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Crosstalk in concurrent repeated games impedes
direct reciprocity and requires stronger levels of
forgiveness

Johannes G. Reiter® ', Christian Hilbe® 2, David G. Rand® 3, Krishnendu Chatterjee? & Martin A. Nowak® '#

Direct reciprocity is a mechanism for cooperation among humans. Many of our daily
interactions are repeated. We interact repeatedly with our family, friends, colleagues,
members of the local and even global community. In the theory of repeated games, it is a tacit
assumption that the various games that a person plays simultaneously have no effect on each
other. Here we introduce a general framework that allows us to analyze “crosstalk” between a
player's concurrent games. In the presence of crosstalk, the action a person experiences in
one game can alter the person’s decision in another. We find that crosstalk impedes the
maintenance of cooperation and requires stronger levels of forgiveness. The magnitude of the
effect depends on the population structure. In more densely connected social groups,
crosstalk has a stronger effect. A harsh retaliator, such as Tit-for-Tat, is unable to counteract
crosstalk. The crosstalk framework provides a unified interpretation of direct and upstream
reciprocity in the context of repeated games.
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ocial dilemmas are situations where mutual cooperation is

better than mutual defection and yet there is an incentive to

defect!. Cooperation is normally opposed by natural
selection unless mechanisms for the evolution of cooperation are
in place’. One such mechanism is direct reciprocity, which is
based on repeated interactions between the same two players®>.
In repeated social dilemmas, humans often learn to use adaptive
rules, telling them when to cooperate, when to defect, and how to
motivate others to cooperate®=®. Cooperation can be achieved if
peogle adopt conditional cooperative strategies such as Tit-for-
Tat>, Generous Tit-for-Tat>!%, or Win-stay, Lose-shift!!"12,
Conditional cooperation, paired with some amount of generosity,
can maintain a healthg level of cooperation!*1. It can evolve
even if initially rare??=2°,

Most previous models of direct reciprocity (with a few notable
exception527_30) have either assumed that (i) individuals only
engage in one repeated game at a time or that (ii) an individual’s
action in one game is independent of all its other interactions.
Because humans often engage in many games simultaneously, the
first assumption seems to be violated in most practical scenarios.
Moreover, evidence from experimental studies suggests that also
the second assumption of independence may not always
apply>' =38, We say that a player’s decision is subject to “crosstalk”
when an interaction that a player has in one repeated game
influences how the very same player behaves in another repeated
game (Fig. 1a). For example, consider the interactions in a group
of three individuals, “Alice”, “Bob”, and “Charlie” (Fig. 1b). Sup-
pose that after a series of previous encounters, Bob is prompted
for a decision whether to cooperate with Alice in the next round.
In her last interaction with Bob, Alice has cooperated. Therefore,
Bob who uses Tit-for-Tat, would now cooperate with Alice. But
Bob’s last interaction had occurred with Charlie and in that
interaction Charlie had defected. Crosstalk now means there is
some chance that Bob defects with Alice although direct
reciprocity would mandate Bob to cooperate. Bob’s state with
respect to Charlie influences his decision with respect to Alice.

Such crosstalk can result from various psychological processes.
For example, experiments on upstream reciprocity suggest that
subjects who have received help in their Erevious interaction
often consciously choose to “pay it forward’?*31733, Alternatively,
crosstalk may also occur when subjects have limited working
memory>*=°. In that case, subjects may confuse their co-players’
past actions, which may in turn lead them to reward the wrong
person for past cooperative behaviors. We propose a mathema-
tical framework that allows us to quantify how crosstalk affects
the cooperation dynamics within a population. We show that, in
the presence of crosstalk, a single defector can lead to the com-
plete breakdown of cooperation in an arbitrarily large group of
conditional cooperators. Nevertheless, cooperation can prevail if
the population is structured and if subjects are sufficiently for-
giving. For our model, we do not need to specify the particular
psychological process at work: the resulting behavioral dynamics
are independent of whether crosstalk is the result of a conscious
decision (as in upstream reciprocity), or the consequence of a
subconscious error (as when individuals confuse the past actions
of their co-players). However, the interpretation of our results will
often depend on the specific psychological mechanism that gives
rise to crosstalk. We revisit this matter in the “Discussion” section.

