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ABSTRACT
◥

Purpose: Transcriptomic profiling was performed for microsat-
ellite instability-high (MSI-H)/mismatch repair-deficient (dMMR)
gastrointestinal tumors to determine the predictors of response to
PD-1 blockade.

Experimental Design: Thirty-six patients with MSI-H/dMMR
gastrointestinal tumors, including gastric cancer, colorectal cancer,
cholangiocarcinoma, small intestine cancer, and pancreatic cancer,
being treated with PD-1 blockade were analyzed.We conducted the
transcriptomic analysis of gastrointestinal tumors using RNA
sequencing data, including the consensus molecular subtypes
(CMS) of colorectal cancer.

Results:Gene set enrichment analysis (GSEA)demonstrated that
non-responders had upregulations of epithelial–mesenchymal tran-
sition, angiogenesis, hypoxia, mTORC1, TNF-a, KRAS, Wnt/
b-catenin, TGF-b, and various metabolism-related signaling path-
ways. Meanwhile, the IFNg pathway was enriched in responders.

On the basis of the leading-edge analysis of GSEA, VEGF-A was
significantly correlated with enriched pathways in non-responders.
Patients with high VEGF-A expression, compared with those with
low expression, had significantly shorter progression-free survival
[PFS; median 4.8 months vs. not reached (NR), P ¼ 0.032] and
overall survival (median 11.1 months vs. NR, P¼ 0.045). Among 13
patients with colorectal cancer evaluable for CMS classification, the
objective response rate was 100%, 0%, 0%, and 16.7% in CMS1,
CMS2, CMS3, and CMS4, respectively. Patients with CMS1 had
significantly longer PFS (NR vs. 4.8 months, P ¼ 0.017) than those
with CMS2, CMS3, or CMS4.

Conclusions: Several transcriptomic features, including CMS
classification and related genes, were associated with response to
PD-1 blockade in MSI-H/dMMR gastrointestinal tumors. These
findings can help develop predictive biomarkers or combination
immunotherapies.

Introduction
Microsatellite instability-high (MSI-H) or mismatch repair-

deficient (dMMR) tumors exhibit elevated mutation rates (including
frameshifts or missense mutations) and hypermethylation (including
hypermethylation at the MLH1 promoter), resulting in the enhanced
expression of neoantigens and high infiltration of CD8þT cells into the
tumormicroenvironment (TME; refs. 1, 2). Tumors with these distinct
molecular and immunological characteristics may respond well to

immune checkpoint inhibitors (ICI; ref. 3). In several trials, the FDA
has approved anti–PD-1 antibodies (e.g., pembrolizumab and dos-
tarlimab) for patients with treatment-resistant MSI-H/dMMR solid
tumors (4, 5). Currently, MSI-H/dMMR is one of the most consistent
predictive biomarkers for ICIs. However, approximately 30% of
MSI-H/dMMR tumors had during the first months of therapy pro-
gressive disease with anti–PD-1 therapy, and thus it is crucial to
identify the predictive biomarkers or molecular profiling correlated
with resistance to these agents (6–8). In our recent study of 45MSI-H/
dMMR gastrointestinal tumors, we found that tumor mutational
burden (TMB)-low tumors and PTEN mutations, especially in the
phosphatase domain with immunosuppressive microenvironments,
might be associated with decreased responsiveness to PD-1 blockade
(9). Other gene alterations, such as STK11, FBXW7, JAK1, B2M, and
HLA mutations, were also observed in non-responders (9).

Aside from mutational status, gene signatures detected via RNA
sequencing, especially those induced by IFNg , may also be potential
biomarkers for predicting clinical benefit to anti–PD-1 or anti–PD-L1
therapies in microsatellite-stable (MSS)/MMR-proficient (pMMR)
solid tumors (10). A preclinical study reported that theWnt/b-catenin
pathway induced intrinsic resistance to ICIs in melanoma (11). How-
ever, there is a paucity of information regarding the transcriptomic
landscape inMSI-H/dMMR gastrointestinal tumors treatedwith anti–
PD-1 therapy (12). Thus, uncovering the molecular determinants of
responsiveness to ICI therapy can lead to the development of novel
biomarkers or combination therapeutic modalities to overcome resis-
tance to these agents in MSI-H/dMMR gastrointestinal tumors.

