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Abstract
In current molecular biology, it becomes more and more important to identify differentially

expressed genes closely correlated with a key biological process from gene expression

data. In this paper, based on the Schatten p-norm and Lp-norm, a novel p-norm robust fea-

ture extraction method is proposed to identify the differentially expressed genes. In our

method, the Schatten p-norm is used as the regularization function to obtain a low-rank

matrix and the Lp-norm is taken as the error function to improve the robustness to outliers in

the gene expression data. The results on simulation data show that our method can obtain

higher identification accuracies than the competitive methods. Numerous experiments on

real gene expression data sets demonstrate that our method can identify more differentially

expressed genes than the others. Moreover, we confirmed that the identified genes are

closely correlated with the corresponding gene expression data.

Introduction
With the development of DNAmicroarray technology, it is possible for biologists to monitor
the expression of thousands of genes simultaneously [1, 2]. Besides, these genes have been
detected more comprehensively than ever before. A great challenge of the current bioinformat-
ics is to explain the microarray gene expression data to gain insight into biological processes. A
large number of studies have been reported to identify the characteristic genes from gene
expression data. Feature extraction is a typical application of gene expression data.

A prominent feature of gene expression data is that the number of samples is far less than
the number of genes. Generally speaking, on each experiment, gene expression data always
contain thousands or even more than 10,000 genes, while the number of samples is generally
less than 100. Statistically, it is called the small-sample-size problem, which makes many fea-
ture extraction methods lose effectiveness. The number of genes in expression data is so huge
that it is quite difficult to analyze the gene expression data. Fortunately, opposed to the whole
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number of genes, only a small number of genes can regulate the gene expression. The minor
number genes associated with a special biological process are called differentially expressed
genes. Therefore, the importance of differentially expressed genes catches more and more biol-
ogists' attention. Correspondingly, it is particularly important how to discover these genes
effectively.

Up to now, to find a group of genes which are relevant to a biological process from gene
expression data, various feature extraction methods have been proposed for recognizing differ-
entially expression genes. For example, Liu et al. selected characteristic genes by utilizing
weight principal components by singular values [3]; the differential gene pathways were identi-
fied via principal component analysis by Ma et al. [4]; Zheng et al. selected feature genes using
nonnegative matrix factorization and sparse nonnegative matrix factorization [5]. Many
extraction methods, especially sparse methods, are always taking advantage of norm, and dif-
ferent methods using different norm. L0-norm and L1-norm are the commonly used norm, for
example, for sparse principal component analysis (SPCA) method, Journée et al. took L0-norm
penalty to analyze gene expression data [6]; for penalized matrix decomposition (PMD)
method [7] which was used to extract plants differentially expressed genes responding to abi-
otic stress [8], L1-norm was taken as the penalty function. These methods have been success-
fully implemented on gene expression data and have high identification accuracies [9]. But the
non-robust of these methods with respect to severely damaged observations in gene expression
data often makes them invalid.

Recently, in the field of matrix completion, Nie et al. proposed a novel method named as joint
Schatten p-norm and Lp-norm robust matrix completion method for missing value recovery
[10]. Matrix completion methods always presume that the values in the data matrix are associ-
ated and the rank of matrix (approximately) is low. The missing values in the data matrix can be
recovered according to the observed values of the data matrix by minimizing the rank of the
matrix. Therefore, the trace norm was minimized as the convex relaxation of the rank function
[11–13]. Meanwhile, the prediction errors on the observed values were minimized using the
squared error function by Mazumder et al.[11]. Nevertheless, the trace normminimization may
make the solution seriously deviate from the original solution in spite of it is a convex problem
with a global solution. In order to solve a better approximation of the rank problem, the Schatten
p-norm (0� pS� 1) is used to reformulate this problem; furthermore, the Lp-norm (0< pL� 1)
is taken as the error function to improve the robustness of matrix recovery methods [10].

This method has been successfully applied to recover the data matrix in [10], however,
whether the Schatten p-norm and Lp-norm are effective for gene expression data analysis needs
to be measured. According to [14], the gene expression data always lie near many low dimen-
sional subspace, from which it is easy to speculate that the genes data of non-differential
expression are approximately low rank. Therefore, the Schatten p-norm can be applied to anal-
ysis the gene expression data as well. As mentioned above, the matrix norm was widespread
used to identify differentially expressed genes, so the Lp-norm as one special form of the norm
can be served as the penalty function when processing the gene expression data.

In this paper, based on the Schatten p-norm (0� pS � 1) and Lp-norm (0< pL � 1), a novel
method named as p-norm Robust Feature Extraction (PRFE) method is put forward for identi-
fying differentially expressed genes. In our method, we denote the gene expression data as the
observed matrix X. To obtain the eigensamples which contain the characteristic structure of
the gene expression data, matrix X is decomposed intoW (the product of U andD) and VT by
using SVD, whereW is the collection of all the eigensamples [8, 15]. That is to say, the critical
information of differentially expressed genes can be captured by the matrixW. Therefore, the
optimization problem for X is converted into the optimization problem forW. We take the Lp-
norm as the error function to improve the robustness ofW. And the Schatten p-norm is used
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as the regularization function to makeW be a low-rank matrix which can solve the small-sam-
ple-size problem in gene expression data. Eventually, the differentially expressed genes can be
identified according to the optimizedW. The briefly introduction of PRFE is as follows: Firstly,
the gene expression data matrix X is decomposed into two matricesW (the product of U and
D) and VT by using SVD. Secondly, the Lp-norm is applied to solve the optimization problem:
kW�XVkpLpL , and the Schatten p-norm is used to approximate the rank ofW: kWkpSpS . Thirdly,
the differentially expressed genes are identified according to the optimized matrixW. Finally,
the identified genes are appraised using the Gene Ontology tool.