Results

Framework for crosstalk between concurrent repeated games.
We consider a group of N individuals. Each individual plays a
pairwise repeated prisoner’s dilemma (PD) with each interaction
partner. These repeated games occur concurrently. At each time
step, we choose a random pair of players for a single interaction
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(Fig. 1b). Each player uses a reactive strategy, defined by two
parameters, p and g, which denote the probability to cooperate if
the same co-player in the previous round has either cooperated or
defected, respectively. The class of reactive strategies includes
many well-known examples, such as always-cooperate (ALLC),
always-defect (ALLD), tit-for-tat (TFT: Supplementary Fig. 1b),
and Generous Tit-for-Tat'® (GTFT: Supplementary Fig. 1d).
Reactive strategies can be implemented by stochastic two-state
automata®® 42, The two states are labeled C and D (see
Supplementary Fig. la). In the next interaction, a player
cooperates if she is in state C and defects if she is in state
D. Cooperators pay a cost ¢ for their co-player to receive a benefit
b>c. Defectors do not incur a cost and their co-player does not
receive a benefit. The player’s strategy determines how the
player’s state is updated after an interaction has taken place.

In our setup, each player uses a specific strategy for all of her
interactions, but has distinct automata to hold the games with all
of her different co-players in memory (Supplementary Fig. 2). For
example, a player using TFT can be in different states (C or D)
with different co-players, but uses the same strategy to update her
states against all of her co-players. The separate automata enable
players to remember previous interactions and to react in future
rounds according to their respective history with each co-player.

Crosstalk between two repeated games occurs if a player’s state
with respect to one interaction partner displaces the player’s state
with respect to another player (Supplementary Fig. 2). Specifi-
cally, we assume that, before each interaction, there is a
probability y that the players’ state with respect to the current
co-player is replaced by the state with respect to the previous co-
player (other variants of crosstalk will be discussed below). The
crosstalk rate y € [0, 1] specifies how often crosstalk occurs. In the
special case of no crosstalk, y=0, players perfectly distinguish
between all their opponents, and we recover the scenario
considered in previous studies of direct reciprocity>°. For positive
crosstalk rates, cooperative and defective behaviors can cascade in
the players’ social network: a player’s action in one game can
affect how the co-player acts in a different game, which in turn
may influence again other games (Fig. 1). Therefore, crosstalk
causes ripples that propagate in social networks. The overall effect
of crosstalk depends on the structure of the population. We
represent this structure by arranging players on a graph=%°,
where edges between players denote interactions (Fig. 2;
“Methods” section). While our framework is applicable to
arbitrary population structures, we illustrate the effects of
crosstalk using four regular networks (Fig. 3a), ranging from a
circle (where each player has exactly two interaction partners) to
the complete graph (where all players interact with everyone else).

Cooperative and defective behavior spreads across population.
We utilize stochastic computer simulations to study the coop-
eration frequency in a population over time, and derive
mathematical recursions to calculate the long-run payoffs in the
steady state (“Methods” section). To illustrate how crosstalk leads
to the spread of defection in a generally cooperative society, we
place a single ALLD player in a network of N—1 conditionally
cooperative players (Figs. 2 and 3a). When the conditionally
cooperative players use TFT (which is given by p=1, g=0) and
crosstalk occurs, y >0, the ALLD player can turn all remaining
players into defectors eventually (Fig. 2a), independent of the
population structure and the crosstalk rate (Supplementary
Fig. 3). The spread of defection can be prevented if the
cooperative players use more generous strategies, with p=1 and
0<g<1. We refer to such strategies as GTFT. The impact of
different q values will be discussed below. At first, we choose
q=1/3. If the single ALLD player is placed among GTFT players,
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Fig. 1 Crosstalk between repeated games. a Bob is engaged simultaneously
in independent, repeated games with Alice and Charlie. Crosstalk means
that the moves that occur between Alice and Bob can affect Bob's decisions
towards Charlie. b Alice and Bob as well as Bob and Charlie simultaneously
play a repeated Prisoner's Dilemma. The rounds of the two games occur at
particular times. In each round the players can either cooperate (C) or
defect (D). The outcome of a round in one game can influence the
subsequent round in the other game. Crosstalk is indicated by dotted
arrows

cooperation frequencies converge to a positive value (Fig. 2b),
with the eventual equilibrium rates depending on the population
structure and on the crosstalk rate (Supplementary Fig. 3). We
can also observe the opposite effect: a single ALLC player can
increase the cooperation rates in a population of stochastic TFT
players using p=1—¢€ and g=e¢ (Supplementary Fig. 4c).