This study aimed to elucidate predictors of responsiveness to ICI
therapy in MSI-H/dMMR gastrointestinal tumors. We performed
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transcriptomic profiling of MSI-H/dMMR gastrointestinal tumors
treated with PD-1 blockade, including the consensus molecular sub-
types (CMS) of colorectal cancer.

Materials and Methods
Patients

We performed transcriptomic analysis to uncover the signatures
associated with the PD-1 blockade response in patients with advanced
MSI-H/dMMR gastrointestinal tumors at National Cancer Center
Hospital East (Kashiwa, Chiba, Japan). The inclusion criteria were as
follows: (i) an Eastern Cooperative Oncology Group performance
status (ECOG PS) of 0 to 1; (ii) histologically proven, unresectable,
locally advanced, ormetastatic gastrointestinal tumor that is refractory
or intolerant to at least 1 chemotherapy regimen; (iii)MSI-Hor dMMR
status verified via local PCR or IHC as described below; (iv) adequate
bone marrow, hepatic, and renal function as indicated by medical
records; (v) received an anti–PD-1 inhibitor either alone (i.e., pem-
brolizumab or nivolumab) or as combination therapy (i.e., pembro-
lizumab plus napabucasin; ref. 13) from July 2015 to April 2021; and
(vi) had adequate tumor samples for RNA sequencing. All patients
provided written informed consent for the biomarker analysis of
formalin-fixed paraffin-embedded (FFPE) tissue specimens from
archival tissue samples. The study was approved by the Institutional
Review Board of the National Cancer Center Hospital East (Kashiwa,
Chiba, Japan) andwas carried out in accordancewith the guidelines for
biomedical research specified in the Declaration of Helsinki.

MSI and MMR status
MSI status was analyzed using a Promega MSI analysis system

(Promega), which used 5mononucleotide markers for the detection of
MSI: BAT-25, BAT-26, NR-21, NR-24, and MONO-27 (14). Tumors
were classified asMSI-H if instability was noted in at least twomarkers.
On the other hand, MMR status was assessed via IHC using the
following monoclonal antibodies: anti-mutL homolog 1 (MLH1,
ES05), anti-mutS homolog 2 (MSH2, FE11), anti-postmeiotic segre-
gation increased 2 (PMS2, EP51), and anti-mutS homolog 6 (MSH6,

EP49; Agilent Technologies). Tumors that lacked MLH1, MSH2,
PMS2, or MSH6 expression were considered dMMR.

Whole-exome sequencing
Mutational status, including TMB, was assessed via whole-exome

sequencing as we previously reported (9). TMBwas defined as the total
number of nonsynonymous mutations, including indels, mutations
per megabase (muts/Mb) in whole-exome sequencing and TMB-high
was defined as ≥ 10 muts/Mb.

RNA sequencing
Total RNA was extracted from FFPE specimens using the RNeasy

FFPE Kit (QIAGEN). Ribosomal RNA was depleted from the total
RNA with an NEBNext rRNA Depletion Kit (New England Biolabs).
Sequencing libraries for RNA-seq were prepared with a NEBNext
Ultra RNA Library Prep Kit (New England Biolabs); these prepared
RNA-seq libraries underwent 150 bp, paired-end NGS sequencing. To
perform a gene set enrichment analysis (GSEA), the gene set variation
analysis (GSVA) in R package and the GSEA tool (https://www.gsea-
msigdb.org/gsea/index.jsp) were used to calculate the signaling path-
way variation score and normalized enrichment score (NES), respec-
tively (15, 16). In GSEA, gene sets with both nominal P value and FDR
q value of <0.05 were considered as significantly enriched pathways.
These analyses were performed according to the hallmark gene sets,
which were downloaded from the Molecular Signatures Database
(MSigDB). After GSEA, leading-edge analysis was performed to
determine genes with a high impact on each pathway; the genes that
overlapped across significant pathwayswere further identified (15, 16).
A unique CMS in patients with colorectal cancer was also assessed as
previously described (17).