To evaluate the validity of our method, both simulation data and real gene expression data
sets are handled by PRFE method in the experiments. By comparing PMD and SPCA methods,
all empirical results show that the novel method outperforms the competitive methods for
identifying differentially expressed genes.

In summary, the main contributions of this paper are as follows:

- On one hand, based on the Schatten p-norm and Lp-norm, for the first time it proposes a
novel idea and method PRFE for identifying differentially expressed genes.

- On the other hand, extensive experiments are conducted on gene identification.

The remainder of the paper is structured as follows. Section 2 shows the methodology of
PRFE. Then how to identify differentially expressed genes using PRFE is introduced. The
experimental results on simulation data and real gene expression data sets are presented in Sec-
tion 3. In Section 4, the conclusion is shown.

Methodology

2.1 Definitions of Lp-norm and Schatten p-norm
For a matrixW containsm rows and n columns, the Lp-norm (0< pL <1) to the power pL
can be defined as

kWkpL
pL
¼

Xm
i

Xn

j

jwijjpL ; ð1Þ

where wij is the i-th row and j-th column element ofW.
The extended Schatten p-norm (0< pS<1) of the matrixW to the power pS can be written as

kWkpS
pS
¼

Xminfm;ng

i¼1

spS
i ; ð2Þ

where σi is the i-th singular value ofW. When pS = 1, the Schatten 1-norm is also known as the
nuclear norm or trace norm, which is usually taken as the following form: kWk�. When pS = 0, if
we define 00 = 0, Eq 2 is the rank ofW [10].

2.2 The definition of PRFE
Denote by X anm×nmatrix, each row of X represents the expression level of a gene in n sam-
ples, and each column of X represents the expression level of all them genes in one sample. As
mentioned above, for gene expression researches, the gene numberm is much larger than the
sample number n. The PRFE method decomposes the matrix X into two matricesW (the prod-
uct of U andD) and VT by using SVD

X � WVT ; ð3Þ
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whereW is anm×Kmatrix and VT is a K×nmatrix, VVT = In. The general feature extraction
minimization problem [7, 8] is defined as follows:

min
X

kX�WVTk2F; ð4Þ

where k•kF is the Frobenius norm. The differentially expressed genes are usually identified
according toW [8, 15], so the Eq 4 can be easily converted to the following form:

min
W

kXV�WVTVk2F ¼ min
W

kW�XVk2F ; ð5Þ

which can make it more convenient to optimizeW. To improve the robustness to outliers in
gene expression data, we use the Lp-norm (0< pL � 1) to obtain an optimizedW:

min
W

kW�XVkpLpL : ð6Þ

When pS! 0, relative to the trace norm kWk�, Schatten p-norm kWkpS
pS
will approximate

the rank ofW [16], hence, we replace the kWk� by Schatten p-norm (0� pS� 1) kWkpSpS .
Finally, the PRFE method can be used to solve the feature extraction problem as follows:

min
W

kW�XVkpL
pL
þ lkWkpSpS ; ð7Þ

where λ is the regularization parameter.

2.3 Solving the PRFE problem
Eq 7 is intractable since the two items are non smooth. Therefore, the Augmented Largrangian
Multiplier (AML) method [17–19] is taken to solve Eq 7. In this subsection, we first introduce
the AML method briefly.

For a matrix A, the constrained optimization problem can be written as

min
A

f ðAÞ: ð8Þ

Suppose that the matrix B satisfies the condition that B = A, then the AML algorithm to
solve Eq 8 is described as follows:
Algorithm 1. AML algorithm to solve Eq 8
Set 1 < η < 2. Initialize Ω and φ > 0.
while not converge do

Update A by min
A

fðAÞ þ φ

2
B� A þ 1

φ
O

��� ���2

F

Update Ω by Ω = Ω + B − A
Update φ by φ = ηφ

end while

To facilitate the writing, in Eq 7 we replace theW − XV with C and replaceW withD.
According to AML algorithm, Eq 7 can be rewritten as follows:

min
W;A;B

kCkpLpL þ lkDkpSpS þ
φ

2
C�WþXVþ 1

φ
O

����
����
2

F

þ φ

2
W�Dþ 1

φ
C

����
����
2

F

:

ð9Þ

In Eq 9, there are three variablesW, C andD which make the formula quite difficult to be
solved. The alternating direction method [20] can be utilized to deal with this thorny problem
exactly. The core idea to resolve Eq 9 is the case that the problem is optimized only by one
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variable when fixing the remaining two variables. In this way, three new but solvable problems
arise.