Comparing the effect of different population structures, we find
that a GTFT population can maintain cooperation more easily if
players are arranged on a circle instead of a complete graph
(Fig. 3a, b, Supplementary Fig. 5). For a population size of N= 16,
the cooperators obtain a higher average payoff than the defector
for crosstalk rates up to y=0.85 on a circle, and for up to y=0.41
on a complete graph. In networks with a low degree, players are
more likely to give the adequate response with respect to their
current co-player, because, if crosstalk occurs, the current co-
player is more likely to coincide with the previous co-player such
that crosstalk becomes inconsequential. For this reason, all other
explored population structures exhibit crosstalk thresholds
between the circle and the complete graph (Fig. 3b).

To investigate the recovery properties after a mistake, we
computed the amount of time that a population of conditional
cooperators with strategy (1, q) and g > 0 needs to return to full
cooperation after a single defection event. We find that crosstalk
leads to a significantly faster recovery (Supplementary Fig. 6).
Intuitively, when the crosstalk rate is high, a player’s automata are
updated more frequently (once before the interaction takes place,
and once after the interaction). Because the players apply
strategies with p=1 and g >0, each updating event is biased
towards increasing cooperation: every cooperative act puts the co-
player into a cooperative state, whereas defective acts are forgiven
with probability g. Moreover, we show that the recovery time is
monotonically increasing with the average degree (k) of the
population structure and monotonically decreasing with the
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Fig. 2 Cooperative and defective behavior can spread across a population in the presence of crosstalk. Twenty-four conditional cooperators (blue framed
nodes, panels) and one ALLD (Always-Defect) player (red framed node, placed in the center) populate a 5 x 5 lattice. The fill color of the nodes depicts the
expected payoff of the players after 100, 1000, and 2000 games. a If the conditional cooperators use TFT (Tit-for-Tat), crosstalk leads to the spread of
defection from the ALLD player to all other group members. Cooperation goes extinct. b GTFT (Generous Tit-for-Tat) is an error-correcting strategy and
can thereby suppress the spread of defection by crosstalk. Only the players in the neighborhood of the ALLD player have reduced payoff. Parameter values:
crosstalk rate y=0.5, benefit b=3, and cost c=1. For GTFT (defined by p=1and 0 <g<1), we used g=1/3
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Fig. 3 Population structure and crosstalk rate substantially affect stationary payoffs and evolutionary stability. a Examples of the investigated population
structures: cycle, square lattice, 6-regular graph, complete graph. Defectors (red nodes) are randomly placed within the population. b Maximally tolerated
crosstalk rate (y) in various population structures such that the payoff of the ALLD player remains below the payoff of the GTFT players (for a generosity
parameter g fixed to 1/3). ¢ Maximum level of generosity (gu) such that the average payoff of the GTFT players exceeds the payoff of the ALLD player.
The circle allows players to be most generous when crosstalk is common. d Most robust level of generosity (gr) maximizing the relative payoff advantage
of the GTFT players compared to the ALLD player. When crosstalk is rare, a small increase in the crosstalk rate allows players to be more generous, to
decrease the chance that defection spreads across the population. However, when crosstalk becomes common, a further increase of y requires the

players to become less generous to constrain the payoff of the ALLD player. Parameter values: number of players N=16 (one ALLD player), benefit b=3,

and cost c=1

probability to cooperate after defection (g; see Supplementary
Note 1 for more details).