Multiplex immunofluorescence IHC and PD-L1 expression
The protein expression levels of CD3, CD4, CD8, and cytokeratin in

FFPE samples were assessed using multiplex fluorescence IHC with
each monoclonal antibody. The details of multiplex immunofluores-
cence are available in the Supplementary Methods.

A trained pathologist (T. Kuwata) who was blinded to the diagnoses
and/or other identifying information assessed the PD-L1 combined
positive score (CPS) using PD-L1 IHC 22C3 pharmDx (Dako). CPS
was defined as the ratio of the number of PD-L1–positive cells
(including tumor cells, lymphocytes, and macrophages) to the total
number of tumor cells multiplied by 100.

Outcomes and statistical analysis
Progression-free survival (PFS) was defined as the time from the

initiation of PD-1 blockade to disease progression or death from any
cause. Overall survival (OS) was defined as the time from the initiation
of PD-1 blockade to death from any cause. Tumor response was
assessed in patients with measurable lesions using the RECIST version
1.1. Overall response rate (ORR) was defined as the proportion of
patients whose best overall response was a complete response (CR) or
partial response (PR). Disease control rate (DCR) was defined as the
proportion of patients who achieved a best overall response of a CR,
PR, or stable disease (SD) lasting more than 6 weeks from the start of
study treatment.

Quantitative data are expressed as median and interquartile range
(IQR) and the cutoff values were set to themedian. TheWilcoxon rank
sum test was used to compare continuous variables, whereas Fisher’s
exact test was used to compare categorical variables. Survival curves
were estimated using the Kaplan–Meier method, and differences
between groups were tested using the log-rank test. Hazard ratios

Translational Relevance

Approximately half of microsatellite instability-high (MSI-H)/
mismatch repair-deficient (dMMR) tumors do not respond to
immune checkpoint inhibitors (ICI), highlighting the importance
of identifying predictive biomarkers or molecular profiling corre-
lated with resistance to these agents.We performed transcriptomic
profiling of MSI-H/dMMR gastrointestinal tumors treated with
PD-1 blockade, including the consensusmolecular subtypes (CMS)
of colorectal cancer. Our study revealed that non-responders had
the enrichment of epithelial–mesenchymal transition, angiogene-
sis, hypoxia, mTORC1, KRAS, Wnt/b-catenin, TGFb, and various
metabolism-related signaling pathways, which have been associ-
ated with an immunosuppressive tumor microenvironment.
Meanwhile, the IFNg pathway was upregulated in responders.
High expression of VEGF-A might predict a negative response to
ICIs in this population. Moreover, CMS classification possibly
correlated with clinical outcomes of PD-1 blockade in MSI-H/
dMMR patients with colorectal cancer. These transcriptomic
features could help in the development of predictive biomarkers
or combination immunotherapies in the future.
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(HR) were estimated using the Cox proportional hazards model. PFS
and OS were analyzed using univariate and multivariate Cox regres-
sion analyses. The backward selection method was used to select
factors retained in the multivariate analysis (P < 0.1). All P values of
<0.05 were considered statistically significant. All statistical analyses
were performed using the statistical program R version 4.1.0 (The R
Foundation for Statistical Computing).

Data availability
Raw RNA sequencing data used in the present study were uploaded

to the Sequence Read Archive of DNA DataBank of Japan (DRA:
https://www.ddbj.nig.ac.jp/dra/index.html) under accession No.
DRA013565. All other data are available from the corresponding
author upon reasonable request. Those requests will be reviewed by
a study steering committee to verify whether the request is subject to
any intellectual property or confidentiality obligations.

