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Abstract Trans-species small regulatory RNAs (sRNAs) are delivered to host plants from diverse

pathogens and parasites and can target host mRNAs. How trans-species sRNAs can be effective on

diverse hosts has been unclear. Multiple species of the parasitic plant Cuscuta produce trans-

species sRNAs that collectively target many host mRNAs. Confirmed target sites are nearly always

in highly conserved, protein-coding regions of host mRNAs. Cuscuta trans-species sRNAs can be

grouped into superfamilies that have variation in a three-nucleotide period. These variants

compensate for synonymous-site variation in host mRNAs. By targeting host mRNAs at highly

conserved protein-coding sites, and simultaneously expressing multiple variants to cover

synonymous-site variation, Cuscuta trans-species sRNAs may be able to successfully target multiple

homologous mRNAs from diverse hosts.

Introduction
Small regulatory RNAs (sRNAs) produced in one organism can sometimes function to silence

mRNAs in another organism. These trans-species sRNAs seem especially prominent in plant/

pathogen and plant/parasite interactions. Fungal plant pathogens produce sRNAs with comple-

mentarity to host mRNAs (Weiberg et al., 2013) and host plants produce trans-species sRNAs

that silence mRNAs in both pathogenic fungi (Zhang et al., 2016; Cai et al., 2018) and oomy-

cetes (Hou et al., 2019). The parasitic plant Cuscuta campestris produces trans-species micro-

RNAs (miRNAs) which silence mRNAs in multiple host plants (Shahid et al., 2018). Silencing by

plant trans-species sRNAs relies on extensive complementarity between the sRNA and target

mRNA, similar to normal endogenous plant miRNAs (Liu et al., 2014).

Trans-species silencing is expected to benefit the source organism while being detrimental to

the target organism in parasitic/pathogenic relationships. This implies that target sites are not

under purifying selection to maintain complementarity to trans-species sRNAs. How could such a

system be stable over evolutionary time and/or be useful against multiple species? One sugges-

tion is a ‘shotgun’ strategy, in which a very diverse set of trans-species sRNAs is deployed to

hit target mRNAs randomly. The plant response to Phytophthora may make use of this strategy

(Hou et al., 2019). However, the fact that the trans-species sRNAs delivered to hosts from the

parasitic plant C. campestris are miRNAs (Shahid et al., 2018) argues against the shotgun

hypothesis in this case. MiRNAs are defined by the precise excision of a single mature, func-

tional small RNA (Axtell and Meyers, 2018), which implies selection for the miRNA to target a

particular sequence or closely related set of sequences. We examined Cuscuta trans-species

sRNAs and their targets in detail to shed light on how this system may be evolutionarily stable

and robust against diverse hosts.
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Results
We analyzed sRNA expression from four Cuscuta species (Figure 1A). Specimens from two or three

distinct populations of C. pentagona and C. gronovii, respectively, were included, making a total of

seven separate sRNA expression studies (identified with acronyms for brevity; Figure 1A–B,

Supplementary files 1–2). All four Cuscuta species are generalists with documented hosts spanning

multiple plant families (Figure 1—figure supplement 1). RNA samples (three biological replicates

each) from host-parasite interfaces and parasite stems growing on the host Arabidopsis thaliana

were obtained and used for sRNA sequencing (Figure 1B). Libraries were condensed to highly

expressed sRNA variants and filtered to remove any sRNAs that came from the host (Figure 1—fig-

ure supplement 2). Differential expression analysis revealed several hundred Cuscuta sRNAs in each

experiment that were significantly up-regulated in the interface tissue relative to parasite stems

(FDR < 0.1) (Supplementary file 3); we dubbed these haustorially-induced (HI) sRNAs (Figure 1A;

Supplementary file 4). HI-sRNAs are mostly 21 or 22 nucleotides long (Figure 1A), sizes consistent

with either miRNAs or short interfering RNAs (siRNAs). Distinguishing miRNAs from siRNAs requires

a genome assembly (Axtell and Meyers, 2018), a criterion met so far for only one of the four spe-

cies (C. campestris) included in this study (Shahid et al., 2018; Vogel et al., 2018). Approximately

half of the C. campestris HI-sRNAs (208/408) come from MIRNA hairpins (Supplementary file 5). C.

campestris-derived HI-sRNAs were recovered from 40 of the 42 novel MIRNA loci described by
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Figure 1. Haustorium-induced small RNAs (HI-sRNAs) are present in multiple Cuscuta species. (A) Phylogeny of select Cuscuta species. Size distribution

of HI-sRNAs for each sequenced isolate and acronyms are shown. (B) Sampling and sequencing schematic to discern HI-sRNAs. (C) HI-sRNA family

counts and membership for each isolate, showing only the top 15 groups. Families were grouped strictly using a maximum edit distance of one

nucleotide. Yellow indicates families present in a single isolate.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Host preference in Cuscuta species in the United States.

