ictal 1 phase

[LF3, RF1] Seizure 4 Ictal 1 phase

[RF1, LI1] Seizure 4 Ictal 1 phase

0.235702 [LJ1, LK2] Seizure 4 Ictal 1 phase

[LK2, RF3] Seizure 4 Ictal 1 phase

0.223607 [LK1, RF1] Seizure 4 Ictal 1 phase

[LF1, RF1] Seizure 4 Ictal 1 phase

0.2 [LF2, RF1] Seizure 4 Ictal 1 phase

0.19245 [LK2, RJ1] Seizure 4 Ictal 1 phase

[LK2, RJ2] Seizure 4 Ictal 1 phase

[LK2, LI1] Seizure 4 Ictal 1 phase

0.16666 [LK2, RF2] Seizure 4 Ictal 1 phase

Structural Connectivity
The aim of the DTI tracking was to explore the underlying
structural connections that may provide more insights regarding
the dynamics of the functional connectivity network observed
during seizure events. No DTI tracks were found between any of
the electrodes in the left insula with any electrodes in the right
insula. Anatomically, white matter connections exist between
the hemispheres but a direct pathway via the corpus callosum
likely contains sharp bends that the MRtrix program is unable
to navigate and the tracks were terminated before reaching the
contralateral insula. Indirect connections may also exist via other
cortical or subcortical structures. The insula is surrounded by
the superior longitudinal fasciculus, the extreme capsule and the
uncinate fasciculus which connect the surrounding operculum
and frontal, parietal, and temporal lobes (Türe et al., 1999).
White matter connections with subcortical structures have also
been found, including the thalamus and amygdala (Augustine,
1996). Although waypoints were not included in this patient
analysis, it is feasible to include them in further patient analysis
applications of these techniques. Potential waypoints of interest
may be indicated from the location of electrodes that record
seizure electrical activity or from clinical opinion of seizure
symptoms. The SEEG data from the patient presented here did
not suggest other structures of interest to include as waypoints.

Tractography connections between ipsilateral electrodes are
summarized in Tables 4A,B and shown in Figures 6A,B. Within
electrode connections were set to zero. Due to the absence of
directionality in structural data all tracts are considered to be
bidirectional. There was a strong connection (> 100 tracts) on
the left side between LF1 ↔ LF2 and LI1 ↔ LI2, and RF1 ↔

RF3 and RF2 ↔ RF3 on the right side. Weaker connections
were found between RF1 ↔ RF2 (75 tracts), LJ1 ↔ LJ2 (31
tracts), LJ3 ↔ LK2 (27 tracts), and LF2 ↔ LF3 (22 tracts). This
pattern of structural connectivity is more closely related to the
functional connectivity pattern measured before seizure onset

than the activity seen during the ictal period. This suggests that
the structural connections are themore established pathways that
the brain uses the majority of the time and that the seizure-
generated functional networks form using much weaker (not
detected here) structural connections. These connections may be
detectable in DWI data from a non-epilepsy person or they may
be unique to the condition itself. Further studies are needed to
establish healthy and diseased networks.

The electrodes with strong connections were all located in
the perisylvian/opercular areas and the electrodes with weaker
connections were in the middle and posterior short gyri of
the anterior insula. This may be due to a number of reasons,
for example: (1) the subject may have had reduced white
matter connectivity from the insula due to the presence of
epilepsy, or (2) the tracting program may not have been
able to tract well from the insula due to the shape of the
local anatomy. The medial edge of the insula is close to the
thin gray matter sheet of the claustrum which contains its
own connections (Crick and Koch, 2005). Tracts from the
insula need to pass around it to reach many of the other
brain structures.

General tracting in the patient brain was compared to the
non-epileptic healthy brain. MRI data for 3 subjects were
obtained from the Human Connectome Database (see http://
www.humanconnectomeproject.org), matched for age (40–44
years old, 2 male). Diffusion data were collected with 64
directions at a spatial resolution of 1.5 mm3 and T1 images
were acquired at 1 mm3 with a 3T Siemens MRI scanner.
Tracting was performed between the insula gyri. The gyri were
segmented by hand from the T1 images producing 5 regions of
interest (ROIs) in each hemisphere, these were the short anterior
gyrus (SAG), short middle gyrus (SMG), short posterior gyrus
(SPG), long anterior gyrus (LAG), and long posterior gyrus
(LPG). Diffusion data were processed as reported in section
Imaging Data Acquisition and Processing above and tracting
was performed from each gryrus to every other gyrus. The tract
counts are summarized and compared in Table 5. Similar to the
patient electrode study, few tracks were found between the right
and left hemispheres (0–4 tracks) in controls and these results
have been omitted for brevity.