Results
Patient overview

To examine transcriptomic profiling associated with the response to
PD-1 blockade, we identified patients with gastrointestinal tumors and
evaluated their characteristics and responses to PD-1 blockade. A total
of 36 patients with available RNA sequencing data met the inclusion
criteria and had the following cancers: gastric cancer (n ¼ 18),
colorectal cancer (n¼ 13), cholangiocarcinoma (n¼ 2), small intestine
cancer (n ¼ 2), and pancreatic cancer (n ¼ 1). The patient character-
istics are summarized inTable 1. In addition, the details of MSI/MMR
status with TMB are summarized in Supplementary Table S1. Of the
total 36 patients, 9 were analyzed by both Promega MSI analysis and
MMR IHC test, and the remaining 27 were analyzed by either test
[Promega MSI analysis (n ¼ 15) or MMR IHC (n ¼ 12); Supplemen-
tary Table S1]. Tumor specimens were collected from primary tumor
samples before PD-1 blockade.

The maximum percentage change in tumor size from baseline is
shown in Fig. 1. All patients had measurable lesions. The overall
population had an ORR andDCR of 52.7% (19/36) and 83.3% (30/36),
respectively. The median follow-up at the time of the analysis was
28.2 months. In the overall population, the median PFS was
24.5 months [95% confidence interval (CI), 4.4 to not reached (NR)],
whereas the median OS was 29.5 months (95% CI, 15.2–NR), with 16
mortalities (44.4%; Supplementary Fig. S1).

Transcriptome features associated with the response to PD-1
blockade

The gene set activity in enriched pathways is illustrated using a heat
map among samples calculated using GSVA, with a bar plot repre-
sentingNES between non-responders [SDor progressive disease (PD)]
and responders (CR or PR) generated using GSEA (Fig. 1). On GSEA,
non-responders had upregulations of epithelial–mesenchymal tran-
sition (EMT), angiogenesis, hypoxia, mTORC1, TNFa, KRAS, Wnt/
b-catenin, TGFb, and various metabolism-related signaling pathways.
On the other hand, the IFNg and a pathways were upregulated in
responders.

Next, we performed leading-edge analysis of the GSEA to identify
the individual genes that were significantly related to enriched path-
ways in non-responders. Specifically, the top 5 genes were VEGF-A,
LDHA, ALDOA, IDH1, and PLAUR (Fig. 2). Of these, patients
with high VEGF-A mRNA expression, compared with those with
low expression, had significantly shorter PFS (median, 4.8 months;
95%CI, 3.0–30.7 vs. NR, 95%CI, 8.4–NR;HR, 2.79; 95%CI, 1.10–7.09;

P¼ 0.032) andOS (median, 11.1months; 95%CI, 5.3–NRvs. NR, 95%
CI, 15.2–NR; HR, 2.97; 95% CI, 1.02–8.62; P ¼ 0.045; Fig. 3). On the
other hand, the expression of the other genes was not associated
with PFS and OS (data not shown). Multivariate analyses showed
that high expression of VEGF-A mRNA was independently asso-
ciated with shorter PFS (HR, 3.23; 95% CI, 1.18–8.87; P ¼ 0.023)
and OS (HR, 3.61; 95% CI, 1.06–12.29; P ¼ 0.040; Supplementary
Tables S2 and S3). Among other VEGF-related genes, the expression
of PIGF and PDGF-A were significantly higher in non-responders
than in responders. Furthermore, the expression of VEGFR-1 and
PDGF-B tended to be higher in non-responders than in responders
(Supplementary Fig. S2).

CMS classification of colorectal cancer and response to PD-1
blockade

Among 13 patients with colorectal cancer evaluable for CMS
classification, CMS1, CMS2, CMS3, and CMS4 were detected in 4,
2, 1, and 6 cases, respectively. Among the 4 cases of CMS1, 1 had CR,

Table 1. Patient characteristics.