Crosstalk requires the right level of forgiveness. We calculate
the generosity parameter g of GTFT to optimally cope with
crosstalk. To this end, we consider two different optimality cri-
teria. First, we calculate the most generous strategy that is able to
resist invasion by a single ALLD player. That is, for a fixed
population structure and a given crosstalk rate, we derive the
reactive strategy (1, gy) with maximum ¢y such that N-1
players with this strategy get at least the same average payoff as
the single defector. Analytical calculations for the complete graph
and numerical results for all other population structures show
that higher crosstalk rates and higher network degrees (that is a
higher number of neighbors) require the cooperative players to be
less generous (Fig. 3c, “Methods” section). For the second
optimality criterion, we calculate the cooperative strategy with the
most robust level of generosity gr such that N—1 players with
strategy (1, qr) have the highest relative payoff advantage com-
pared to the single ALLD player. The most robust level of gen-
erosity exhibits a non-monotonic dependence on the crosstalk
rate (Fig. 3d). In the absence of crosstalk, y=0, the perfectly
reciprocal TFT strategy is most robust against invasion of ALLD.
As the crosstalk rate increases, the most robust level of generosity
gr first increases, but then decreases again. Intuitively, for the
robustness of a conditionally cooperative population against
ALLD, high values of the generosity parameter g have two
opposing effects. On one hand, high values of g make it less likely
that the defectors’ actions propagate through the network. On the
other hand, high values of g also let the players be more forgiving
against the defector, and hence increase the payoff of the ALLD
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player. When crosstalk is rare, conditional cooperators can
prevent the spread of defection by choosing a small value for g.
Once crosstalk is sufficiently frequent, however, players can no
longer fully prevent defection from spreading. Instead, they rather
need to keep the defector’s payoft low, by choosing a smaller g
value. These results confirm that in the presence of crosstalk, y >
0, subjects should show some amount of generosity (q > 0), but
not too much; we find g < gy, with gy depending on the crosstalk
rate and on the population structure. Only for the circle, coop-
eration can prevail even when crosstalk is abundant (Fig. 3d).

The above analysis is based on a comparison between
conditional cooperators and a specific invader, ALLD. More
generally, we find that conditionally cooperative strategies (1, q)
with g<gum in fact resist invasion by all possible invading
strategies (p’, ) for the complete graph. This analysis also reveals
that there are three classes of strategies in total that are stable
against arbitrary invaders (Supplementary Note 1). The first class
consists of the conditionally cooperative strategies just described.
The second class consists of uncooperative strategies (p, 0), with p
sufficiently small (see Supplementary Note 1 for the exact
condition). In particular, this class contains ALLD. When
adopted by all players in a population, strategies of this class
eventually lead to full defection. Finally, the third class consists of
strategies (g, q) analogous to equalizer strategies of direct
reciprocity?®=*°, When applied by all residents in the population,
equalizer strategies guarantee that the payoff of a single invader is
independent of the invader’s strategy.

Crosstalk impedes the evolution of cooperation. These results
raise the question to which extent subjects themselves would
learn to apply cooperative strategies with a sustainable degree of
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Fig. 4 Cooperative strategies evolve for various crosstalk rates and population structures. a-¢ Abundance of different reactive strategies (p, g) over the
course of an evolutionary process when the crosstalk rate is fixed to y=0.5. The probability to cooperate if the co-player in the previous round either
cooperated or defected is denoted by p and g. On a cycle and a lattice, GTFT strategies evolved, whereas the same settings did not allow for the evolution
of cooperative strategies on a complete graph. d Resulting average cooperation rates across different crosstalk rates. The dotted line indicates the crosstalk
rate used in a-c. See “Methods” section for setup of the simulations. Parameter values: population size N =16, benefit b=10, cost c =1, intermediate