Problem 1: When fixingW andD, Eq 9 can be written as the following form:

min
C

kCkpLpL þ
φ

2
C�WþXVþ 1

φ
O

����
����
2

F

: ð10Þ

In this case,W�XV� 1
φ
O can be denote as a constant e. And note that the elements in

W can be decoupled, so for each element, only the following problem need to be solved:

min
w

1

2
ðw� eÞ2 þ tjwjpL ; ð11Þ

where τ denotes 1
φ
. Then we denote f(w) as the objective function in Eq 11:

f ðwÞ ¼ 1

2
ðw� eÞ2 þ tjwjpL : ð12Þ

In Eq 12, there is only one variable w, and the convexity of the equation can be easily ana-
lyzed. When w = 0, f(w) is not differentiable, so we only consider the case of w 6¼ 0 in the fol-
lowing analysis. Then we compare the minimal solution to f(w) (w 6¼ 0) with f ð0Þ ¼ 1

2
e2 to

obtain the optimum solution to f(w). When w 6¼ 0, the first, second and third derivatives of
f(w) are as follows:

f 0ðwÞ ¼ w� eþ tpLjwjpL�1 sgnðwÞ; ð13Þ

f @ðwÞ ¼ 1� tpLð1� pLÞjwjpL�2
; ð14Þ

f 000ðwÞ ¼ tpLð1� pLÞð2� pLÞjwjpL�3 sgnðwÞ; ð15Þ

where sgn(w) is defined as follows: sgn(w) = 1 if w> 0, and sgn(w) = −1 if w< 0. The local

minimum of f(w) can be obtained by finding the root of f0(w) = 0, so we analysis f0(w) at first.
According to Eq 15, f0(w) is convex at w> 0 and f0(w) is concave at w< 0. In order to find the

extrema of f0(w), we let f@(w) = 0 and obtain the solution:

jwj ¼ ðtpLð1� pLÞÞ
1

2�pL : ð16Þ

In this case, we denote a constant a (a> 0) as w (w> 0), that is f@(a) = 0 and f@(−a) = 0.
Therefore, f0(w) can obtain the maximum f@(−a) at w< 0, and f0(w) can obtain the minimum
f@(a) at w> 0. There are three cases to solve f(w):

(a) f0(a)� 0 and f0(−a)� 0
In this case, f0(w)� 0 when w< 0 and f0(w)� 0 when w> 0, so the minimal solution to f

(w) is w = 0.
(b) f0(−a)> 0
In this case, according to Eq 13, f0(a)> 0. f0(w)� 0 when w> 0 and w< 0, f0(w) = 0 has

two roots which indicate that f(w) is convex at w< −a and f(w) is concave at –a� w< 0. So
the minimal solution to f(w) is the root of f0(w) = 0 at e< w< −a.

(c) f0(a)< 0
In this case, according to Eq 13, f0(−a)< 0. f0(w)� 0 when w< 0 and w> 0, f0(w) = 0 has

two roots which indicate that f(w) is convex at w> a and f(w) is concave at 0� w< a. So the
minimal solution to f(w) is the root of f0(w) = 0 at a< w< e.

A PRFEMethod for Identifying Differentially Expressed Genes

PLOS ONE | DOI:10.1371/journal.pone.0133124 July 22, 2015 5 / 20



In summary, the Eq 11 can be optimized by

f 0ðaÞ � 0 and f 0ð�aÞ � 0; w ¼ 0

f 0ð�aÞ > 0 and f 0ðaÞ > 0; w ¼ arg min
w2f0;w1g

f ðwÞ
f 0ðaÞ < 0 and f 0ð�aÞ < 0; w ¼ arg min

w2f0;w2g
f ðwÞ;

ð17Þ

8>>><
>>>:

where w1 2 (e, −a) and w2 2 (a, e) are the roots of f0(w) = 0. The roots can be acquired by the
Newton method initialized at e [10].

Problem 2: When fixingW and C, Eq 9 can be written as:

min
D

lkDkpSpS þ
φ

2
W�Dþ 1

φ
C

����
����
2

F

: ð18Þ

In this case,Wþ 1
φ
C can be denoted as E. For simplicity, Eq 18 can be rewritten as follows:

min
D

1

2
kD�Ek2F þ rkDkpSpS ; ð19Þ

where ρ denotes l
φ
. SupposeD and E are decomposed into UΔVT andQSRT, respectively,

where Δ and S are the singular value matrices. So Eq 19 can be written as

min
D

1

2
UDVT �QSRT

�� ��2

FþrkDkpS
pS
: ð20Þ

To obtain the solution of Eq 20, we first introduce the theorem: For any two matrices
A;B 2 R

m�n, then tr(ATB)� tr(σ(A)T σ(B)), where σ(A) and σ(B) are the singular value
matrices of A and B, respectively. According to the theorem, we have the following formula

kUDVT �QSRTk2

F � kD� Sk2F : ð21Þ

When U =Q and VT = RT, the equality holds in Eq 21, so the optimal problem in Eq 20 can
be converted as the following form

min
D

1

2
kD� Sk2F þ rkDkpSpS : ð22Þ

Suppose σi and δi are the i-th singular values ofD and E, respectively, then Eq 22 can be
written as

min
si

1

2

X
i

ðsi � diÞ
2 þ r

X
i

spS
i
: ð23Þ

The form of Eq 23 is the same as Eq 11, so the optimal solution to Eq 23 can be obtained in
the same way with the optimal solution of Eq 11.