Figure supplement 2. Genome-free HI-sRNA discovery pipeline.
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Shahid et al. (2018), including representatives from all five miRNA families previously demonstrated

to target host mRNAs.

We next examined conservation of HI-sRNA accumulation between isolates and species. Some

canonical plant miRNAs are highly conserved, with several ubiquitous families found in multiple plant

orders, or even broadly in all land plants (Cuperus et al., 2011; Chávez Montes et al., 2014). Sur-

prisingly, when using a strict cutoff (maximum edit distance of 1) we found that the majority of HI-

sRNAs were not observed in more than one species (Figure 1C). In many cases HI-sRNAs were

unique to single isolates of a single species (Figure 1C). This result implies that HI-sRNAs could be

rapidly differentiating in expression, sequence, or both within these Cuscuta species.

Our previous work showed that C. campestris HI-sRNAs can target host mRNAs in several hosts

(Shahid et al., 2018). We thus looked for evidence of interactions between our broader sets of HI-

sRNAs with host (A. thaliana) mRNAs using two complementary methods: secondary siRNA accumu-

lation (Shahid et al., 2018) and degradome analysis (Addo-Quaye et al., 2008). Secondary siRNAs

can accumulate from mRNAs as a result of an initial miRNA- or siRNA-directed targeting event,

especially when the initiating sRNA is 22 nucleotides long (Cuperus et al., 2010). A large portion of

HI-sRNAs are 22-nt or are clustered from some sRNAs which are 22-nt in length (Figure 1—figure

supplement 2), allowing us to detect their targeting with this approach. Degradome analysis made

use of the NanoPARE method (Schon et al., 2018), which recovers 5’ ends of both capped and

uncapped mRNAs. NanoPARE libraries were made from just one isolate from each of the four Cus-

cuta species, and comprised three biological replicates from the host portion of the interface

(Supplementary file 2). A. thaliana xrn4 mutants were used as hosts for these experiments because

they over-accumulate 5’ remnants of sRNA-mediated mRNA cleavage (Rymarquis et al., 2011;

Schon et al., 2018). The CRCK2 mRNA is an example with both degradome and secondary siRNA

evidence of targeting by a C. pentagona HI-sRNA (Figure 2A–E). Altogether these two analyses

yielded a set of 61 target sites over 54 A. thaliana mRNAs targeted by Cuscuta HI-sRNAs confirmed

by a single method and seven more confirmed by both (Figure 2F, Figure 2—figure supplement

1A, Supplementary file 6). Based on RNA-seq analysis, accumulation of confirmed target mRNAs is

generally down-regulated in parasitized host stems (Figure 3). This greatly expands on the set of six

mRNAs previously identified as host targets of C. campestris miRNAs (Shahid et al., 2018), and

demonstrates that trans-species sRNAs are used by multiple Cuscuta species. Target predictions

show that C. campestris homologs of targeted A. thaliana mRNAs invariably have lower complemen-

tarity to HI-sRNAs (Figure 4). Repeating the analysis pipeline to examine possible self-targeting of

C. campestris mRNAs by HI-sRNAs found only four confirmed targeting interactions, an indication

that HI-sRNAs may largely function in trans in the host (Figure 4—figure supplement 1).

Some mRNAs were confirmed to be targeted by HI-sRNAs from multiple species, with the most

frequent interaction being with SEOR1 (Figure 2F, Figure 2—figure supplement 1A). SEOR1 enco-

des a phloem protein that acts to reduce sap loss after wounding (Knoblauch et al., 2014). C. cam-

pestris growth is enhanced when A. thaliana seor1 mutants are used as hosts (Shahid et al., 2018).

However, the majority of mRNAs confirmed as targets are unique to a single Cuscuta species or iso-

late (Figure 2F, Figure 2—figure supplement 1A). A possible explanation could be that Cuscuta

trans-species sRNAs function to regulate similar host processes, while not necessarily the same tar-

get mRNAs. Additionally, our current analysis is likely to have missed many targets, both due to lack

of sensitivity of our methods (secondary siRNA accumulation and/or degradome analysis both can

miss true targets), and because A. thaliana is unlikely to be a major host of Cuscuta in nature.

Numerous target mRNAs are known to be involved in the same processes, both on a gene ontol-

ogy level (Figure 2—figure supplement 2) and when manually examining known pathways. Genes

involved in auxin signaling repeatedly appear, including the previously identified targets TIR1, AFB2,

and AFB3 (Shahid et al., 2018) and new targets PXY (Etchells et al., 2012) and ARK2

(Sankaranarayanan and Samuel, 2015) with a proposed role in auxin response. Auxin signaling is

involved in many processes in the plant, and is potentially connected to defense against Cuscuta

through its role in glucosinolate production (Smith et al., 2016; Salehin et al., 2019). Phloem pro-

tein mRNAs are targeted, adding OPS (Truernit et al., 2012) to the previously identified SEOR1. A

receptor-like kinase (CuRe1) from tomato is a resistance gene that prevents Cuscuta reflexa infesta-

tion (Hegenauer et al., 2016). Receptor-like kinases and kinases in general are well represented in

the set of HI-sRNA targets, including several that are involved in defense responses. This includes

the well-known defense regulator MPK3 (Asai et al., 2002) and previously discovered BIK1
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(Veronese et al., 2006). Another targeted pathway is brassinosteroid (BR) signaling, with targets

BRI1 (Planas-Riverola et al., 2019), MAPKKK5 (Yan et al., 2018), and PICKLE (Zhang et al., 2014).