Total (n ¼ 36)

Age, y
Median (range) 67 (30–84)
≥65 20 (55.6)

Sex, n (%)
Male 20 (55.6)
Female 16 (44.4)

Previous treatment regimens, n (%)
1 19 (52.8)
≥2 17(47.2)

Primary cancer, n (%)
Gastric 18 (50.0)
Colorectal 13 (36.1)
Small intestine 2 (5.6)
Cholangiocarcinoma 2 (5.6)
Pancreatic 1 (2.8)

ECOG PS, n (%)
0 23 (63.9)
1 13 (36.1)

Surgery on primary tumor, n (%)
No 14 (38.9)
Yes 22 (61.1)

Metastatic sites, n (%)
Liver 5 (13.9)
Lung 5 (13.9)
Peritoneal 16 (44.4)
Lymph node 29 (80.6)

Number of metastatic organs, n (%)
1 19 (52.8)
≥2 17 (47.2)

PD-L1 CPS, n (%)
CPS < 1 7 (19.4)
1 ≤ CPS < 10 5 (13.9)
CPS ≥ 10 23 (63.9)
Missing 1 (5.3)

TMB, mutations/Mb (range) 38.7 (3.6–93.0)
Treatment, n (%)

Nivolumab 6 (16.7)
Pembrolizumab 24 (66.7)
Pembrolizumab with napabucasin 6 (16.7)

Abbreviations: CPS, combined positive score; ECOG, Eastern Cooperative
Oncology Group; PS, Performance status; TMB, tumor mutational burden.
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while the remaining 3 had PR. Both cases of CMS2 had SD. The single
case of CMS3 had PD.Among the 6 cases of CMS4, 1 had PR, 3 had SD,
and the remaining 2 patients had PD. Consequently, the ORR was
100% (4/4), 0% (0/2), 0% (0/1), and 16.7% (1/6) for CMS1, CMS2,
CMS3, and CMS4, respectively (Fig. 4). Patients with CMS1 had a
significantly longer PFS (median, NR; 95%CI, NR–NR vs. 4.8 months;
95% CI, 1.1–30.7; P¼ 0.017) and numerically longer OS (median, NR;

95% CI, NR–NR vs. 31.0 months; 95% CI, 2.6–NR; P ¼ 0.105) than
those with CMS2, CMS3, or CMS4 (Fig. 5).

TME according to the expression of VEGF-A mRNA
The TMEwas analyzed viamultiplex fluorescence IHC (data shown

as median; IQR). Tumors with high VEGF-A mRNA expression,
compared with those with low expression, had significantly lower

Figure 1.

Waterfall plot of the maximum percentage change in tumor size from baseline measured using the RECIST version 1.1 and gene set activity of signaling pathways
between responders and non-responders. Top, percentages of maximum tumor volume changes during PD-1 blockade measured using the RECIST 1.1 criteria. The
bottom dotted line represents a tumor reduction of 30%, as per RECIST 1.1, representing partial response (PR) or complete response (CR). The top dotted line
represents a tumor increase of more than 20%, representing disease progression (PD). Middle, summary of best of response, combined positive score (CPS), tumor
mutational burden (TMB), and PTENmutation status. Each column represents an individual patient with available data. Bottom left, a heat map showing the relative
expression levels of associated gene sets between samples calculated using the gene set variation analysis (GSVA). Bottom right, a bar plot representing normalized
enrichment score between responders and non-responders for each gene set calculated using the gene set enrichment analysis (GSEA).

Figure 2.

The leading-edge analysis of the gene set enrichment analysis (GSEA). The heatmap created by the leading-edge analysis of the GSEA indicates the relative
expression level of each gene associated with 3 or more pathways. The top 5 genes related to significantly enriched pathways in non-responders to PD-1 blockade
were VEGF-A, LDHA, ALDOA, IDH1, and PLAUR.
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levels of intratumoral CD8þ T cells [146.8/mm2 (95% CI, 63.7–336.2)
vs. 269.1/mm2 (95% CI, 193.1–621.2); P ¼ 0.041], as well as numer-
ically lower levels of intratumoral CD3þ [352.6/mm2 (95% CI, 258.8–
471.8) vs. 414.7/mm2 (95% CI, 348.9–873.4); P ¼ 0.133] and CD4þ T
cells [52.1/mm2 (95% CI, 27.1–100.1) vs. 96.1/mm2 (95% CI, 16.3–
169.2); P ¼ 0.405; Supplementary Fig. S3).