Even with the difference in spatial resolution and number
of diffusion directions between the control subject and the
patient DTI data areas of greatly increased connectivity were
found in the patient data compared to the mean values from
the control data. These areas were: left side—short anterior ↔
short middle gyri, short middle ↔ short posterior gyri and
short posterior ↔ long anterior gyri; right side—short anterior
↔ short posterior gyri, short middle ↔ short posterior gyri
and short posterior ↔ long anterior gyri. The short posterior
gyrus appears to have increased connectivity to the adjacent gyri
(short middle and long anterior) in both hemispheres and may
provide an underlying structural pathway for the propagation of
the seizures. The bilateral aspect of the increased connectivity is
particularly interesting in this patient with left insula epilepsy and
suggests that the disease effects are not unilateral. Although not
enough is known at this time about the implications of increased
connectivity in seizure focus and propagation this information
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FIGURE 5 | Average variability in correlation values between the baseline stage and seizure onset (A), ictal 1 (B), ictal 2 (C), and ictal 3 (D) stages across all the 8

seizures. Only correlation values computed for contacts that are on distinct electrodes were used to highlight the dynamics of interactions between different brain

regions during seizure events.

TABLE 4 | The number of DTI tracts between the ipsilateral electrodes are shown.

(A)

Electrodes RF1 RF2 RF3 RJ1 RJ2

RF1 0 75 108 0 0

RF2 0 387 0 2

RF3 0 0 2

RJ1 0 1

RJ2 0

(B)

Electrodes LF1 LF2 LF3 LI1 LI2 LJ1 LJ2 LJ3 LK1 LK2

LF1 0 112 1 0 0 0 0 0 0 0

LF2 0 22 0 0 0 0 0 0 0

LF3 0 0 2 0 0 2 0 1

LI1 0 826 0 0 0 0 0

LI2 0 0 0 0 0 0

LJ1 0 31 0 0 0

LJ2 0 1 0 4

LJ3 0 0 27

LK1 0 0

LK2 0

(A) Right side electrodes of interest. (B) Left side electrodes of interest.

has the potential to aid clinicians in understanding the properties
of epilepsy and inform the placement of the SEEG electrodes
during presurgical planning.

DISCUSSION

The development of a workflow-based approach described in
this paper to analyze the organization of brain functional
connectivity networks during seizure events reveal that there is
significant heterogeneity in terms of functional network motifs
across seizures in a single patient. Further, integrative analysis
of functional network with structural network information in
epilepsy patients has significant advantages in terms of providing
both spatial and temporal characteristics of the epileptic network.
The directed graph motifs formed during seizure events show
the formation of dominant network structures during the initial
period of the seizure followed by their subsequent breakdown,
which confirms findings of previous studies (Kramer et al., 2010).
However, unlike previous studies the results reported in this
study did not detect significant similarities between the graph
motifs formed during a specific event across the multiple seizures
recorded in this patient.

This may be due to multiple factors, including dosage of
anti-epileptic drug (AED) (Vlooswijk et al., 2011), which may
influence the functional networks formed during seizure events.
The results from the hierarchical clustering represented as
dendrograms showed interesting results across the 8 seizures.
In particular, our data provides a new perspective regarding
the distribution of similarity values between pair-wise electrode
contacts and their neighboring electrode contacts across the
baseline and seizure events. For example, our results show
that during ictal 1 phase, the cosine similarity values between
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FIGURE 6 | Structural networks in the right and left hemispheres overlaid on the subject own T1 in DTI space. Shown on coronal slices. The electrode of interest is

denoted by a yellow square in each image. Connections to other electrodes are shown by red lines and blue squares. Electrodes with no connections are shown by

white squares. (A) Right side networks, (B,C) Left side networks. Note: no connections exist for LK1, electrode shown for completeness.
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TABLE 5 | DTI tract counts between insula gyri for the patient, the mean of 3

controls and the calculated difference in the number of tracts.

