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COVID-19 has spread rapidly all over the world and has infected more than 200 countries and regions.
Early screening of suspected infected patients is essential for preventing and combating COVID-19.
Computed Tomography (CT) is a fast and efficient tool which can quickly provide chest scan results. To
reduce the burden on doctors of reading CTs, in this article, a high precision diagnosis algorithm of
COVID-19 from chest CTs is designed for intelligent diagnosis. A semi-supervised learning approach is
developed to solve the problem when only small amount of labelled data is available. While following
the MixMatch rules to conduct sophisticated data augmentation, we introduce a model training tech-
nique to reduce the risk of model over-fitting. At the same time, a new data enhancement method is pro-
posed to modify the regularization term in MixMatch. To further enhance the generalization of the model,
a convolutional neural network based on an attention mechanism is then developed that enables to
extract multi-scale features on CT scans. The proposed algorithm is evaluated on an independent CT data-
set of the chest from COVID-19 and achieves the area under the receiver operating characteristic curve
(AUC) value of 0.932, accuracy of 90.1%, sensitivity of 91.4%, specificity of 88.9%, and F1-score of 89.9%.
The results show that the proposed algorithm can accurately diagnose whether a chest CT belongs to a
positive or negative indication of COVID-19, and can help doctors to diagnose rapidly in the early stages
of a COVID-19 outbreak.

� 2022 Published by Elsevier B.V.
1. Introduction

In December 2019, a case of unexplained pneumonia was
diagnosed and it spread rapidly throughout the country and
around the world. Severe cases appeared as acute respiratory dis-
tress, multiple organ failure and other symptoms [1,2]. It has been
shown that the pneumonia was caused by a new Coronavirus
infection and was identified as an international public health
emergency by the WHO in January 2020. As of April 1, 2022, more
than 618 million people have been diagnosed with Covid and 4.9
million people have died. Early screening of suspected infected
patients plays a vital role in preventing and fighting new cases of
Corona pnemonia. COVID-19 is usually diagnosed by a reverse
transcription polymerase chain reaction (RT-PCR) in the early
stages of the epidemic. However, due to the rapid outbreak of
the epidemic, many countries still lack sufficient kits to detect sus-
pected patients. Moreover, it takes several days for RT-PCRs to get
results, which leads to the delay of epidemic controls and treat-
ment. In addition, RT-PCR detection sensitivity is low: one test
may not be able to make accurate judgments, so it needs multiple
tests to make the final diagnosis [3]. In clinical practice, researchers
found that the CT images of COVID-19 patients showed ground-
glass opacities (GGO), multifocal patchy consolidation, and inter-
stitial changes with a peripheral distribution and other image fea-
tures [4,5]. And compared with RT-PCR detection, doctors can get
chest CT scans and corresponding diagnosis results faster. CT is
an important component in modern medical care systems, and
plays a key role in combating the disease, so CT has become
another effective way to screen and diagnose COVID-19 [6].

With the increasing severity of the epidemic, the number of CT
images which contain a large amount of disease information has
increased dramatically. The large number and high complexity of
image data also easily fatigues doctors engaged in high-intensity
diagnosis work, which makes it difficult for doctors to keep
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focused. It even runs the risk of doctors making wrong diagnoses.
Once misdiagnosis occurs, patients will miss the best opportunity
for treatment, and could even spread the epidemic. Deep learning,
which has emerged as a powerful tool for improving the efficiency
of CT diagnosis can automatically classify medical images, effec-
tively helping doctors to make correct judgments and recommend
corresponding treatment for patients. It can also reduce the risk of
misdiagnosis in the process of early diagnosis, and improve the
cure rate. In recent years, with the breakthrough of deep learning
in computer vision, it has been widely used in image classification
[7], image location and detection [8], medical image segmentation
[9] and other fields, greatly reducing the burden of massive medi-
cal image data on doctors. There are a large number of published
studies that the role of deep learning in disease diagnosis. Arevalo
et al. [10] propose a feature learning framework for breast cancer
diagnosis, which uses CNN to automatically learn discriminative
features and classify breast X-ray lesions. Gerard et al. [11] propose
a supervised discriminant learning framework for simultaneous
feature extraction and classification (See Fig. 1).

Although these studies have good performance in medical
image classification, they also have some limitations. First of all,
most of them are based on supervised learning and need a lot of
labelled data. But in a lot of practical work, there may be only a
few labelled samples available, because the cost of labelling data
is very high. For example, CT acquisition and labelling of Covid-
19 requires a lot of time and energy from professional doctors,
which is more difficult during the epidemic. Training deep learning
models needs a lot of labelled data to achieve a clinical standard of
performance. Insufficient data will lead to over fitting and poor
Fig. 1. Examples of (a) COVID-19 infections and (b) non-infected CT
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performance of the model. Secondly, because medical image data
involves the privacy of patients, many CT image datasets are not
public. The models trained with these non-public datasets cannot
be used in other hospitals.