BR has a clear role in defense, with connections to both BIK1 and MPK3 (Zheng et al., 2018). An

overall theme of targeting host immunity and vascular system function emerges from this set of con-

firmed targets.
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Figure 2. Host targets of Cuscuta HI-sRNAs. (A) Modeled sRNA-target interaction for A. thaliana CRCK2. (B) Secondary siRNA accumulation from

CRCK2. (C) Phasing analysis of secondary siRNAs from CRCK2. Expected phase for cut-site shown in red. (D) Size distribution of CRCK2 secondary

siRNAs. (E) Frequency of 5’ ends from the CRCK2 mRNA, with the predicted HI-sRNA cut site shown in red. (F) Host mRNAs with confirmed targeting

by a Cuscuta HI-sRNA. Full details in Figure 2—figure supplement 1 and Supplementary file 6.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Summary of Cuscuta HI-sRNA and host gene target relationships.

Figure supplement 2. Most common GO terms for confirmed target genes.
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Plant miRNAs that initially seem unrelated based on divergent sequences can sometimes be

grouped into superfamilies (Xia et al., 2013). To discover potential superfamilies among Cuscuta HI-

sRNAs, we clustered them with a cutoff of five substitutions and barring indels (Figure 5—figure

supplement 1). This clustering strategy gives low rates of grouping by random chance (Figure 5—

figure supplement 2). Many superfamilies of Cuscuta HI-sRNAs were found, with a substantial por-

tion of them shared between species and isolates (Figure 5A). 19 superfamilies were shared

between all isolates except C. indecora, and another 14 superfamilies were present in at least one

isolate each of C. campestris, C. pentagona, and C. gronovii. Leveraging the prior C. campestris

miRNA annotations, we can extrapolate that 158 out of 332 superfamilies which contain C. campest-

ris HI-sRNAs are likely miRNAs. Furthermore, we extrapolate that of the superfamilies present in C.

campestris with proven target relationships, 22 out of 23 are likely to be miRNAs (Figure 2—figure

supplement 1B).

HI-sRNAs within a superfamily vary at several positions both between and within species

(Figure 5B). In many cases variation within superfamilies occurred in a visible three-nucleotide period

(e.g. SupFam_24, SupFam_37; Figure 5B, Supplementary file 7). This pattern led us to investigate

nucleotide variation in corresponding target sites among possible hosts. All four Cuscuta species in

this study are generalists that parasitize eudicot hosts, so we aligned homologous target mRNAs

from 36 eudicot species (Supplementary file 8). Analysis of translated target site conservation

shows that HI-sRNAs target highly-conserved protein-coding positions (Figure 5C). Positional varia-

tions in HI-sRNA superfamilies precisely correspond to variable positions in homologous target

sequences (Figure 5B). This variation is frequently apparent at synonymous sites, accounting for the

three-nucleotide periodicity of superfamily variation. Modeling correlation of positional variation

between HI-sRNA superfamilies and eudicot target sites found 18 significant (p-value<0.05, Pearson

correlation) examples of this type of co-variation (Supplementary file 7, Figure 2—figure supple-

ment 1C). Importantly, HI-sRNA superfamily variation occurs within single Cuscuta species

(Figure 5B, Supplementary file 7), such that multiple HI-sRNA variants are commonly deployed by

a given parasite during infestation. By targeting conserved sites, and making several HI-sRNA
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Figure 4. Predicted trans-species and self-targeting in C. campestris homologs of target A. thaliana mRNAs.

Target prediction scores for confirmed A. thaliana mRNA targets (black) and best-blast-hit homologs in C.

campestris (red). All sRNAs with predicted targeting are shown.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Experimental flowchart for confirming self-targeting of C.campestris mRNAs by HI-sRNAs.
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variants that collectively cover many/most possible synonymous target variants, Cuscuta may ensure

successful targeting across a wide range of hosts.