Gyri connection Patient Control mean Difference relative to

controls

LSAG – LSMG 2,528 382 2,146

LSAG – LSPG 97 31 66

LSAG – LLAG 0 19 −19

LSAG – LLPG 2 34 −32

LSMG – LSPG 3,122 776 2,346

LSMG – LLAG 47 119 −72

LSMG – LLPG 0 5 −5

LSPG – LLAG 2,392 800 1,592

LSPG – LLPG 0 128 −128

LLAG – LLPG 22 391 −369

RSAG – RSMG 541 543 −2

RSAG – RSPG 3,648 74 3,574

RSAG – RLAG 156 98 58

RSAG – RLPG 0 74 −74

RSMG – RSPG 2,554 632 2,192

RSMG – RLAG 335 328 7

RSMG – RLPG 1 96 −95

RSPG – RLAG 3,359 939 2,420

RSPG – RLPG 137 51 86

RLAG – RLPG 714 313 401

electrode pairs range from 1 (high similarity) to 0.16 (low
similarity). This result shows that there is an overall increase in
correlated interactions between brain regions during the seizure
onset, which is statistically significant, followed by a trend toward
decreased correlated interactions during subsequent ictal 1 and
2 phases. These findings are consistent with previously reported
results, the strength of interactions is not consistently high but
varies over a wide range of values. As far as we know, this detailed
view of the similarity between electrode contacts during events
have not been reported earlier.

In this work, the locations of the electrodes in and around the
insula were used as ROIs to investigate white matter connections.
It has the limitations of having few ROIs (< 20) and they cover
only a few voxels in the DWI. In addition, they were also located
in an area of the brain that is difficult to track from due to
the proximity and shape of nearby structures. The result is a
matrix that is too sparse to give meaningful cluster metrics in
a similar way to the functional network measures. However,
it is feasible to perform the tracking in other structures, or
using larger ROIs or using a greater number of ROIs so that
more informative measures about the structural network can
be gained through a more stringent network analysis. Another
factor that would improve the tractography is the acquisition
of a higher quality diffusion weighted image with an increased
number of directions and reduced voxel size compared to that
used here.

Generally, these scanning factors equate to a longer scanning
duration which would mean higher financial costs and time
burden for both the patient and the radiology department

but MRI technology is rapidly advancing. Hardware, such as
multi-channel acquisition, can cut the scan time to one third
making it possible for higher quality images to be acquired in
less time.

The results generated from this integrative approach to
analyze functional and structural network measures together
during epileptic seizure events has many applications in
epilepsy clinical care. In particular, large-scale comparative
evaluation of structural and functional network measures in
an epilepsy patient cohort can be used to support clinical
decision making during pre-surgical evaluation of focal epilepsy
patients. About 60% of epilepsy patients are diagnosed with
focal epilepsy and many of these patients do not respond to
anti-epileptic medication (Rosenow and Lüders, 2001). These
pharmacoresistant patients are considered for surgery, which
requires accurate delineation of the epileptogenic zone that
protects the eloquent cortex. However, the delineation of
the epileptogenic network is extremely challenging and poor
delineation adversely affects the success of epilepsy surgery with
20–50% of patients experiencing recurrence of seizure after
surgery (Englot et al., 2013). Development of effective methods
for more accurate characterization of epileptogenic zone and
epileptic seizure network is a significant research objective,
which can be supported by using a workflow-based approach
that also supports reproducibility. In addition, automation of
multiple data processing and analysis steps will help address
the challenge of processing large volumes of patient data. For
example, many intermediate steps used to compute functional
connectivity measures described in this paper are highly efficient
and scalable (Sahoo et al., 2016).

A limitation of this study is that data is presented as a
case study of one patient. Often clinically, patients must be
evaluated on an individual basis and we wanted to show the
utility of the workflow for a single subject. Additionally, data
for a group analysis would need to be selectively chosen based
on electrode location, seizure focus, and medical history to draw
conclusions about structure and function in different types of
epilepsy. An epileptic focus in the insula is relatively rare and
further comparable datasets were not available at the time of
this analysis.

SUMMARY

In this paper, we described the development and application of an
integrative analysis technique to study epileptic seizure networks
using functional as well as structural connectivity measures.
The results from analysis of functional network connectivity
during 27 events across 8 seizures show dissimilarities between
the network structures formed during seizure events in a single
patient. In particular, we used hierarchical clustering approach
based on cosine similarity to characterize the formation of
connected communities during various seizure events. Although
the structural connectivity measures computed from DWI
data were sparse due to lower resolution of imaging data
generated during routine clinical care for this specific epilepsy
patient, the integrative analysis approach developed in this
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paper has multiple applications in characterizing epileptic
seizure networks. In addition, the use of a workflow-based
approach for integrative analysis will allow analysis of seizure
networks for large patient cohorts, which is likely to have
appropriate statistical significance to support inference of
association between structural and functional networks during
seizure events.
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