Traditional machine learning technology is divided into super-
vised learning and unsupervised learning. In some scenarios,
labelled data is difficult to obtain, while unmarked data is rela-
tively easy to obtain. Semi-supervised learning aims to introduce
unlabelled samples when the information of sample labels is lim-
ited and it is difficult for the classifier to determine accurate clas-
sification decision boundaries accurately. The hidden distribution
information learned from the model is used to help the classifier
to move towards the correct decision, thus achieving higher gener-
alization and accuracy. In the field of natural image recognition,
semi-supervised learning can use a small number of labelled sam-
ples and a large number of unlabelled samples to alleviate the
problem of insufficient data [12–14]. A classic example of the
application of semi-supervised learning in medical imaging is Liu
et al. [15] who proposed a new relationship-driven semi-
supervised medical image classification framework to classify
chest X-ray diseases. Additionally, Su et al. [16] propose an interac-
tive cell segmentation algorithm based on active annotation and
verification propagation.

Based on these findings, we propose a semi-supervised learning
method based on deep learning to automatically diagnose CT scans
of COVID-19 in this paper. While following the MixMatch rules to
conduct sophisticated data augmentation, we introduce a model
training technique to reduce the risk of over-fitting of the model
by marking data. At the same time, a new data enhancement
images as shown in the left and the right column respectively.
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method is proposed to make the model focus on the areas that are
difficult to distinguish. In order to further improve the perfor-
mance of the model, a convolutional neural network based on
attention mechanisms will be developed to achieve the accurate
classification of CT scans. The decision-making process of the
model is not transparent, so doctors pay special attention to the
interpretability of the model, which is also very important for
the diagnosis of COVID-19. We make a visual analysis of model
to increase the interpretability of the model. Our method is evalu-
ated on the CT public dataset of COVID-19 and achieves better per-
formance in the case of a small number of samples compared with
other methods.

As a summary, the contributions of our work are threefold:

� We improve MixMatch technique to release the training signal
of labelled data, which effectively prevents the model over-
fitting with the labelled data.

� A new data enhancement method is proposed to replace the
regularization method in MixMatch.

� We modify the attention module that is able to extract multi-
scale features, which can be added to the existing network to
ensure that the network focuses on the exact infected area
and increase the performance of the model.

We organize the remainder of this paper as follows. Section 2
briefly reviews the basic principles of MixMatch and the related
works in terms of a deep learning model. In Section 3, we describe
in detail the proposed semi-supervised learning strategy and
improved models. We then give detailed descriptions of collected
datasets, experiment settings, and exhaustive results in Section 4.
Finally, we conclude this work in Section 5.

2. Related works

2.1. MixMatch

MixMatch [17] is a semi-supervised learning method, which
follows two principles: consistency regularization and entropy
minimization. The principle of consistency regularization is that
the decision boundary of learning must be located in the low-
density region, that is, if an unlabelled data is disturbed, the output
of the model should remain unchanged or approximate as far as
possible. Mixmatch adds its rules to the loss function in the follow-
ing form:

jjpmodel ðyjAugmentðxÞ; hÞ
�pmodelðyjAugmentðxÞ; hÞjj22 ð1Þ

where x is unlabeled data, Augment(x) is the new data generated by
randomly data enhancement. his the model parameter, and y is the
model prediction result. That means new samples are generated by
data expansion, and the prediction results of the model should be
consistent.

The entropy minimization principle forces the classifier to make
low entropy prediction for unlabelled data. MixMatch uses a
sharpening function to minimize the entropy of the i-th unlabelled
data:

Sharpenðp; TÞi ¼
p

1
T
iXL

j¼1

p
1
T
j

ð2Þ

where p is prediction label of the input and L is the number of cat-
egories. T is the temperature parameter, which can adjust the clas-
sification entropy.
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Mixup [18] is a kind of image enhancement algorithm used in
computer vision. It can mix different kinds of images to expand
the training dataset. MixMatch mixes labelled data and unlabelled
data by mixup and the mixed sample is:

k � Beta a;að Þ ð3Þ

k0 ¼ max k;1� kð Þ ð4Þ

x0 ¼ k0x1 þ 1� k0ð Þx2 ð5Þ

y0 ¼ k0y1 þ 1� k0ð Þy2 ð6Þ
where x1 and x2 are input data with corresponding labels y1 and y2,
while x0 and y0 are the output data and corresponding labels. ais a
hyperparameter used for generating the beta distribution.

2.2. Training signal annealing

The basic principle of Training Signal Annealing (TSA) [19] is
that in the training process, with the increase of unlabelled data,
the label data is gradually removed. The training signal of super-
vised data is gradually released, so as to avoid an over fitting prob-
lem of the model to the label data.

At t time of training, set a threshold gt (
1
L 6 gt 6 1; L is the num-

ber of categories). When the probability of the correct category ph

of a label example is higher than the threshold gt , the model
removes this example from the loss function and trains only other
labelled examples under this minibatch:

min
h

1
Z

X
x;y2B

�I ph yjxð Þ < gtð Þlog ph yjxð Þ½ � ð7Þ

Z ¼
X
x;y2B

I ph yjxð Þ < gtð Þ ð8Þ

where B is minibatch sample, Z is the filtered sample set and I is the
indicator function.

Threshold gt is used to prevent the model from being over fit-
ting to label data. With gt is close to 1, the model can only be mon-
itored slowly from the annotation examples, which greatly
alleviates the problem of over fitting. gt values is varying while
training:

gt ¼ exp
t
S
� 1

� �
� N

� �
� 1� 1

L

� �
þ 1

L
ð9Þ

where S is the total training steps, t is the current training steps and
N is a constant equals to 5.