selection strength s=1

generosity. To explore that question, we implemented a simple
model of cultural evolution where players are allowed to adopt
new strategies over time, based on their current strategy’s success
(“Methods” section). According to this process, strategies that
yield a comparably high payoft are more likely to be imitated by
other players®®!. In addition, players may occasionally also
experiment with new stochastic strategies, which introduces novel
behaviors into the population. These two events, imitation and
exploration, take the role of selection and mutation in models of
biological evolution. We show that a birth-death process as used
in many biological applications yields the same results (Supple-
mentary Note 1). We simulated the evolutionary dynamics for
various population structures and crosstalk rates, assuming that
experimentation events are relatively rare?’. In the plane of
reactive strategies, we observe that for most of the time, players
either apply defective strategies with p=g=0, or cooperative
strategies with p=1 and 0 <q<qy (Fig. 4a—). None of these
strategies are evolutionarily stable®?. Instead, when residents
apply one of these strategies, neutral or nearly neutral mutants
can often invade and pave the way for mutants of another
strategy class*2. The relative weight of these two strategy classes
depends on the crosstalk rate and on the population structure
(Fig. 4d). While cooperative strategies readily evolve on the cycle
even for substantial crosstalk rates, they become less abundant as
the population structure changes to a square lattice, or to a
complete graph.

To understand the effect of crosstalk in more detail, we
analyzed how easily other strategies fix in a resident population
that either consists of ALLD players or GTFT players (Supple-
mentary Fig. 7). Without crosstalk, GTFT is much more
successful in resisting mutant invasions. On average, more
mutants need to be introduced until the first mutant fixes.
Moreover, successful mutants typically have a strategy that is very
similar to GTFT (whereas ALLD is typically invaded by TFT-like
strategies rather quickly). However, as the crosstalk rate increases,
the invasion time into GTFT drops considerably, and successful
mutants no longer need to be cooperative themselves.

Interestingly, we find that crosstalk favors the stability of
extortionate strategies. With an extortionate strategy, players can
guarantee that they never get a lower payoff than their co-player,
while simultaneously acting such that it is in the co-player’s best
interest to cooperate unconditionally?’. In classical models of
direct reciprocity, extortionate strategies are unstable and they
can only succeed if the population size is small'®!*53 In contrast,
extortionate strategies can thrive even in large populations when
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crosstalk is sufficiently abundant (Supplementary Fig. 8). How-
ever, this success comes at a cost. By becoming stable,
extortionate strategies lose one of their most appealing properties:
when crosstalk is abundant, a rare invader in an extortionate
population does no longer benefit from being unconditionally
cooperative. Instead, the best response is to be extortionate as well
(see Supplementary Note 1 for details).

To analytically understand the impact of crosstalk on the
evolutionary dynamics, we explored a deterministic model of
evolution in well-mixed populations®*~>%, The singular strategies
of these dynamics consist exactly of the three strategy sets that
resist invasion by rare mutants that we described in the previous
section: conditional cooperators, defectors, and equalizers. Which
of these strategy classes is reached in the course of evolution now
depends on the initial population (Supplementary Fig. 9a). As the
crosstalk rate increases, the number of initial populations that
eventually end up in a conditionally cooperative state decreases
(Supplementary Fig. 9b). In this deterministic model, crosstalk
thus acts by reducing the basin of attraction of the cooperative
equilibria.

Alternative models of crosstalk. So far, we have analyzed one
particular model of crosstalk: when prompted for the next deci-
sion, a player instead reacts to her most recent interaction, and
this interaction could have been with someone else. But other
implementations are conceivable.

For example, the memory state that a player holds for her
current co-player could be replaced by the memory state of a
random co-player, who may not coincide with the current or the
most recent co-player. In this case, when deciding what to do for
the next round in a particular game, the player uses with
probability y the state of a random game that she is holding in
memory. We find that this alternative implementation of
crosstalk differs in its short-term dynamics but converges to the
same steady state as our original model (Supplementary Fig. 10).
Thus, Figs. 3 and 4 immediately apply to this type of crosstalk as
well.

Alternatively, a player’s decision could depend not only on the
previous interaction with one particular opponent. Instead, the
player might consider an average across her recent experiences
with all her co-players. We therefore introduce aggregate reactive
strategies (Supplementary Note 1). Players using these strategies
compute a weighted cooperation score across all their co-players.
This cooperation score incorporates the last action of the current
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co-player with weight 1 — y and the average cooperation rate
across all co-players’ last actions with weight y. The obtained
score is then compared to an exogenous cooperation threshold .
Players cooperate with probability p if the weighted cooperation
score exceeds 7; otherwise they cooperate with probability q. In
particular, if the crosstalk rate y is zero, these strategies again
correspond to the classical reactive strategies of direct recipro-
city>1%, We explore the effects of y and 7 by considering a single
defector in a population of conditional cooperators. The
conditional cooperators apply a strategy with p=1, g=1/3 and
some value 7, a strategy to which we refer to as Aggregate
Generous Tit-for-Tat (AGTFT). While the cooperation dynamics
of this model are qualitatively different from our previous results,
we again find that higher crosstalk rates impede the stability of
cooperation across all population structures (Supplementary
Figs. 11 and 12).