Problem 3:When fixing C andD, Eq 9 can be written as:

min
W

φ

2
C�WþXVþ 1

φ
O

����
����
2

F

þφ

2
W�Dþ 1

φ
C

����
����
2

F

: ð24Þ
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Denote F ¼ CþXVþ 1
φ
O andG ¼ D� 1

φ
C, Eq 24 can be simplified to the following

form:

min
W

φ

2
kW� Fk2F þ

φ

2
kW�Gk2F: ð25Þ

The problem in Eq 25 is equivalent to solving a quadratic function and it is easy to obtain
the solution

W ¼ FþG

2
: ð26Þ

In summary, the brief algorithm of PRFE is shown as follows.
Algorithm 2. PRFE method
Input: Data matrix: X 2 R

m�n

Schatten p-norm value: pS
Lp-norm value: pL
Regularization parameter: λ

Output: Optimized matrix W 2 R
m�n

The data matrix X is decomposed into W and VT by SVD, where W is the product of
U and D.
W( XV.
Solve the problem in Eq 7 by AML method.
Set 1 < η < 2. Initialize C, D, Ω, Ψ and φ > 0.
while not converge do

Update C by the optimal solution to Eq 10
Update D by the optimal solution to Eq 18
Update W by Eq 26
Update Ω by Ω = Ω + φ(C – W + XV)
Update Ψ by Ψ = Ψ + φ(W − D)
Update φ by φ = ηφ

end while

2.4 Identifying differentially expressed genes by PRFE
The gene expression data can be denoted as a matrix X of sizem×n, each row of X represents
the expression level of a gene in n samples, and each column of X represents the expression
level of all them genes in one sample. Fig 1 shows the graphical depiction of processing the
matrix X by PRFE. Following the convention in [15], the PRFE method decomposes the matrix
X into two matricesW and VT, where sj (j = 1,2,� � �, n) is the sample expression profile, gi is the
gene transcriptional responses, wk is an eigensample of column ofW, vk is an engienpattern of
row of VT, vT

j is the j-th column of VT and contains the coordinates of the j-th sample in X.

To identify differentially expressed genes from X, the critical information of the differen-
tially expressed genes in sj needs to be studied. Since vT

j includes the positional information of

the j-th sample in X, according to the formula

sj ¼
XK
k¼1

wkvjk; j ¼ 1; 2; � � � n; ð27Þ

the important information of differentially expressed genes in sj can be captured by wk. That is,
the differentially expressed genes are identified based onW.
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AfterW has been optimized by PRFE method, a novel ~W can be obtained. Therefore,

according to ~W, the differentially expressed genes are identified. ~W can be denoted as follows:

~W ¼

~w11 ~w12 � � � ~w1n

~w21 ~w22 � � � ~w2n

..

. ..
. . .

. ..
.

~wm1 ~wm2 � � � ~wmn

2
6666664

3
7777775
: ð28Þ

Following the description in [21], the differentially expressed genes are usually grouped into
two classes: up-regulated genes and down-regulated genes, which can be reflected by the posi-

tive items and negative items in ~W. Here, we only consider the absolute value of the items in
~W to identify the differentially expressed genes. Then, the matrix is summed by rows to obtain

the evaluating vectorW
^
[22]

W
^

¼
Xn

j¼1

j~w1jj
Xn

j¼1

j~w2jj � � �
Xn

j¼1

j~wmjj
" #T

: ð29Þ

Generally speaking, the larger the item inW
^
is, the more differential the gene is. Therefore,

we sort the elements inW
^
in descending order and take the top h (h	m is a number that can

be defined according to the corresponding requirement) genes as the differentially expressed
ones.

2.5 Discussion of the selection of p value in PRFE
In Eq 7, the values of pL and pS in PRFE method are specified within 0< pL � 1 and 0� pS�
1, respectively. However, the special values of pL and pS are more interesting to be selected for
solving the problem in Eq 7.

To improve the robustness to outliers in gene expression data, the Lp-norm is taken as the
error function. In PRFE, the value of pL should be in the range of (0, 1], and it does not mean
that the smaller value of pL can acquire the better performance. Conversely, we suggest taking

Fig 1. The PRFEmodel of gene expression data used for gene identification.

doi:10.1371/journal.pone.0133124.g001
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the L1-norm to improve the robustness to outliers since the error function is convex while
pL = 1 [10].

The Schatten p-norm is used as the regularization function to obtain a low-rank matrix. As
mentioned in Subsection 2.1 and 2.2, when pS ! 0, the Schatten p-norm approximates the
rank function. That is, the Schatten p-norm can achieve more accurate to approximate rank in
the range of [0, 1). However, in this case the Schatten p-norm is not convex. When pS = 1, the
Schatten p-norm is convex while it cannot achieve accurate to approximate rank [10]. Thus, we
have the flexibility to choose different pS values corresponding to the different situations.

In order to verify the reasonableness of the values of pL and pS, the simulation experiments
are given in Subsection 3.1.