2.3. Baseline models

We experimented with different backbone networks and chose
two best performing networks as baseline models. The first base-
line model is DenseNet121 [20] whose structure is that all the front
layers are directly connected with those of the back layer. There-
fore, the back layer of the network not only accepts the output of
the previous layer as the input, but also accepts the output of all
the previous layers as the additional input. This connection method
can use the previously extracted features many times, so it saves a
lot of calculation process. The second model is ResNet50 [21]
which uses residual blocks to directly connect the shallow feature
layer with the deeper feature layer. Through direct connection, the
back-propagation process can be transmitted to the feature layer
closer to the input layer more conveniently. Before the emergence
of residual blocks, the effect of networks with more hidden layers
will decline. The addition of residual blocks effectively solves this
problem.



Fig. 3. Comparison results of CAMMix, Mixup, and CutMix.

Fig. 2. Framework overview of proposed CAMMix.
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2.4. Visual explanations from deep networks

CAM (Class Activation Mapping) [22] is a tool to help us visual-
ize CNN. We can clearly observe which area of the image the net-
work focuses on by using CAM, but also need to change the
network structure and retrain. Guided backpropagation [23] visu-
alizes the gradient of network back propagation to understand
the network. This visualization method has high resolution and
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can show the fine-grained details in the image, but the visualiza-
tion effect is not good for category discrimination. Grad-CAM
[24] calculates the weight of each feature graph through the global
average of the gradient, and then makes a weighted summation
according to the weight of the corresponding categories of all fea-
ture graphs to get the final thermal graph. Grad-CAM does not
need to modify the model structure and retrain the model, thus
can be applied to a variety of different tasks. In order to better
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understand the decision of the model, we used Gard-CAM to visu-
alize the attention map of the lesion area.
3. Method

The overall framework is shown in Fig. 4 and our method is
divided into two stages: Stage 1 is that a small number of labelled
samples and a large number of unlabelled samples are used to gen-
erate new samples by semi-supervised learning which are sent
them to the network for training. Stage 2 involves training the
two models with mixed images and labelled images respectively,
Fig. 4. The proposed method includes two stages: 1) a small number of labelled samples a
supervised learning which are sent to the network for training. 2) We train the two m
learning to integrate predictions from the two trained networks.

Fig. 5. Overview of A
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and uses ensemble learning to integrate predictions from the two
trained networks to get a final diagnosis.
3.1. SSL strategy

MixMatch is an effective semi-supervised strategy, it has some
defects: in the training process, the model is easy to over fit with a
small amount of labelled data. In our study, we added TSA to Mix-
Match to gradually release labelled samples in the training process,
so as to avoid model overfitting. Algorithm 1 shows an overview of
the semi-supervised learning process. After K times of data
nd a large number of unlabelled samples are used to generate new samples by semi-
odels with mixed images and labelled images respectively, and use the ensemble

ttention module.



Table 1
Details of the labelled dataset and unlabelled dataset.

Dataset Labelled Unlabelled

Training Validation Test Training

COVID-19 191 60 93 500
Normal 234 58 99 500
Total 425 118 192 1000

Fig. 6. Performance of SSL and attention modules in the ablation studies.
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enhancement, the unlabelled samples are predicted by using net-
work models, and then the soft-labels are obtained by averaging
and sharpening. The labelled samples are enhanced once through
the same procedure for prediction. If the probability of the correct
category of the predicted labelled sample is higher than the thresh-
old, the model removes this example from the loss function. Then,
new images are generated from the augmented labelled data and
unlabelled data through CAMMix, which are sent to the network
model for training.

3.2. CAMMix

Mixup is used as the regularization method in MixMatch, how-
ever, it produces noise that impacts the model to learn the accurate
characteristic diagram response distribution. Cutout [25], Cutmix
[26] and other methods promote better generalization of the net-
work by partially occluding the distinguished parts of the object.
However, these methods are hard to capture most important
regions in the image. To solve this problem, we propose a new data
enhancement method called CAMMix, which is based on a Grad-
CAM to replace Mixup in MixMatch. In each training process, we
selected the most descriptive area in the image according to
Grad-CAM and cut it to another image to get a new mixed image.
The main process is shown in Fig. 2:

Grad-CAM is a response based visual interpretation method.
The weights of the FC layer and the feature map are weighted
and summed to generate the attention map, highlighting the
important areas closely related to the prediction results. Therefore,
we first calculate the weight of the Gard-CAM of the input image:

ac
k ¼

1
Z

X
i

X
j

@Yc

@Ak
ij

ð10Þ

where c denotes categories, Y is the logits corresponding to the cat-
egories. A is the feature map. k denotes the channel of the feature
map and i; j represents the abscissa and ordinate of the feature
map. Z denotes the size of the feature map.

After obtaining weights, the channels of the feature map are lin-
early weighted and through the ReLU layer to obtain Gard-CAM:

LcGrad�CAM ¼ ReLU
X
k

ac
kA

k

 !
ð11Þ
Table 2
Performance of SSL and attention modules in the ablation studies.