Discussion
We performed transcriptomic profiling, including CMS of colo-

rectal cancer, for patients with MSI-H/dMMR gastrointestinal tumors
treated with PD-1 blockade to elucidate the determinants of respon-

siveness to ICI therapy. To the best of our knowledge, this is the first
report to comprehensively describe the transcriptomic landscape of
tumors (specifically related to PD-1 blockade) among patients with
MSI-H/dMMR gastrointestinal tumors.

First, our study revealed that non-responders exhibited enrich-
ment of the EMT, angiogenesis, hypoxia, mTORC1, KRAS, Wnt/
b-catenin, TGF-b, and various metabolism-related signaling path-
ways, all of which have been associated with an immunosuppressive
TME (11, 18–25). On the other hand, the IFNg pathway was
upregulated in responders, which was in line with previous studies
showing that an IFNg-related mRNA profile correlated with favor-
able clinical outcomes with ICIs in several malignancies (26).

Figure 3.

Kaplan–Meier plots of progression-free survival (PFS;A) and overall survival (OS;B) according to the expression ofVEGF-AmRNA. Patientswith highVEGF-AmRNA
expression, comparedwith thosewith low expression, had significantly lower PFS [median: 4.8months; (95%CI, 3.0–30.7) vs. not reached, NR (95%CI, 8.4–NR); log-
rank P ¼ 0.025] and OS [median, 11.1 months; (95% CI, 5.3–NR) vs. NR (95% CI, 15.2–NR); log-rank P ¼ 0.035].

Figure 4.

Waterfall plot of the maximum per-
centage change in tumor size from
baseline according to the consensus
molecular subtype (CMS) of colorectal
cancer (CRC) as measured using the
RECIST version 1.1. Among 13 patients
with CRC evaluable for CMS classifi-
cation, CMS1, CMS2, CMS3, and CMS4
were detected in 4, 2, 1, and 6
cases, respectively. The ORR was
100% (4/4), 0% (0/2), 0% (0/1), and
16.7% (1/6) for patients with CMS1,
CMS2, CMS3, and CMS4, respectively.
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In a recent study, Kwon and colleagues (12) reported that non-
responders had upregulations in the Wnt/b-catenin pathway in a
phase II trial of pembrolizumab in cases of advanced MSI-H gastric
cancer. Similarly, the non-responders to anti–PD-1 therapy in our
cohort also demonstrated an enriched Wnt/b-catenin pathway.
Recently, a selective inhibitor of the interaction between b-catenin
and CREB-binding protein demonstrated synergistic antitumor activ-
ity in combination with PD-1 blockade via modulation of the Wnt/
b-catenin pathway and alteration of the tumor immune microenvir-
onments in vivo (27, 28). Thus, ICI resistance in MSI-H/dMMR
gastrointestinal tumors can potentially be overcome by targeting the
Wnt/b-catenin pathway.

In our study, non-responders to PD-1 blockade had upregulations
in the pathways of angiogenesis. Moreover, on the basis of the leading-
edge analysis of GSEA, tumors with high VEGF-A expression were
associated with poorer clinical outcomes after PD-1 blockade therapy
compared with those with low VEGF-A expression. These results were
consistent with previous reports demonstrating that VEGF-A levels
were elevated among non-responders to ICI therapy in melanoma and
other cancers (29, 30). VEGF has been reported to reduce the infil-
tration of CD8þ T cells through decreasing the expression of vascular
cell adhesion molecule-1 and increasing the expression of Fas
ligand (31, 32). In line with this, we observed significantly fewer CD8þ