Using sRNA-seq libraries made from C. campestris attachments on Nicotiana benthamiana

(Shahid et al., 2018), we found evidence of targeting in transcripts homologous to known A. thali-

ana targets (Supplementary file 9). Additionally, N. benthamiana target mRNAs were generally

down-regulated in interface tissues (Figure 6A, Supplementary file 10. Comparing targeting of

TIR1 in A. thaliana and N. benthamiana homologs by SupFam_27 sRNAs illustrates differential com-

plementarity of superfamily members to different mRNAs . The N. benthamiana TIR1 target sites

encode identical amino acids, but vary at synonymous positions. Some SupFam_27 variants are more

complementary than others from each of the different homologs (Figure 6B). This provides a direct

example where variation in a Cuscuta sRNA superfamily accommodates synonymous-site variation in

confirmed target mRNAs from different plant species.

HI-sRNA superfamily diversity could also enable repression of multiple mRNAs with homologous

target-sites within a single host. We examined target predictions within A. thaliana and found ten

examples of gene family-specific motifs potentially targeted by Cuscuta HI-sRNA superfamilies

(Supplementary file 11). These include a HI-sRNA superfamily predicted to target the mRNA region

encoding the eponymous WRKY motifs within the well-known family of defense-related transcription

factors (Pandey and Somssich, 2009). Several of the targets have been experimentally confirmed by

secondary siRNA accumulation or degradome analysis but most remain predictions, including the
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The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Clustering method for forming HI-sRNA superfamilies.

Figure supplement 2. Testing distance cutoff parameters for superfamily formation.
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WRKY family. However, false negatives are common with these methods of confirmation. The strik-

ing patterns of sequence covariation between the HI-sRNA superfamilies and their possible target

mRNA families make a strong case for the reality of these interactions.

Discussion
We conclude that multiple Cuscuta species use trans-species HI-sRNAs to target a substantial num-

ber of host mRNAs. Many if not most of these HI-siRNAs are likely to be miRNAs. Host genes

involved in pathogen defense, hormone signaling, and vascular system function are common targets

of Cuscuta trans-species HI-sRNAs. Cuscuta trans-species HI-sRNAs nearly always interact with highly

conserved target sites within the coding sequences of host mRNAs. HI-sRNAs can often be grouped

into superfamilies that have nucleotide diversity that corresponds with target site variation primarily

at synonymous sites. It seems likely that host target sites are under purifying selection because they

code for critical amino acids that have little variation even among distantly related eudicots. By tar-

geting these already constrained protein-coding sites, and deploying an array of sRNA variants that

cover most possible permutations of synonymous site variation, Cuscuta HI-sRNAs are likely to be

robust against the evolution of host resistance by target site sequence changes. This is also a
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suitable strategy for a generalist parasite that interacts with diverse hosts. The strategy used by Cus-

cuta provides a novel paradigm for the molecular evolution of trans-species sRNA targeting during

parasitism.

Materials and methods

Key resources table

Reagent type (species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
(A. thaliana)

xrn4 Rymarquis et al., 2011 xrn4-5; CS68822;
SAIL_681_E01

T-DNA insertion mutation
in Col-0 background

Commercial
assay or kit

Nextera DNAflex kit Illumina Product: 20018704

Commercial
assay or kit

NEB primers set 1 New England Biolabs Product: E7335S

Commercial
assay or kit

NEB primers set 2 New England Biolabs Product: E7500S

Commercial
assay or kit

NEB primers set 3 New England Biolabs Product: E7710S

Commercial
assay or kit

NEB primers set 4 New England Biolabs Product: E7730S

Software,
algorithm

ShortStack (Johnson et al., 2016) v3.8.5 https://github.com/
MikeAxtell/ShortStack

Software,
algorithm

DESeq2 (Love et al., 2014) v1.24.0 https://bioconductor.org/
packages/release/
bioc/html/DESeq2.html

Biological sample
(C. campestris)

ccm Shahid et al., 2018;
Jim Westwood,
Virginia Tech

‘doddi’

Biological sample
(C. pentagona)

cpe-2017 Ebay, seller: eden_wilds 2017 collection

Biological sample
(C. pentagona)

cpe-2015 Ebay, seller: eden_wilds 2015 collection

Biological sample
(C. gronovii)

cgr-dp Claude dePamphilis,
Penn State

Provenance unknown

Biological sample
(C. gronovii)

cgr-mass Jim Westwood,
Virginia Tech

massachusetts isolate Origin: A Massachusetts
cranberry bog

Biological sample
(C. gronovii)

cgr-pm Wild collection purdue mountain
isolate

Origin: Roadside near
State College, PA
(Coordinates: 40.866 N,
77.888 W)

Biological sample
(C. indecora)

cin www.ars-grin.gov PI 675068 Origin: Texas

Seed sources
Cuscuta campestris (isolate ‘doddi’) was originally acquired from a tomato field in California, fol-

lowed by several generations of selfing in the Westwood laboratory and provided to us as a gift. C.

gronovii (isolate ‘DP’) was a gift C. dePamphilis, from an unknown source. C. gronovii (isolate ‘mass’)

was collected in Massachusetts and provided as a gift by J. Westwood. C. gronovii (isolate ‘PM’) was

collected from a road-side near State College, PA by M. Axtell in October 2017 (Coordinates:

40.866 N, 77.888 W). C. pentagona (isolates ‘eden-2015’ and ‘eden-2017’) were purchased from

ebay seller eden_wilds in 2018, both collected from locations in upstate New York. C. indecora (iso-

late cin/GRIN) was acquired from the U.S. national plant germplasm system (www.ars-grin.gov)

under the accession: PI 675068.
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Genotyping Cuscuta
Cuscuta seed were scarified by nicking with a razor blade under dissecting microscope and germi-

nated on wet paper towel under growth lighting at ~28˚C, harvesting seedlings after 3–5 days of

growth for DNA extraction. DNA was extracted using Edwards method (Kasajima et al., 2004). 2 uL

of template was used in a 20 uL PCR reaction using Taq polymerase using 0.5 uM final concentration

of each primer (Primers ’c’ and ’f’, Supplementary file 12) (Taberlet et al., 1991). PCR was per-

formed for 30 cycles and enzymatically cleaned-up using 0.5 uL of Exo1 (NEB) and 1 uL of Antarctic

Phosphatase (NEB) with 5 uL PCR product, followed by incubation (15 min at 37˚C) and inactivation

(15 min at 80˚C). Sanger sequencing was performed by the Penn State genomics core using

primer ’c’ (Taberlet et al., 1991). Sequences were trimmed of low quality bases and aligned using

MUSCLE (Edgar, 2004) to published TrnL-F sequences (Stefanovic et al., 2007; Costea et al.,

2015). Nucleotide phylogeny was constructed using MEGA7 (Kumar et al., 2016) with a maximum

likelihood method and 500 bootstrap replicates (Supplementary file 13).

Growth conditions
Host A. thaliana (Col-0 and xrn4) was sown on wet potting medium, followed by with 3 days of strati-

fication at 4˚C. Plants were placed into long day (16 day/8 night) growth conditions at ~23˚C under

cool-white-fluorescent lamps. Hosts were allowed to grow to maturity (4–5 weeks old), ready for

attachment when first inflorescences were longer than 5 cm.

Cuscuta seeds were scarified and germinated as above. Seedlings were ready for attachment

once completely emerged from their seed husk and roughly ~2 cm in length, 3–5 days depending

on the species. Seedlings were placed in soil next to the primary bolts of host plants. House-built

far-red supplementary LED lighting was used to induce attachment under fluorescent lights, allowing

4–5 days for attachment of the parasite. Once attached, parasitized hosts were removed from far-

red lighting to prevent secondary attachment. For C. indecora, experimental attachments came

from tendrils from a previously established C. indecora colony. 5 cm tendril tips were cut off of the

colony and affixed to primary bolts of host plants with scotch tape. Plants were allowed to grow for

10 days after attachment followed by tissue harvest.

Tissue collection and RNA extraction
All tissues were collected by the following methods and immediately submerged in liquid nitrogen to

preserve RNA stability. Guide to tissues gathered is found in Supplementary file 2. Interface (IN) tis-

sue was collected by taking both the host and parasite portions of the interface, trimming away any

stems above and below the connection. Parasite stem (PS) was harvested ~4 cm above the interface,

approximately 4 cm long each. In NanoPARE experiment using xrn4 as a host, we collected only host

interface (HIN); similar method to interface collection, except removing any parasite tissue which can

be pulled away. Control stem (CS) tissues were harvested from non-parasitized A. thaliana, collecting

stems from the same region where Cuscuta would have been attached. 1–3 tissues were pooled for

each biological replicate. RNA was extracted by grinding tissue in a liquid nitrogen cooled mortar,

with Tri-reagent (Sigma) added while still cold. Tri-reagent extraction was performed as per the manu-

facturer’s suggestions with a second sodium-acetate–ethanol precipitation and wash step.

Sequencing library preparation
All small-RNA-seq libraries were prepared using a protocol based on the NEBnext small-RNA library

kit (NEB), described as follows. (Step 1) 3’ SR Adaptor (NJ410) was pre-adenylated using 5’ adenyla-

tion kit (NEB) as per manufacturer’s instructions. (Step 2) 500 ng of total RNA, 1 mL adenylated adapter

(5 mM) and water to 5.25 mL were denatured for 2 min at 70˚C and immediately moved to ice. Entire

reaction was combined with premixed 100 u RNA Ligase 2, truncated KQ (NEB), 1 mL 10x T4 RNA reac-

tion buffer, 10 u RNAse inhibitor and 3 mL 50% PEG8000, to a total volume of 10 mL and incubated 1 hr

at 25˚C. (Step 3) Primer hybridization was performed adding 0.5 mL SR RT primer (NJ391, 10 mM) and

2.25 mL water to the prior reaction and incubated as follows: 5 min at 75˚C, 15 min at 37˚C, 15 min at