Results and Discussion
This section shows the experimental results on simulation data and real gene expression data
sets. For simplicity, the regularization parameter λ in Eq 7 is taken as 1 in whole experiments
[10]. To demonstrate the effectiveness of our method for recognizing the differentially
expressed genes, the PMD [7], SPCA [6], CIPMD [9] and SVM-RFE [23]are used for
comparison.

3.1 Results on simulation data
3.1.1 Data source. We describe here a general scheme to generate simulation data. Sup-

pose we want to generate data from R
p such that the q (q< p) leading eigenvectors of the

covariance matrix S are sparse. Denote the first q eigenvectors as v1,� � �, vq, which are specified
to be sparse and orthonormal. The remaining p − q eigenvectors are not specified to be sparse.
Denote the positive eigenvalues of S in decreasing order as c1,� � �,cp.

We first need to generate the other p − q orthonormal eigenvectors of S. To this end, form a
full-rank matrixV� ¼ ½v1; � � � ;vq;v

�
qþ1; � � � ;v�

p
, where v1,� � �,vq are the pre-specified sparse
eigenvectors and v�

qþ1; � � � ;v�
p are arbitrary. For example, v�

qþ1; � � � ;v�
p can be randomly drawn

from (0, 1); if V
�
is not of full-rank for one random draw, we can draw another set of vectors.

Then we apply the Gram-Schmidt orthogonalization method to V
�
to obtain an orthogonal

matrix V = [v1,� � � vq, vq+1,� � �, vp], which is actually the matrix Q from the QR decomposition
of V

�
. Given the orthogonal matrix V, we form the covariance matrix S using the following

eigen decomposition expression S ¼ c1v1v
T
1 þ c2v2v

T
2 þ � � � þ cpvpv

T
p ¼ VCVT , where C =

diag{c1,� � �, cp} is the eigenvalue matrix. The first q eigenvectors of S are the pre-specified sparse
vectors v1,� � �, vq. To generate data from the covariance matrix S, let S be a random draw from

N(0, Ip) andX ¼ VC
1

2Z= , then cov(X) = S, as described in [24].
The simulation data are generated as X* (0, ∑4) withm = 3000. Let ~v1 � ~v4 be four

3000-dimensional vectors, such as ~v1k ¼ 1; k ¼ 1; � � � ; 125, and ~v1k ¼ 0; k ¼ 126; � � � ; 3000;
~v2k ¼ 1; k ¼ 126; � � � ; 250, and ~v2k ¼ 0; k 6¼ 126; � � � ; 250; ~v3k ¼ 1; k ¼ 251; � � � ; 375, and
~v3k ¼ 0; k 6¼ 251; � � � ; 375; ~v4k ¼ 1; k ¼ 376; � � � ; 500, and ~v4k ¼ 0; k 6¼ 376; � � � ; 500. Let E
* N(0, 1) be a noise matrix with 3000-dimension, which is added into ~v. The four eigenvec-
tors of ∑4 can be denoted as vk ¼ ~vk=k~vkk; k ¼ 1; 2; 3; 4. And to make the four eigenvectors
dominate, the eigenvalues in X can be denoted as c1 = 200, c2 = 150, c3 = 100, c4 = 50 and ck = 1
for k = 5,� � �, 3000. The detailed synthetic idea can be found in [24].

3.1.2 Simulation results. In order to evaluate the performance of five methods, the experi-
ment is repeated for 30 times and the average identification accuracies are reported. For fair
comparison, 500 genes are identified by the five methods with their unique parameters. Since
PMD, CIPMD and SPCA are sparse methods, α1, α2 and γ are the control-sparsity parameters
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of PMD, CIPMD and SPCA, respectively. Because pL and pS are the most important parameters
of PRFE method, their impacts on our method should be studied at first. According to Subsec-
tion 2.5, we suggest taking pL = 1 to improve the robustness to outliers and taking pS = 0 to
approximate the rank function. Therefore, when pL = 1, we test the performance of our model
with different values of pS in the range of {0, 0.1,� � �, 1} and define this special case as PRFE pL =
1. Similarly, when pS = 0, we investigate the performance of our method with different values
of pL in the range of {0.1, 0.2,� � �, 1} and define this special case as PRFE pS = 0. Fig 2 shows
the average identification accuracies of the five methods with different parameters while
the simulation data are 3000×10. In Fig 2, it can be clearly seen that either PRFE pL = 1
or PRFE pS = 0 is superior to the other four methods in spite of PMD, SPCA, CIPMD and
SVM-RFE can also reach higher identification accuracies. This result clearly justifies the ser-
viceability of the PRFE method to introduce pL-norm and pS-norm in gene identification. To
be precise, while the parameters are larger than 0.4, PMD and CIPMD reach their highest
point and becomes stable. The accuracies of SPCA is monotonically decreasing when the param-
eter are larger than 0.1. Due to SVM-RFE is not a sparse method, so it is not sensitive to the
parameters. The accuracies of PRFE pL = 1 is also monotonically decreasing in all of the parame-
ters, this verifies the Schatten p-norm can achieve more accurate to approximate rank when
pS! 0. The accuracies of PRFE pS = 0 is increasing with the increasing parameters which can
demonstrate that Lp-norm, as the error function, can acquire a better performance when pL = 1.