T cells in tumors with highVEGF-A expression in our study. Recently,
a phase III trial of atezolizumab (anti–PD-L1 antibody) plus bevaci-
zumab (anti–VEGF-A antibody) showed promising results for hepa-
tocellular carcinoma, leading to its FDA approval (33). Furthermore,
on the basis of the results of phase III trials, the FDA has approved
anti–PD-1/PD-L1 antibodies plus tyrosine kinase inhibitors of VEGF
receptor in renal cell carcinoma or endometrial carcinoma (34, 35).
Given that the levels of VEGF-A and other VEGF related genes (i.e.,
PIGF, PDGF-A/ B, and VEGFR-1) increased in non-responders in our

cohort, therapy with anti-VEGF antibodies or tyrosine kinase inhibi-
tors of VEGF receptor might overcome resistance to ICIs in MSI-H/
dMMR gastrointestinal tumors.

In addition, we evaluated CMS and their clinical outcomes in
MSI-H/dMMR colorectal cancer. As expected, patients with CMS1,
characterized by inflamed tumors with infiltrating activated lym-
phocytes and high levels of immune checkpoint molecules (36),
exhibited a greater tumor response (ORR, 100%) and longer sur-
vival outcomes compared with the other types of CMS. Notably,
among 6 patients with CMS4, only 1 patient showed an objective
response, whereas 2 showed apparent tumor enlargement. CMS4 is
characterized by immune-excluded tumors, wherein the immune
system is engaged, but factors in its microenvironment (e.g.,
angiogenesis or TGFb) prevent activity (37, 38). Thus, dual inhi-
bition of PD-1 and angiogenesis or TGFb might be a promising
strategy for MSI-H/dMMR colorectal cancer with CMS4, warrant-
ing further investigations in future clinical trials.

The major limitations of this study were its small sample size and
retrospective, single-center design. Therefore, this was a hypothesis-
generating study. Further preclinical studies and larger cohort studies
are needed to confirm our findings. However, given that MSI-H/
dMMR is a rare subtype in patients with gastrointestinal tumors (39),
our study provides new insight regarding the development of predic-
tive biomarkers or combination therapies for PD-1/PD-L1 blockade in
this population. Also, this research included different gastrointestinal
cancer type even if they all sharedMSI/dMMR status. The difference of
primary tumor location was possibly related with that of RNA
expression level (40). We should analyze transcriptomic profiling of
each cancer type in a future study with a large cohort of patients,
though the RNA expressions of VEGF related gene, which were
significantly enriched in non-responders compared with responders,
were not significantly different between primary tumor locations in

Figure 5.

Kaplan–Meier plots of progression-free survival (PFS;A) andoverall survival (OS;B) according to the expressionof consensusmolecular subtype (CMS). Patientswith
CMS1 showed significantly longer PFS [Not reached, NR (95% CI, NR–NR) vs. 4.8 months (95% CI, 1.1–30.7); P¼ 0.017] and numerically longer OS [Not reached (95%
CI, NR–NR) vs. 31.0 months (95% CI, 2.6–NR); P ¼ 0.105] than those with other types of CMS.
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our cohort (data not shown). Finally, the proportion of CMS1 in our
study was lower than in a previous report probably due to its small
sample size (36). Furthermore, although Marisa and colleagues (41)
recently reported that several CMS may coexist within a same colo-
rectal cancer, the heterogeneity was not assessed in our study, which
should be investigated in future studies.

In conclusion, several signaling pathways were associated with the
response to PD-1 therapies in patients with MSI-H/dMMR gastroin-
testinal tumors. Of note, highVEGF-A expressionmight be a predictor
of negative response to these agents in this population.Moreover, CMS
classification possibly correlated with the clinical outcomes of PD-1
blockade in MSI-H/dMMR patients with colorectal cancer. These
transcriptomic features could help in the future development of
predictive biomarkers or combination immunotherapies.
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