Discussion

Classical models of direct reciprocity require that 5players provide
a targeted response to each of their co-players®”. Experimental
results and everyday experience indicate that players’ decisions
can be affected by unrelated events that occur in their interactions
with others3!=38, Crosstalk arises when a player has simultaneous
repeated interactions with several opponents. Importantly,
crosstalk is different from previous approaches that combined
direct and indirect (downstream) reciprocity. In models of
downstream reciprocity, a player’s strategy depends on the co-
player’s reputation, and hence on the co-players’ interactions with
others®®>7=%4 A" combination of direct reciprocity and down-
stream reciprocity can promote cooperation because a single
defection in one game may lead several unaffected co-players to
retaliate against the defector?’~2°. However, downstream reci-
procity makes stronger assumptions on the information players
have when making their decision. It requires a player to observe
other players’ interactions or reputations to respond accordingly.
In contrast, crosstalk is a much more elementary mechanism. It
occurs “within” each player and does not rely on additional
external information about independent interactions of
unrelated players. Our notion of crosstalk is general: it
captures that a player’s decision in one game can be affected by
the player’s previous experience in another game, but it does not
depend on the psychological process responsible for this
interdependency.

Depending on the specific process at work, crosstalk is
amendable to different interpretations. Our framework can be
taken as a model of upstream reciprocity in the context of
repeated games. Under this interpretation, cooperation or
defection received from one person is sometimes consciously
“paid forward” to another person. Previous analytical models have
either focused on direct reciprocity or on upstream reciprocity
separately?6>%, The framework of crosstalk allows us to explore
the consequences when both modes of reciprocity act simulta-
neously, and possibly interfere with each other. We recover
previous results®>=%7 that upstream reciprocity alone is most
likely to yield cooperation when the population is highly struc-
tured. However, our results suggest that cooperation can even be
maintained in well-mixed populations when upstream reciprocity
is sufficiently coupled with direct reciprocity (i.e., when the
crosstalk rate y is sufficiently small).

Alternatively, crosstalk can serve as a model of individuals with
limited working memory. According to this interpretation,
crosstalk occurs when individuals confuse their various co-play-
ers, which introduces a type of behavioral noise into the coop-

eration dynamics. This noise is different from simple
implementation errors considered in previous
6 | (2018)9:555

models?*1819:36:68.69 " [mplementation errors only affect the
repeated game in which they occur (Supplementary Fig. 4a, b).
But crosstalk spreads from one game to another and therefore
through the population (Supplementary Fig. 4). Only in the
presence of crosstalk, a single defector can turn a whole popu-
lation of TFT players into defectors.

We consider upstream reciprocity and confusion as different
psychological processes which independently can give rise to
crosstalk. Although these two processes are subject to different
interpretations, according to the above discussed implementation,
they lead to the same cooperation dynamics within a population.
High degrees of upstream reciprocity, just as high degrees of
confusion, undermine the ability of direct reciprocity to sustain
cooperation.

Crosstalk provides a general framework with applications
beyond the examples studied here. Future models could explore,
for example, crosstalk between independent games that differ in
their payoff structure’’, or when subjects engage in simultaneous
games that involve more than two players. Similarly, one may
study interactions in which the crosstalk rate itself depends on
exogenous parameters, such as the number of neighbors, or the
benefit of cooperation. Finally, we explored a model in which
players aggregate across their last experience with all co-players.
Further generalizations are conceivable. For example, players may
defect against all their co-players as long as at least one of their
automata is in the D state, or they may remember more than their
co-player’s last action’®’!. Under crosstalk, the players’ indivi-
dual games are no longer considered in isolation, but they are
embedded into the context of all concurrently ongoing interac-
tions. Crosstalk requires stronger mechanisms for forgiveness
especially in a more highly connected world. A harsh retaliator
such as Tit-for-Tat is particularly unable to deal with crosstalk.
This is an interesting message for our current society.