Fig 2. Identification accuracies of the five methods on simulation data with different parameters,
where pS is taken as the parameter in the case of PRFE pL = 1 to test the performance of different pS
values; pL is taken as the parameter in the case of PRFE pS = 1 to test the performance of different pL
values; α1, α2 and γ are the control-sparsity parameters of PMD, CIPMD and SPCA, respectively.

doi:10.1371/journal.pone.0133124.g002
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The number of samples in gene expression data has an influence on the identification accu-
racy when we recognize differentially expressed genes using feature extraction methods. The
five methods are tested with different sample numbers to find the regular pattern that how the
sample numbers affect the identification accuracy. Here, for the PRFE method, we select pL = 1
and pS = 0 since PRFE can obtain the best result in this case. PMD and CIPMD can reach its
highest point and becomes stable when the parameters are larger than 0.4, so we select 0.4 as
the sparse parameter for PMD and CIPMD. For SPCA, we choose 0.1 as the sparse parameter
since SPCA can acquire its best result when parameter is 0.1. Fig 3 shows the average identifica-
tion accuracies of different methods with different sample numbers. It is obvious to be seen
that with the increasing of sample numbers, the accuracies of the four methods are increased.
The accuracies of SVM-RFE method is monotonically decreasing. The proposed method can
dominate the other methods in all the sample numbers. Moreover, the accuracies of our
method are close to 100% when n� 60.

To further investigate the performance of the methods, the average receiver operator char-
acteristic (ROC) curve is shown in Fig 4 with the optimal parameter of different methods. Fig 4
shows that PRFE and the competitive methods can identify differentially expressed genes effec-
tively. However, through the True Positive Rate and False Positive Rate we can find that PRFE
have the best outcome. Since we add a noise matrix into simulation data, so the false positive
and false negative appear.

Fig 3. Identification accuracies of the five methods on simulation data with different samples.

doi:10.1371/journal.pone.0133124.g003
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The area under curve (AUC) statistics are listed in Table 1 with the optimal parameter of
different methods. From Table 1 we can conclude that the ascending order of accuracy given
by the five methods is: SPCA, PMD, SVM-RFE, CIPMD and PRFE.

3.2 Results on gene expression data sets
To evaluate the proposed method, two publically available gene expression data are adopted:
gene expression data of plants responding to abiotic stresses [25, 26] and the leukemia data set
[27]. To compare with PRFE method, PMD, CIPMD, SVM-RFE and SPCA are also used to
identify differentially expressed genes.

3.2.1 Parameters selection. As mentioned in Subsection 3.1, PRFE method can reach the
best performance when pL = 1 and pS = 0. Therefore, for PRFE method, we take pL = 1 and pS =
0 to identify the differentially expressed genes on real gene expression data. PMD, CIPMD and
SPCA are parse methods, whose sparse parameters have an enormous influence on the identifi-
cation accuracy. According to the results on simulation data in Subsection 3.1, by choosing the
sparse parameters α1, α2 and γ appropriately, PMD, CIPMD and SPCA can obtain their opti-
mal performance respectively.

3.2.2 Results on gene expression data of plants responding to abiotic stresses. (a) Data
source and GO analysis

Fig 4. ROC curve for simulation data.

doi:10.1371/journal.pone.0133124.g004

Table 1. AUC statistics for simulation data.

Methods SPCA PMD CIPMD SVM-RFE PRFE

AUC 0.909 0.911 0.959 0.933 0.990

doi:10.1371/journal.pone.0133124.t001
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Gene expression data of plants responding to abiotic stresses include two classes: roots and
shoots in each stress. The Affymetix CEL files were downloaded from NASCArrays [http://
affy.arabidopsis.info/link_to_iplant.shtml] [25], reference numbers are: control, NASCArrays-
137; cold stress, NASCArrays-138; osmotic stress, NASCArrays-139; salt stress, NASCArrays-
140; drought stress, NASCArrays-141; UV-B light stress, NASCArrays-144; and heat stress,
NASCArrays-146. There are 22810 genes in each sample and the sample number of each stress
type in the raw data is listed in Table 2. The raw arrays are adjusted by using GC-RMA software
[26] in order to avoid the background of optional noise and normalized by using quantile nor-
malization. The GC-RMA results are gathered in a matrix to be processed by SPCA, PMD,
CIPMD, SVM-RFE and PRFE.

For fair comparison, 500 genes are identified by PMD, CIPMD and SPCA by choosing α1,
α2 and γ appropriately. SVM-RFE has no sparse parameters, the top 500 genes of SVM-RFE

Table 2. The sample number of each stress type in the raw data.

Stress Type control cold drought heat osmotic salt UV-B

Sample Number 8 6 7 8 6 6 7

doi:10.1371/journal.pone.0133124.t002

Table 3. Response to stress (GO:0006950). In this table, the response to stress on differentially expressed genes is shown, whose background frequency
in TAIR is 4044/30322 (13.3%), where 4044/30322 represents having 4044 genes response to stimulus in whole 30322 genes. SF and PV represent the sam-
ple frequency and P-value, respectively. The sample frequency, e.g. 223, represents the method identifies 500 genes, in which there are 223 genes respond-
ing to stress. Root and shoot denote the root samples and shoot samples, respectively.