25˚C, and holding at 4˚C. (Step 4) 5’ SR RNA adaptor (NJ411) was diluted to 10 mM and denatured for

2 min at 70˚C, moved to ice and used immediately for ligation. Ligation was performed combining the

prior reaction with 0.5 mL denatured adapter (NJ411), 5 u RNA Ligase 1 (NEB), 0.25 mL 10x RNA ligase

buffer, 10 u RNAse inhibitor, 0.5 mL ATP (10 mM), and water to 15 uL and incubated for 1 hr at 25˚C.
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(Step 5) Reverse transcription was performed immediately following ligation, combining the prior

reaction with 100 u Protoscript II reverse transcriptase (NEB), 4.5 mL 5x first strand synthesis buffer, 1

mL dNTPs (10 uM), 1.5 mL DTT (0.1 M), and 10 u RNAse inhibitor equaling 23 mL in total volume and

incubated for 1 hr at 50˚C followed by heat-killing for 15 min at 70˚C. (Step 6) Library amplification was

performed, combining 5 mL of cDNA with 25 mL LongAmp Taq 2x master mix (NEB), 1.25 mL SR primer

(NJ412, 10 mM), 1.25 mL barcode primer (‘NEB’ primers, 10 mM), and water to 50 mL total volume.

Reaction was performed as follows: 30 s initial denature at 94˚C, 15 cycles of 15 s at 94˚C, 30 s at 62˚C,

and 15 s at 70˚C, followed by final extension of 5 min at 70˚C. Reactions were purified and size selected

for sRNAs 15–40 nt in length by PAGE. Extracted bands were quantified by qPCR and quality-con-

trolled by high-sensitivity DNA chip (Agilent). Sequencing was performed on a NextSeq550 (Illumina)

with the high-output kit (75 nt, single-end, single barcode) by the Penn State genomics core. Sequenc-

ing libraries were de-multiplexed and adaptor trimmed using cutadapt (Martin, 2011) (cutadapt -a

AGATCGGAAGA -m 15 j 8 -o output.fq input.fq).

NanoPARE and mRNA-seq libraries were prepared using the protocol described in Schon et al.

(2018), with the following details: NanoPARE and mRNA-seq were performed on interfaces (IN) of

four isolates (ccm, cpe-2015, cgr-dp, and cin) and control stems (CS), grown on Col-0 A. thaliana.

NanoPare was also performed on host interfaces (HIN) of the same isolates and control stem grown

on xrn4 mutant Col-0 A. thaliana. The Nextera DNA flex kit (Illumina) was used for tagmentation of

110 ng pre-amplified PCR product. Libraries were amplified using different barcoded i7 and i5

primer sets, described in Supplementary file 12), allowing for either amplification of 5’ ends (Nano-

PARE) or all tagged entities (mRNA-seq). The sequencing of NanoPARE data made use of custom

read one sequencing and i5 index sequencing primers (NJ395 and NJ416, reverse complements of

each other), which sequence out from the template switching oligo adapter. Sequencing was per-

formed on a NextSeq550 (Illumina) with the high-output kit (75 nt, single-end, double barcoded) by

the Penn State genomics core. Sequencing libraries were de-multiplexed and NanoPARE libraries

were trimmed using an in-house script to remove any residual untemplated 5’ nucleotides caused by

reverse transcription of the template-switching oligo.

Genome-free sRNA discovery
Genome-free sRNA discovery was performed using a set of in-house scripts, corresponding to the

following pipeline (Figure 1—figure supplement 2). Reads were filtered by size, retaining lengths of

20 to 24 nt, and condensed to unique sequences with a count of abundances for each tissue. For

each Cuscuta species, unique reads were further condensed by sequence similarity to their most

abundant variants. This process found similar variants for sRNAs in rank order of abundance, cluster-

ing sRNAs with a Levenshtein edit distance of 2 or less. Reads which do not cluster to a variant with

abundance of 0.5 reads per million (RPM) or higher are discarded. Most abundant sRNA variants of

each cluster are reported, with the abundance as the combined abundance of all clustered reads.

Host sRNAs were then filtered, removing an sRNA if it met one of the following criteria: (1) it is

closely similar to an annotated miRNA; (2) it aligns perfectly to the A. thaliana genome or transcrip-

tome (Cheng et al., 2017); (3) it is present in non-parasitized A. thaliana control libraries at an RPM

greater than 1/100 its expression in parasite libraries. Differential expression analysis was then per-

formed with DEseq2 (Love et al., 2014) to identify sRNAs up-regulated in the interface tissue rela-

tive to the parasite stem, using the command the ‘results’ command with a false-discovery rate of

0.1 (Benjamini–Hochberg correction). This pipeline resulted in our list of HI-sRNAs.