Methods

Computer simulations. To simulate the effect of crosstalk on the cooperation
dynamics among players with fixed strategies, we consider a population of size N
playing a repeated Prisoner’s Dilemma (PD). The population is given by a graph
where the nodes represent the players, and the edges reflect all possible interactions
between players. Only players connected by an edge can be paired to play the PD.
Players use separate two-state automata for each of their neighbors on the inter-
action graph*l, The two states of each automaton are labeled C (cooperation) and
D (defection). These states are updated according to the player’s reactive strategy
(p» 9), see Supplementary Figs. 1 and 2. The parameter p denotes the probability to
move to state C if the co-player has cooperated in the previous game (whereas the
complementary probability 1 — p gives the likelihood to move to state D). Similarly,
q denotes the probability to move to state C if the co-player has defected (and 1 —g
is the respective probability to move to state D).

In each round, an edge of the interaction graph is chosen uniformly at random.
A single PD is played among the two players adjacent to the chosen edge. With
probability 1 —y a player acts according to the respective automaton state
associated with this co-player; with probability y crosstalk occurs and the player
refers to the state of the automaton updated in her last interaction instead. After
the game, the automata states are updated according to the game outcome and the
players’ strategies. This elementary step is then iterated for a large number of
rounds. For the simulation results depicted in Supplementary Fig. 5, we simulated
4000 games per realization (on average 500 games per player) and averaged across
10* realizations to obtain the stationary payoff of GTFT and ALLD players for a
given population structure and crosstalk rate.

So far, we assumed that every edge in the interaction graph is chosen with the
same probability. However, some interactions can occur with a higher frequency
than others. To investigate the effects of different interaction frequencies, we
studied the spread of defective behavior in a population of GTFT players
populating a 5 x 5 lattice (Supplementary Fig. 13). We increased the interaction
probability of all players on the central horizontal line by 10-fold (see orange edges)
and observe how defective behavior spreads much faster along the horizontal axis
than along the vertical axis. Within the analytical framework, interaction
probabilities w;; are given by the connectivity matrix W (see next section for
details).

In the second studied type of crosstalk, again with probability y crosstalk occurs
and the player refers to the state of a random automaton, chosen from all her
interaction partners with equal probability (Supplementary Figs. 2 and 10).
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Analytical derivation of steady-state payoffs. To derive an explicit repre-
sentation for the payoffs that players receive in the long run, we suppose that each
player i adopts some fixed reactive strategy (p;, q;). The population structure is
given by an N x N connectivity matrix W= (w;;). The entries w;; give the probability
that the next interaction in that population occurs between players i and j. In
particular, the connectivity matrix W is symmetric w;; = wj;, and satisfies w;;= 0 and
> icj Wiy = 1. As in the computer simulations, we focus on networks in which each
link’is played with equal probability. That is, if player i and j are connected, then
w;;=w for some constant w> 0 that depends on the network structure, but is
independent of the players i and j. For example, because there are N(N—1) /2
different links in a complete graph, well-mixed populations can be represented by a
connectivity matrix with w;;=2/(N(N—1)) for all i #j. As another example,
populations on a cycle are represented by w;;= 1/N if i and j occupy neighboring
sites, and w;;=0 for all other i, j.

Let w; = Zszl w;; denote the probability that the next interaction in the
population involves player i. Moreover, let yfj be the probability that player i is in
state C against player j at time ¢, and let y! be the probability that player i is in state
C with respect to her previous co-player. We can calculate y{}rl using the following
recursion

t+1 t
Yi = (1 - Wij)y i
—_——
If player i did not interact with player j in previous round
t t
+ ¢! *V)Wtj . ()’ﬁpi + (1 7)’,‘{)%‘)

0

Players i and j interacted, and player j's action was not subject to crosstalk

vy (et (15 ar)