Method AUC Accuracy

DenseNet121 0.846 0.776
DenseNet121 + Attention 0.853 0.807

DenseNet121 + SSL 0.867 0.792
DenseNet121 + Attention + SSL 0.899 0.875

ResNet50 0.835 0.786
ResNet50 + Attention 0.841 0.791

ResNet50 + SSL 0.882 0.802
ResNet50 + Attention + SSL 0.932 0.901
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Since the output size of the last layer of the convolution layer is
usually not equal to the size of the input image, the result needs to
be up sampled to the size of the input image. Then the highest con-
tribution is selected whose size is 56 � 56 from Grad-CAM as the
attentive region, and the region is cut from the given image and
pasted it to the corresponding position of another image:

x0 ¼ B� x1 þ ð1� BÞ � x2 ð12Þ

y0 ¼ ky1 þ ð1� kÞy2 ð13Þ
where B 2 0;1f g is the binary mask, indicating which pixels belong
to which of the two images. k is the ratio of the area cut from the
first image to the second image of the total size of the second image.
Considering that we select an area of 56 � 56 from image of
224 � 224, k is set to 1

16.
Sensitivity Specificity F1-score

0.753 0.798 0.765
0.796 0.818 0.800
0.742 0.838 0.775
0.828 0.919 0.865

0.742 0.828 0.771
0.760 0.823 0.785
0.774 0.828 0.791
0.914 0.889 0.899



Fig. 7. The receiver operating characteristic curve of binary classification between
COVID-19 and Normal.
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3.3. Attention module

Attention mechanisms [27,28] are widely used in natural lan-
guage processing and computer vision. They are similar to a human
visual mechanism, and tend to pay attention to the parts in the
image that are more helpful for decision-making, meanwhile,
ignoring the unimportant information. Attention mechanisms can
help the model assign different weights to each part of the input,
extract more critical and important information, and help the
model make more accurate judgments. CBAM (Convolutional Block
Attention Module) [29] proposes a convolutional block attention
module to extract information features by fusing cross channel
and spatial information (See Fig. 3).

First, the feature map is extracted, a parallel multi convolution
operation is then carried out on the input features to extract multi-
scale image features with different depths. Features of the two
branches are then concatenated. A 1 � 1 convolution layer is added
before 3 � 3 convolution layer to reduce the number of parame-
ters. The fused feature map is passed through 1 � 1 convolution
layer to ensure the same dimension of the input and output layers.

Finally, the feature map goes through global Max pooling and
global average pooling based on width and height respectively to
get two feature maps which go through the convolution layer.
Then, the output features of the convolution layer are added. The
final attention map is generated by the sigmoid layer. Because
the input scale and output scale are unchanged, it can be easily
embedded into the current mainstream network architecture.

3.4. Loss function

Two losses are used to train model: the labelled data loss Llabel
and the unlabelled data loss Lunlabel. We adopt the binary cross
entropy as the labeled data loss and adopt MSE as the unlabelled
data loss:

Llabel ¼ � 1
X0j j
X
x;p2X0

ðp logðpmodelðyjxÞÞ

þð1� pÞ logð1� pmodelðyjxÞÞÞ
ð14Þ

Lunlabel ¼ 1
L U0�� �� X

u;q2U0
ðq� pmodelðyjuÞÞ2 ð15Þ

where L is the number of classification categories, x and p are the
augmented labelled data input and corresponding labels, u and q
are unlabelled data inputs and corresponding labels.

Then, the overall loss function for training model is expressed
as:

Ltotal ¼ Llabel þ fLunlabel ð16Þ
where f is the weighting factor of the unlabelled data loss function.

3.5. Ensemble learning

Semi-supervised learning can introduce unlabelled images for
training to solve the problem of insufficient data, but it may also
cause model over fitting on unlabelled data. In contrast, supervised
learning could learn feature representation from the original data
distribution in a relatively robust way. Taking the advantages of
both sampling methods, we use ensemble learning [30] to gauge
the weight for the prediction results produced by the two models.
Ensemble learning completes the learning task by building and
combining multiple models. Two models are trained with different
learning strategies at the same time, and then the prediction
results of the two models are integrated into the final diagnosis
results by using an ensemble learning layer:
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ptotal ¼ lp1 þ 1� lð Þp2 ð17Þ
where p1 is the prediction score of models trained by semi-
supervised learning, and p2 is the prediction score of models trained
by supervised learning (See Fig. 5).

Algorithm1: SSL Algorithm

Input:
1: Initialization parameters number of augmentations K ,

sharpening temperature T , network parameters h, loss
function coefficient k ;

2: Batch of labelled samples x ¼ xb; ybð Þ; b 2 1; � � � ;Bð Þð Þ;
3: Batch of unlabelled samples u ¼ ubð Þ; b 2 1; � � � ;Bð Þð Þ;
4: foreach minibatch B do
5: forb ¼ 1 to B do
6: x̂b = Augment xbð Þ
7: ûb;k = Augment ubð Þ for K times
8: �qb = Average pmodel ûb;k; h

� �� �
9: qb = Sharpen �qb; Tð Þ: by using Eq. (2)
10: end for
11: w = Shuffle(Concatenate x̂b; ybð Þ; ûb;k; qb

� �Þ
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12: x0; p0ð Þ = CAMMix x̂bi; ybið Þ;wið Þ; i 2 1; � � � ; x̂bj jð Þ
13: u0; q0ð Þ = CAMMix ûbi;k; qbi