Stress Type SPCA PMD CIPMD SVM-RFE PRFE

SF PV SF PV SF PV SF PV SF PV

Cold root 223 1.66E-64 233 9.92E-72 264 7.64E-98 218 7.14E-61 245 6.05E-81

44.8% 46.6% 52.9% 43.9% 49.0%

Cold shoot 219 1.47E-61 213 4.44E-57 243 6.84E-80 204 1.07E-50 221 6.36E-63

44.0% 42.7% 48.7% 40.9% 44.5%

Drought root 231 3.60E-70 222 2.27E-63 279 2.50E-111 225 7.69E-66 232 1.36E-70

46.2% 44.4% 55.8% 45.2% 46.4%

Drought shoot 198 5.05E-47 246 2.47E-82 255 5.89E-90 201 1.02E-48 277 5.61E-109

39.8% 49.3% 51.1% 40.3% 55.4%

Heat root 152 5.73E-21 169 1.39E-29 277 1.03E-109 242 1.11E-78 180 8.81E-36

30.5% 33.9% 55.5% 48.4% 36.2%

Heat shoot 187 4.49E-40 174 3.51E-32 264 1.51E-97 225 1.21E-65 213 6.55E-57

37.6% 34.8% 52.8% 45.1% 42.8%

Osmotic root 172 4.39E-31 160 8.07E-25 234 1.78E-72 227 6.15E-67 176 4.04E-33

34.4% 32.0% 46.8% 45.4% 35.2%

Osmotic shoot 192 4.96E-43 227 4.12E-67 246 2.30E-82 183 2.88E-37 226 5.21E-66

38.5% 45.4% 49.3% 36.6% 45.2%

Salt root 178 1.79E-34 246 3.88E-82 232 5.58E-71 218 1.76E-60 243 2.57E-79

35.6% 49.2% 46.4% 43.7% 48.6%

Salt shoot 169 1.85E-29 176 1.34E-33 236 2.90E-74 202 3.32E-49 181 2.16E-36

33.8% 35.3% 47.3% 40.4% 36.4%

UV-B root 153 2.26E-21 165 2.34E-27 262 9.89E-96 222 2.04E-63 178 2.35E-34

30.6% 33.0% 52.4% 44.5% 35.7%

UV-B shoot 249 4.18E-85 295 3.30E-127 277 1.06E-109 186 4.81E-39 300 4.38E-132

50.0% 59.1% 55.5% 37.2% 60.2%

doi:10.1371/journal.pone.0133124.t003
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method are selected as the differentially expressed genes. And according to Subsection 2.4, the
top 500 genes of PRFE method are selected as the differentially expressed genes. The identified
genes are checked by Gene Ontology (GO) Term Enrichment tools which can be used to
describe genes in the input or query set and to help discover what functions the genes may
have in common [28]. GOTermFinder, as a web-based tool, can find the significant GO terms
among plenty of genes and it is publicly available at http://go.princeton.edu/cgi-bin/
GOTermFinder [29]. Therefore, GOTermFinder offers some significant information for the
biological explanation of high-throughput experiments. The threshold parameters are given as
follows: maximum P-value is set to 0.01 and minimum number of gene products is set to 2. In
the following, only the primary outcomes of GO Term Enrichment are shown.

(b) Term responding to stress
The numbers of genes and P-value of response to stress (GO:0006950) in root and shoot

samples are given in Table 3.
From Table 3 we can see that all the five methods can identify the differentially expressed

genes with higher sample frequency which can reflect the accuracy of the feature extraction
method and lower P-value. PRFE, SPCA and PMD are unsupervised methods, so we first com-
pare the three algorithms. In the 12 terms, there is only two of them (osmotic stress in shoot

Table 4. Response to abiotic stimulus (GO:0009628). In this table, the response to abiotic stimulus on differentially expressed genes is shown, whose
background frequency in TAIR is 2842/30322 (9.4%), where 2842/30322 represents having 2842 genes response to stimulus in whole 30322 genes. SF and
PV represent the sample frequency and P-value, respectively. The sample frequency can reflect the identify accuracy of the diffenrent methods, e.g. 155, rep-
resents the method identifies 500 genes, in which there are 155 genes responding to abiotic stimulus. Root and shoot denote the root samples and shoot
samples, respectively.