Players i and j interacted, and player j's action was subject to crosstalk

+

To calculate the player’s long run cooperation frequencies, we note that in the
steady state, cooperation rates are independent of the time period, and hence
yfj“ = yfj =: yjj. Moreover, because interactions are fully random, the stationary
probability y; that player i is in state C with respect to her previous co-player
simplifies to y; = ZkN:1 2 ik, which is the weighted average that player i is in state
C with respect to a random co-player. In that case, we can rewrite Eq. (1) as

yi — A =7)pi — @)y — v(pi — 41)y; = - ()

The Egs. (2) represent a system of N(N - 1) linear equations in the unknowns y;;
with i #j. By solving this inhomogeneous system, we can calculate the stationary
frequency yj to find player i in state C with respect to player j. Given the stationary
frequencies y;, we can calculate the payoff #; of player i by averaging over all co-
players,

i - - .
m=> = (L=t ) b=y o] 3
= v

We note that this method applies to general crosstalk rates y, general population
structures, and general population compositions (e.g., populations with more than
two different strategies present). As shown in Supplementary Fig. 5, these
analytically derived payoffs are in excellent agreement with the computer
simulations. In the Supplementary Note 1, we show how Egs. (2) and (3) can be
further simplified for well-mixed populations. In that case, we can also provide
explicit expressions for how generous cooperative strategies of the form (1, q) are
allowed to be to resist invasion of ALLD (as depicted in Fig. 3c, d).

Setup of the evolutionary simulations. To explore the evolution of strategies
under crosstalk, we consider a simple model of cultural evolution, the pairwise
comparison process’>>!. As common in studies on the evolution of strategies in
repeated games'92>4041 we assume a separation of time scales: the time it takes
individuals to play their repeated games is short compared to the evolutionary
timescale at which individuals adopt new strategies. This assumption allows us to
use the players’ stationary payoffs, as given by Eq. (3), when simulating the evo-
lutionary trajectory of a population.

For the evolutionary simulations, we consider a population with fixed
population structure and fixed crosstalk rate y. In each evolutionary time step, there
are two possible events, imitation or random strategy exploration. To model
imitation events, we assume that two individuals are randomly drawn from the
population. We refer to these two individuals as the “learner” and the “role model”,
respectively. Herein, we aim to compare the effect of crosstalk across different
population structures. To allow for a fair comparison, we assume that, while
payoffs are calculated for the given population structure, strategy updating occurs
globally. As a consequence, the learner and the role model do not need to be
neighbors in the direct interaction network. With this assumption, we rule out the
formation of cooperative clusters, which would additionally favor the evolution of
cooperation in networks with a low degree**. After selecting the learner and the
role model, their payoffs 7, and zy are calculated according to Eq. (3). We assume
that the learner adopts the role model’s strategy with probability p = [1 + exp(—s(zg
—m))]7L. The parameter s 2 0 measures the strength of selection. When selection is
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weak, s < 1, payoffs are largely irrelevant for imitation and the imitation
probability approaches 1/2, irrespective of the players’ strategies. When selection is
strong, s > 1, players tend to adopt only those strategies that yield a higher payoff
than their own strategy. In addition to these imitation events, we allow for random
strategy exploration. When such an exploration event occurs, one player is
randomly drawn from the population. This player then adopts a new strategy (p, q),
which is uniformly drawn from all reactive strategies. Following the approach of
Imhof and Nowak?3, we assume that these exploration events are rare. As a
consequence, the population is homogeneous most of the time. Only occasionally, a
mutant strategy enters the population due to random strategy exploration. This
mutant strategy than either goes extinct or fixes before the next exploration event
occurs. By simulating this process over a long timespan, we can record how often
the population applies certain strategies (p, 9), and we can compute the resulting
average cooperation rate over an evolutionary timescale. In Fig. 4, we show
corresponding results for the cycle, the square lattice, and for the complete graph,
assuming parameter values of population size N= 16, benefit b= 10, cost c=1, and
selection strength s= 1. Other parameter values lead to qualitatively similar results,
provided that selection is sufficiently strong and that the benefit of cooperation is
sufficiently high to allow for the evolution of cooperation. In the Supplementary
Note 1, we show that analogous results apply when we consider a birth-death
process instead of the pairwise imitation process considered herein.

Data availability. No data sets were generated during this study.
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