� �
;wiþ x̂bj j

� �
; i 2 1; � � � ; ûbj jð Þ

14: if s1 6gt then
15: Llabel = CrossEntropy pi

0; pmodel x0i; h
� �� �

; i 2 1; � � � ; x̂bj jð Þ:
calculate by using Eq. (14)

16: else
17: pass
18: end if

19: Lunlabel = MSE q0j; pmodel u0
j; h

� �� �
; j 2 1; � � � ; ûbj jð Þ:

calculate by using Eq. (15)
20: Ltotal ¼ Llabel þ fLunlabel
21: update h using optimizer ADAM
22: end for
23: return h
24: Using ensemble learning to get the sample’s final

prediction: by using Eq. (17)
4. Experimental results

4.1. Description of experimental dataset

We used a labelled CT dataset and an unlabelled CT dataset for
evaluating the proposed methods in the diagnosis of COVID-19 in
this study. The labelled CT dataset is a public dataset collected by
Fig. 8. The confusion matrix of t
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He et al. [31], which contains 349 positive and 397 negative CT
scans. The positive samples were COVID-19 preprints from medR-
xiv and bioRxiv, and negative samples include a CT scan of health
people or other types of diseases. The unlabelled sample dataset is
derived from several open source COVID-19 CT image datasets
[32], which are used by researchers to accurately diagnose
COVID-19 using CT images. We randomly selected 500 positive
and 500 negative samples as unlabelled samples for training.
Table 1 presents the dataset information.
4.2. Training details and evaluation methods

Our method is implemented by Pytorch. The input shape of the
CT image is resized to 256 � 256, and different data augmentations
have been applied including horizontal flipping, random cropping
and scaling. We use the Adam optimizer with the momentum set
to 0.9, weight attenuation of 0.0001 and learning rate of 0.001
andminibatch size set to 32. l is the ensemble learning weight fac-
tor that is set to 0.6 in our experiment. f is the weighting factor of
the unlabelled data loss function and is set to 100. We use a cosine
learning rate scheduler to adjust the learning rate during the train-
ing. All models first train the networks from scratch on ImageNet
and then fine-tune them on the dataset. The training is conducted
on GTX 2080Ti GPUs with data parallelism.

In order to evaluate the performance of the model, five different
metrics are used to measure the classification results, namely area
under the receiver operating characteristic curve (AUC), accuracy,
he binary classification task.



Table 3
Comparison of classification result of different algorithms on testset.

Method AUC Accuracy F1-score

Mean teacher 0.869 0.802 0.808
ICT 0.884 0.860 0.863
VAT 0.873 0.813 0.824

Self-Trans 0.940 0.860 0.850
Our method 0.932 0.901 0.897

Fig. 9. Performance of the proposed method and other algorithms.

Fig. 10. Grad-CAM visualizations for baseline and the proposed method.
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sensitivity, specificity, and F1-score. For all five metrics, the highest
score means the best performance of the model.

4.3. Simulation results analysis

4.3.1. Experimental result
ResNet50 and DenseNet121 are chosen as feature extractors of

the proposed model. Table 2 and Fig. 6 compare different ablation
study settings. Firstly, as can be seen from Table 2, the model with
the attention module performs better than without the attention
module. This shows that the proposed attention module suppress
the contribution of irrelevant parts in the image, as a result, the
model make diagnose decisions based on the actual infected area.
In addition, Table 2 shows that the performance of the model is
improved when the SSL is applied, which indicates the SSL tech-
nique can increase the generalization of the model by expanding
the dataset and reduce the risk of model over fitting. It can be seen
that when attention modules and SSLs are both included in the
network, models achieve the best performance.

The receiver operating characteristic (ROC) curve of different
models are shown in Fig. 7 to further evaluate the performance
of different settings. The results show that both the SSL strategy
and attention modules can improve the diagnostic ability of the
model for patients with lung CT. When two modules are both
included, which achieves the highest AUC scores of 0.899 and
0.932 for DenseNet121 and ResNet50 respectively, much higher
than that of the basic network 0.846 and 0.835. These results fur-
ther confirm the robustness and stability of the proposed
algorithm.

The confusion matrix in Fig. 8 shows that the proposed algo-
rithm significantly reduces the error of model judgments com-
pared with the basic model. That means the proposed algorithm
improves the accuracy of the model for the diagnosis of COVID-19.

4.3.2. Comparison with other algorithm
To demonstrate the efficacy of the proposed approach, we com-

pare the design of it with other SSL methods and state-of-the-art
methods, include: 1) mean teacher method proposed in [14], 2)
Virtual Adversarial Training (VAT) [33] method that realizes the
adversarial training of the model under semi supervision, 3) Inter-
polation Consistency Training (ICT) [34] method, and 4) Self-Trans
[31] method that introduces comparative self supervised learning
into the process of transfer learning, adjusting the network weights
of source data pre training, so as to reduce the deviation of source
data and reduce the risk of over fitting.