Superfamilies were constructed using an in-house script that corresponds to the following pipe-

line. All by all comparisons of HI-sRNA sequences were performed, measuring modified hamming

distance (Figure 5—figure supplement 1), and sequences with a distance of 5 or less were clustered

together, ordered by overall size of the superfamily. To test this distance cutoff, HI-sRNA sequences

were shuffled using Ushuffle (Jiang et al., 2008), set to retain di-nucleotide structure (10 random

replicates) (Figure 5—figure supplement 2).

Target confirmation
Target prediction of HI-sRNAs was performed using the script GSTAr.pl (https://github.com/MikeAx-

tell/GSTAr; Axtell, 2014; copy archived at https://github.com/elifesciences-publications/
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GSTAr) under default settings, using HI-sRNA from a given isolate as the query and A. thaliana ARA-

PORT11 transcriptome (Cheng et al., 2017) as the subject.

To find secondary siRNAs produced from targeting of A. thaliana genes, sRNA-annotation was

performed on the A. thaliana genome (Arabidopsis Genome Initiative, 2000), using ShortStack

(Johnson et al., 2016) (https://github.com/MikeAxtell/ShortStack) with gene locations from the

ARAPORT11 annotation (Cheng et al., 2017) as the basis for sRNA loci. Differential expression anal-

ysis was performed with DEseq2 (Love et al., 2014) to identify loci up-regulated in the interface (IN)

relative to control stem (CS), using the ‘results’ command with a false-discovery rate of 0.1 (Benja-

mini–Hochberg correction). Up-regulated loci were then filtered to retain loci which met the follow-

ing criteria: (1) have a strong predicted HI-sRNA target site (complementarity score (Allen et al.,

2005) six or less); (2) are unstranded; (3) have a predominant sRNA length of 21/22 nt; (4) have a

minimum depth of 20 reads. Plots of loci with predicted targets, radar plots of sRNA phasing, and

length distribution plots to find examples where HI-sRNAs are clearly causative in the locus.

To confirm targeting of A. thaliana genes using degradome data, host stem of interface (HIN)

NanoPARE libraries were aligned to the ARAPORT11 (Cheng et al., 2017) transcriptome using bow-

tie (Langmead et al., 2009) (bowtie -p 8 f -v 3 S -a). Using an in-house script, frequency at 5’ posi-

tions of alignments were intersected with predicted HI-sRNA target sites, retaining interactions

which met the following criteria: (1) have a strong prediction score (complementarity score

six or less; Allen et al., 2005) six or less; (2) the target site is greater than 100 nt from the start of

the transcript (to avoid miscalls with the transcriptional start site); (3) the target is not in an organel-

lar genome; (4) the target peak is greater than the median peak depth in the gene; (5) the target

peak is found in all three replicates; (6) the target peak is at least 10 fold higher than detected in

control stems. Candidates were then examined by eye, filtering out hits with low expression com-

pared to the rest of the gene, hits which appear to be in the transcriptional start site, or hits with

low prominence compared to surrounding peaks. Gene-ontology analysis was performed on con-

firmed targets using blast2go (Götz et al., 2008).

Confirmation of targeting in C. campestris genes (Figure 4—figure supplement 1) was per-

formed using the similar methods as above, with the following changes. Secondary siRNAs were

annotated with ShortStack (Johnson et al., 2016) to the C. campestris genome (Vogel et al., 2018),

using gene annotations as the basis for loci. Different NanoPARE libraries were used, coming from

mixed host-parasite interface (IN), and were aligned to the C. campestris transcriptome

(Vogel et al., 2018). No direct control was present to compare peak expression, so the few con-

firmed examples could not be subjected to this filter.

mRNA-seq analysis
mRNA-seq libraries were aligned to the A. thaliana genome (Arabidopsis Genome Initiative, 200)

using HISAT2 (Kim et al., 2015) (hisat2 -p 2 –max-intronlen 5000 -x genome.fa -U library.fq.gz).

Gene expression was quantified by minBamCov (Barnett et al., 2011) (multiBamCov -bams align-

ment.bam -bed annotation.gff) using the ARAPORT11 annotation (Cheng et al., 2017). Deseq2

(Love et al., 2014) was used to accurately estimate log fold change of mRNAs for each condition,

using the ‘lfcShrink’ command (type = apeglm).

Identification of C. campestris miRNAs
To identify sRNAs that were derived from miRNA hairpins, de novo annotation of sRNA loci in the C.

campestris genome (Vogel et al., 2018) was performed using ShortStack (Johnson et al., 2016).

Next, loci containing a HI-sRNA from C. campestris were extracted and screened by eye to find miR-

NAs with the criteria that they have a clear concise hairpin with two matching regions of expression

which have a clear two nt offset (factors consistent with miRNA processing). Superfamilies were

annotated to identify which contained confirmed miRNAs.