Table 3 and Fig. 9 show the evaluation metrics of the above five
methods on the dataset. The proposed algorithm outperforms
other semi-supervised algorithms for all the evaluation metrics,
except 1% AUC score lower than the Self-Trans method. However,
it significantly outperforming the Self-Trans on accuracy and F1-
score metrics. Note that while all the methods achieve promising
performance, our algorithm provides a more reliable result with
respect to the ability of identifying the infection areas.

4.3.3. Visualization analysis
Fig. 10 shows the Grad-CAM visualizations of the baseline and

our model. From left to right: column (1) shows original images
with COVID-19; column (2–3) shows Grad-CAM visualizations of
the baseline model; Specifically, column (2) is the Grad-CAM from
the baseline. In column (3), the Grad-CAM is superimposed on the
original image to show the active area. The color from dark red to
dark blue corresponds to the value of the pixel’s category signifi-
cance from large to small. Columns (4–5) are Grad-CAM visualiza-
tions for our method. Grad-CAM visualizations is a visual
interpretation of the network predicting COVID-19 CT scan lesions.
By comparing columns (3) and (5), we find that the baseline
322
incorrectly focuses on some image edges and corners that are unre-
lated to the features of COVID-19 on CTs. In contrast, the proposed
method has more accurate disease-related visual localization and
can capture almost all significant regions affected by COVID-19.
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5. Conclusion

This study set out to propose a new method of semi-supervised
learning based on deep learning to automatically diagnose CT
scans of COVID-19. While following the MixMatch rules to conduct
sophisticated data augmentation, we introduce a model training
technique to reduce the risk of over fitting the model by marking
data. At the same time, a new data enhancement method is pro-
posed to help the model focuses on the areas that are difficult to
distinguish. In order to further improve the performance of the
model, a convolutional neural network based on attention mecha-
nisms is then desgned to achieve accurate classification of CT
scans. We experiment on an independent CT dataset on the chest
of a patient with COVID-19 to evaluate the feasibility of our
method which achieves an AUC of 0.932, accuracy of 90.1%, sensi-
tivity of 91.4%, specificity of 88.9%, and an F1-score of 89.9%. Addi-
tionally, to better understand the decision of our model, we also
visualized the Grad-CAM of the model, which is able to reveal
important regions for diagnosis. The results of this research prove
the proposed method can accurately diagnose whether chest CTs
belong to the positive or negative diagnoses of COVID-19, and
can help doctors to diagnose rapidly in the early stages of a
COVID-19 outbreak.

More experiments are required to verify the feasibility of the
proposed method in the future. Further research should improve
the attention model to better focus on the lesion areas and reduce
the influence of irrelevant regions. Some efficient filtering tech-
niques [35–38] will also improve the accuracy of diagnosis and
they are worth exploring.
CRediT authorship contribution statement

Yong Zhang: Conceptualization, Writing – original draft, Fund-
ing acquisition. Li Su: Data curation, Software, Investigation.
Zhenxing Liu: Validation, Visualization. Wei Tan: Supervision,
Investigation. Yinuo Jiang: Validation, Investigation. Cheng
Cheng: Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgement

This work was supported in part by the National Natural
Science Foundation of China [Grant Nos. 61873197, 51905197].

References

[1] S.P. Adhikari, S. Meng, Y.J. Wu, Y.P. Mao, R.X. Ye, Q.Z. Wang, C. Sun, S. Sylvia, S.
Rozelle, H. Raat, Epidemiology, causes, clinical manifestation and diagnosis,
prevention and control of coronavirus disease (COVID-19) during the early
outbreak period: a scoping review, Infect. Diseases Poverty 9 (2020) 1–12.

[2] B. Fwca, S.y. A, A. Khk, et al., A familial cluster of pneumonia associated with
the 2019 novel coronavirus indicating person-to-person transmission: a study
of a family cluster, Lancet 395 (2020) 514–523.

[3] T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen, W. Lv, Q. Tao, Z. Sun, L. Xia, Correlation
of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in
China: A Report of 1014 Cases, Radiology 296 (2020) 32–40.

[4] M. Chung, A. Bernheim, X. Me, N. Zhang, H. Shan, CT Imaging Features of 2019
Novel Coronavirus (2019-nCoV), Radiology 295 (2020) 202–207.

[5] C. Huang, Y. Wang, X. Li, L. Ren, B. Cao, Clinical features of patients infected
with 2019 novel coronavirus in Wuhan, China, Lancet 395 (2020) 497–506.

[6] Y. Fang, H. Zhang, J. Xie, M. Lin, L. Ying, P. Pang, W. Ji, Sensitivity of Chest CT for
COVID-19: Comparison to RT-PCR, Radiology 296 (2020) 115–117.

[7] J. Tan, P.J. Pickhardt, Y. Gao, Z. Liang, A.F. Abbasi, 3D-GLCM CNN: A 3-
dimensional gray-level co-occurrence matrix based CNN model for polyp
323
classification via CT colonography, IEEE Trans. Med. Imaging 39 (2020) 2013–
2024.

[8] Hoo-Chang Shin, Matthew R. Orton, David J. Collins, Simon J. Doran, Martin O.
Leach, Stacked Autoencoders for Unsupervised Feature Learning and Multiple
Organ Detection in a Pilot Study Using 4D Patient Data, IEEE Trans. Pattern
Anal. Mach. Intell. 35 (2013) 1930–1943.

[9] G. Wang, W. Li, M.A. Zuluaga, R. Pratt, P.A. Patel, M. Aertsen, T. Doel, A.L. David,
J. Deprest, S. Ourselin, Interactive Medical Image Segmentation Using Deep
Learning With Image-Specific Fine Tuning, IEEE Trans. Med. Imaging 37 (2018)
1562–1573.

[10] J. Arevalo, F.A. González, R. Ramos-Pollán, J.L. Oliveira, M.A.G. Lopez,
Representation learning for mammography mass lesion classification with
convolutional neural networks, Comput. Methods Programs Biomed. 127
(2016) 248–257.

[11] S.E. Gerard, T.J. Patton, J.E. Bayouth, J.M. Reinhardt, G.E. Christensen,
FissureNet: A Deep Learning Approach For Pulmonary Fissure Detection in
CT Images, IEEE Trans. Med. Imaging 38 (2018) 156–166.

[12] D.H. Lee, Pseudo-Label: The Simple and Efficient Semi-Supervised Learning
Method for Deep Neural Networks, ICML, vol. 3, 2013, pp. 896.

[13] A. Rasmus, H. Valpola, M. Honkala, M. Berglund, T. Raiko, Semi-Supervised
Learning with Ladder Networks, Comput. Sci. 9 (2015) 1–9.

[14] A. Tarvainen, H. Valpola, Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results,
Advances in neural information processing systems, 30, 2017.

[15] Q. Liu, L. Yu, L. Luo, Q. Dou, P.A. Heng, Semi-supervised Medical Image
Classification with Relation-driven Self-ensembling Model, IEEE Trans. Med.
Imaging 39 (2020) 3429–3440.

[16] H. Su, Z. Yin, S. Huh, T. Kanade, J. Zhu, Interactive Cell Segmentation Based on
Active and Semi-Supervised Learning, IEEE Trans. Med. Imaging 35 (2016)
762–777.

[17] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, C. Raffel,
MixMatch: A Holistic Approach to Semi-Supervised Learning, Advances in
Neural Information Processing Systems, 32, 2019.

[18] H. Zhang, M. Cisse, Y.N. Dauphin, D. Lopez-Paz, Mixup: Beyond Empirical Risk
Minimization, arXiv preprint arXiv:1710.09412, 2017.

[19] Q. Xie, Z. Dai, E. Hovy, M.T. Luong, Q.V. Le, Unsupervised Data Augmentation
for Consistency Training, Advances in Neural Information Processing Systems
33 (2020) 6256–6268.

[20] G. Huang, Z. Liu, L.V.D. Maaten, K.Q. Weinberger, Densely Connected
Convolutional Networks, CVPR (2017) 2261–2269.

[21] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition,
CVPR (2016) 770–778.

[22] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning Deep Features
for Discriminative Localization, CVPR, pp. 2921–2929, 2016.

[23] J.T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for Simplicity,
The All Convolutional Net (2014).

[24] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-
CAM: Visual Explanations from Deep Networks via Gradient-based
Localization, ICCV 1 (2020) 618–626.

[25] T. Devries, GW. Taylor, Improved regularization of convolutional neural
networks with cutout, arXiv preprint arXiv:1708.04552, 2017.

[26] S. Yun, D. Han, S. Chun, S. J. Oh, Y. Yoo and J. Choe, CutMix: Regularization
Strategy to Train Strong Classifiers With Localizable Features, ICCV, pp. 6022–
6031, 2019.

[27] T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, Z. Zhang, The application of two-level
attention models in deep convolutional neural network for fine-grained image
classification, CVPR, pp. 842–850, 2015.

[28] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, X. Tang, Residual
Attention Network for Image Classification, CVPR, pp. 3156–3164, 2017.

[29] S. Woo, J. Park, J.Y. Lee, I.S. Kweon, CBAM: Convolutional Block Attention
Module, ECCV, pp. 3–19, 2018.

[30] A. Krogh, P. Sollich, Statistical mechanics of ensemble learning, Phys. Rev. E 55
(1997) 811.

[31] X. He, X. Yang, S. Zhang, J. Zhao, P. Xie, Sample-Efficient Deep Learning for
COVID-19 Diagnosis Based on CT Scans, medRxiv, 2020.

[32] H. Gunraj, L. Wang, A. Wong, COVIDNet-CT: A Tailored Deep Convolutional
Neural Network Design for Detection of COVID-19 Cases from Chest CT
Images, Frontiers in medicine, 1025, 2020.

[33] M. Takeru, M. Shin-Ichi, I. Shin, K. Masanori, Virtual Adversarial Training: A
Regularization Method for Supervised and Semi-Supervised Learning, IEEE
Trans. Pattern Anal. Mach. Intell. 41 (8) (2018) 1979–1993.

[34] Vikas Verma, Kenji Kawaguchi, Alex Lamb, Juho Kannala, Arno Solin, Yoshua
Bengio, David Lopez-Paz, Interpolation consistency training for semi-
supervised learning, Neural Networks, vol. 145, pp. 90–106, 2022.

[35] L. Liu, L. Ma, J. Zhang, Y. Bo, Distributed non-fragile set-membership filtering
for nonlinear systems under fading channels and bias injection attacks, Int. J.
Syst. Sci. 52 (6) (2021) 1192–1205.