Discovery of target homologs in eudicots
cDNA and CDS libraries of 36 eudicot species (Supplementary file 8) available in Phytozome

v12.1.6 (Goodstein et al., 2012) were downloaded for local analysis. Nucleotide queries of A. thali-

ana target transcripts were searched against translated CDS libraries from eudicots using blastx

(Camacho et al., 2009) (blastx -query target.fa -db eudicot.db -outfmt 6 -num_threads 6 -evalue

Johnson et al. eLife 2019;8:e49750. DOI: https://doi.org/10.7554/eLife.49750 11 of 17

Research article Plant Biology

https://github.com/elifesciences-publications/GSTAr
https://github.com/MikeAxtell/ShortStack
https://doi.org/10.7554/eLife.49750


0.001 -task blastx-fast), extracting the best hit for each species based on bit score. Conservation of

target site and coding sequence of homologs was calculated by aligning their translated coding

sequences using MUSCLE (Edgar, 2004) and measuring the average conservation (Shannon entropy)

of every eight amino acid window, flagging the window which corresponds to the target site. RNA

superfamilies and transcripts of best-hit homologs of target were each aligned using

MUSCLE (Edgar, 2004) and oriented to each other using in-house scripts. Positional nucleotide con-

servation for target site in homologs and superfamily sRNAs were calculated and used to construct a

linear regression model in R (lm function and resulting p-values). For each comparison, n equals the

number of correlating nucleotide positions in the interaction (n = 20–24).

Discovery of conserved motifs in A. thaliana targets
Conserved motifs targeted by sRNA superfamilies in A. thaliana were found by first extracting all tar-

gets of a superfamily with very strong predicted targeting (complementarity score [Allen et al.,

2005] three or less). Using an in-house script, sequences of target sites were translated for the cor-

rect frame and clustered using a greedy algorithm with a maximum edit distance in a cluster of three

or less. Conservation of target sites and surrounding nucleotide sequences were then calculated and

oriented adjacent to multiple sequence alignments of the targeting superfamily, highlighting con-

firmed interactions.

Target analysis in N. benthamiana
sRNA sequencing libraries of C. campestris parasitizing N. benthamiana were retrieved from SRA

bioproject: PRJNA408115 (Supplementary file 2) (Shahid et al., 2018). Parasite stem and interface

libraries were used as input in the genome-free sRNA discovery pipeline explained above. Secondary

siRNA producing loci were identified using the pipeline explained above with the N. benthamiana

Genome v1.0.1 (Bombarely et al., 2012). Transcripts that were identified as containing HI-sRNA

induced secondary siRNA loci were then compared to C. campestris HI-sRNA targets in A. thaliana,

identifying possible homologs of these targets (Supplementary file 10).

For the quantification of target mRNA expression, C. campestris was attached to 2–3 week old N.

benthamiana plants, and allowed to grow for 11–15 days. Total RNA was extracted from the inter-

face of parasitized (IN) and the stem of unparasitized plants (CS), using Tri-reagent (Sigma) and the

double-precipitation method explained above. cDNA was synthesized from 1 mg of total RNA using

the ProtoScript II (NEB) reverse transcriptase with random primers, as per manufacturer instructions.

qRT-PCR primers (Supplementary file 12) were designed for these transcripts, sometimes targeting

several homologous mRNAs in N. benthamiana equally well. The amplicons were designed to bridge

the best predicted cut sites among causative sRNAs. Best-blast-hit homologs of housekeeping genes

PP2A (AT1G13320) and TIP41-L (AT4G34270) in N. benthamiana were used for normalization of PCR

accumulation between cDNAs, averaging expression relative to control stem. qPCR resulted in

expression from 5 to 6 biological replicates in IN and CS samples.

Code availability
ShortStack (Johnson et al., 2016) and StrucVis are both freely available at https://github.com/

MikeAxtell/strucVis (Axtell, 2018; copy archived at https://github.com/elifesciences-publications/

strucVis). GSTAr.pl is freely available at https://sites.psu.edu/axtell/software/misc-tools/. Muscle

(Edgar, 2004) is freely available at https://www.drive5.com/muscle/. MEGA7 (Kumar et al., 2016) is

freely available at https://www.megasoftware.net/. Blast-suite (Camacho et al., 2009) is freely avail-

able at https://blast.ncbi.nlm.nih.gov. Cutadapt (Martin, 2011) is freely available at https://cuta-

dapt.readthedocs.io/en/stable/. Bamtools (Barnett et al., 2011) is freely available at https://

bedtools.readthedocs.io/en/latest/index.html#. The R package DEseq2 (Love et al., 2014) is freely

available at https://bioconductor.org/packages/release/bioc/html/DESeq2.html. HISAT2 (Kim et al.,

2015) and bowtie (Langmead et al., 2009) are both freely available at https://ccb.jhu.edu/software.

Ushuffle (Jiang et al., 2008) is freely available at https://github.com/guma44/ushuffle. Blast2go

(Götz et al., 2008) is available with a limited free version at https://www.blast2go.com/.

Data availability
sRNA-seq data from this work are available at the NCBI SRA under BioProject PRJNA543296.
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