[36] L. Zou, Z. Wang, H. Geng, X. Liu, Set-membership filtering subject to impulsive
measurement outliers: a recursive algorithm, IEEE/CAA J. Autom. Sin. 8 (2)
(2021) 377–388.

[37] J. Mao, Y. Sun, X. Yi, H. Liu, D. Ding, Recursive filtering of networked nonlinear
systems: A survey, Int. J. Syst. Sci. 52 (6) (2021) 1110–1128.

[38] H. Geng, H. Liu, L. Ma, X. Yi, Multi-sensor filtering fusion meets censored
measurements under a constrained network environment: advances,
challenges and prospects, Int. J. Syst. Sci. 52 (16) (2021) 3410–3436.

http://refhub.elsevier.com/S0925-2312(22)00809-8/h0005
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0005
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0005
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0005
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0015
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0015
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0015
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0025
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0025
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0030
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0030
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0035
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0035
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0035
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0035
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0045
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0045
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0045
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0045
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0050
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0050
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0050
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0050
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0065
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0065
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0075
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0075
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0075
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0080
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0080
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0080
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0095
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0095
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0095
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0100
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0100
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0105
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0105
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0115
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0115
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0120
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0120
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0120
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0150
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0150
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0165
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0165
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0165
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0175
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0175
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0175
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0180
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0180
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0180
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0185
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0185
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0190
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0190
http://refhub.elsevier.com/S0925-2312(22)00809-8/h0190


Y. Zhang, L. Su, Z. Liu et al. Neurocomputing 503 (2022) 314–324
Yong Zhang received the Ph.D. degree in control the-
ory and control engineering from Huazhong University
of Science and Technology, Wuhan, China, in 2010. From
2014 to 2015, he was a Visiting Scholar with the Depart-
ment of Information Systems and Computing, Brunel
Uni- versity London, Uxbridge, U.K. He is currently an
Profes- sor with the School of Information Science and
Engineer- ing, Wuhan University of Science and Tech-
nology, Wuhan, China. He has authored over 20 papers
in refereed inter- national journals. His current research
interests include remaining useful life prediction of key
equipment, fault diagnosis and fault tolerant control of

networked ystems. Dr. Zhang is a very active Reviewer for many international
journals.
Li Su received the B.E. in the School of Electrical and
Information Engineering, Hubei University Of Automo-
tive Technology, Hubei, China. Since 2019, he has been
studying for master’s degree of control engineering in
the School of Information Science and Engineering,
Wuhan University of Science and Technology. His cur-
rent research interests include medical image classifi-
cation and recognition.
Zhenxing Liu received the M.Sc. and Ph.D. degrees in
en- gineering in 1990 and 2004, respectively, from
Huazhong University of Science and Technology, Hubei,
China. Cur- rently, he is a Professor with the School of
Information Science and Engineering from Wuhan
University of Sci- ence and Technology, Wuhan, China.
His research inter- ests include monitoring and diag-
nosis of electrical ma- chines and automatic devices.
Tan Wei Chief physician/professor, received the Ph.D.
degree in Medical Imaging Department from Union
Hospital Tongji Medical College Huazhong University of
Science and Technology, Wuhan, Hubei, China. Since
2007, he has been working in the Radiology Department
of Tianyou Hospital affiliated to Wuhan University of
Science and Technology, a key clinical specialty in Hubei
Province, as the academic leader of medical imaging.
Sametime, in 2011, he also act as the academic leader of
medical imaging in Wuhan University of Science and
Technology Hospital. Doctoral supervisor of Medical
Imaging Department, master tutor of General Medicine.

In 2022, he was elected as Deputy director of the Medical Division, Wuhan
University of Science and Technology, Wuhan, China. In the past five years, he won
324
1 s prize of Hubei Science and Technology Progress Award, 1 third prize of Hubei
Province, and participated in four monographs.

Yinuo Jiang received her B. Eng. degree from the
Huazhong University of Science and Technology,
Wuhan, China, in 2020, where she is currently pursuing
the Master’s Degree in School of Artificial Intelligence
and Automation. Her research interests include deep
learning applications in ECG diagnose.
Cheng Cheng received the B. Eng. degree in Measure-
ment, Control Technology and Instrument in 2012 from
Tianjin University, China. In 2013 and 2018, she
respectively received the MSc and the Ph.D. in Control
Systems from Imperial College London, UK. She is cur-
rently a lecturer in the School of Artificial Intelligence
and Automation at Huazhong University of Science and
Technology, Wuhan, China. Her research interests
include robust control, mechatronic systems modelling
and simulation, and deep learning applications.


	A semi-supervised learning approach for COVID-19 detection from chest CT scans
	1 Introduction
	2 Related works
	2.1 MixMatch
	2.2 Training signal annealing
	2.3 Baseline models
	2.4 Visual explanations from deep networks

	3 Method
	3.1 SSL strategy
	3.2 CAMMix
	3.3 Attention module
	3.4 Loss function
	3.5 Ensemble learning

	4 Experimental results
	4.1 Description of experimental dataset
	4.2 Training details and evaluation methods
	4.3 Simulation results analysis
	4.3.1 Experimental result
	4.3.2 Comparison with other algorithm
	4.3.3 Visualization analysis


	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	References