Stress Type SPCA PMD CIPMD SVM-RFE PRFE

SF PV SF PV SF PV SF PV SF PV

Cold root 155 3.31E-40 168 6.34E-49 172 8.99E-52 180 4.29E-58 178 5.02E-56

31.1% 33.6% 34.4% 36.2% 35.6%

Cold shoot 148 1.13E-35 179 3.57E-57 180 6.31E-58 178 2.93E-56 184 4.24E-61

29.7% 35.9% 36.1% 35.7% 37.0%

Drought root 134 4.66E-27 118 1.51E-18 170 2.28E-50 185 8.52E-62 136 4.85E-28

26.8% 23.6% 34.0% 37.1% 27.2%

Drought shoot 126 8.27E-23 164 3.49E-46 177 1.21E-55 177 1.58E-55 183 8.05E-60

25.3% 32.9% 35.5% 35.5% 36.6%

Heat root 108 6.69E-14 141 3.11E-31 173 1.13E-52 198 5.99E-72 148 1.37E-35

21.6% 28.3% 34.7% 39.6% 29.8%

Heat shoot 142 6.07E-32 148 2.04E-35 173 1.64E-52 192 3.28E-67 169 1.18E-49

28.5% 29.6% 34.6% 38.5% 33.9%

Osmotic root 132 6.69E-26 120 1.42E-19 165 4.88E-47 193 7.66E-68 136 4.76E-28

26.4% 24.0% 33.1% 38.6% 27.2%

Osmotic shoot 146 2.65E-34 171 4.55E-51 166 1.28E-47 186 2.77E-62 176 1.67E-54

29.3% 34.2% 33.3% 37.2% 35.2%

Salt root 119 4.82E-19 152 5.13E-38 161 5.65E-44 183 4.41E-60 114 1.00E-39

23.8% 30.4% 32.2% 36.7% 22.8%

Salt shoot 145 1.45E-33 148 1.12E-35 179 5.52E-57 183 6.12E-60 153 7.9E-39

29.0% 29.7% 35.8% 36.6% 30.8%

UV-B root 101 6.70E-11 120 1.49E-19 176 7.04E-55 184 7.27E-61 135 1.53E-27

20.2% 24.0% 35.3% 36.9% 27.1%

UV-B shoot 154 1.49E-39 153 8.81E-39 184 5.20E-61 179 7.26E-57 171 4.3E-51

30.9% 30.7% 36.9% 35.8% 34.3%

doi:10.1371/journal.pone.0133124.t004
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samples and salt stress in root samples) that the proposed method is surpassed by PMD
slightly. In the remaining 10 terms, PRFE method outperforms PMD and SPCA. Generally
speaking, since supervised methods take the class labels into consideration, they usually have
better performance than unsupervised methods. However, unsupervised methods have unique
advantages than supervised methods. For example, when a data set has no class information, in
this case the supervised methods are always helpless in analyzing the data set, but unsupervised
methods like PMD, SPCA and PRFE can analyze the data without class labels effectively.
Table 3 shows that PRFE outperforms CIPMD on drought stress in shoot samples, salt stress in
root samples and UV-B stress in shoot samples. Furthermore, only on drought stress in shoot
and root samples, osmotic stress in root samples, salt stress in shoot samples and UV-B stress
in root samples SVM-RFE is superior to our method.

(c) Term responding to abiotic stimulus
Table 4 shows the gene numbers and P-value of response to abiotic stimulus (GO:0009628)

in root and shoot samples.
As Table 4 lists, each of the five methods can acquire good performance when it is used to

identify the differentially expressed genes responding to abiotic stimulus. We still analysis the
unsupervised methods at first. The proposed method is superior to SPCA and PMD in 11
terms, only for the salt stress data set in root samples, PRFE method is dominated by PMD and
SPCA. For the supervised methods, PRFE is superior to CIPMD on cold stress in the root and
shoot samples, drought stress in the shoot samples and osmotic stress in the shoot samples. On
cold stress in the shoot samples and drought stress in the shoot samples our method outper-
forms SVM-RFE.

3.2.3 Results on leukemia data. (a) Data source and GO analysis

Table 5. The terms of genes identified by different methods. In this table, 'Term in Genome' denotes the number of genes associated with the term in
global genome; 'Input' denotes the number of genes associated with the term from input.

Rank Name SPCA PMD CIPMD SVM-RFE PRFE Term in Genome

Input PV Input PV Input PV Input PV Input PV

1 immune response 29 27 27 36 33 1416

5.39E-14 2.04E-12 2.92E-12 4.10E-20 3.31E-18

2 defense response 30 26 24 34 30 1515

4.02E-14 6.40E-11 3.04E-9 3.43E-17 1.69E-14

3 response to biotic stimulus 19 15 15 24 22 760

1.22E-10 2.69E-7 3.24E-7 3.70E-15 8.46E-14

4 response to other organism 19 14 15 24 21 726

5.60E-11 9.42E-7 1.80E-7 1.34E-15 3.58E-13

5 response to external biotic stimulus 19 14 15 24 21 726

5.60E-11 9.42E-7 1.80E-7 1.34E-15 3.58E-13

6 response to reactive oxygen species None 8 None None 11 170

None 3.91E-7 None None- 6.26E-11

7 regulation of immune system process 23 14 14 25 23 1212

2.19E-10 9.56E-7 3.53E-6 1.21E-11 1.19E-10

8 leukocyte activation 18 17 17 22 18 695

2.33E-10 1.53E-9 1.91E-9 6.36E-14 1.44E-10

9 hematopoietic or lymphoid organ development 18 14 None 19 19 795

2.00E-9 2.74E-6 None 5.41E-10 1.57E-10

10 cell activation 22 19 19 26 20 916

6.47E-12 2.16E-9 2.76E-9 2.48E-15 2.31E-10

doi:10.1371/journal.pone.0133124.t005
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The leukemia data set consists of 27 cases of acute lymphoblastic leukemia (ALL) and 11
cases of acute myelogenous leukemia (AML) [27]. It is summarized by a 5000×38 matrix for
further processed.

Fig 5. Venn diagram of five methods on leukemia data.

doi:10.1371/journal.pone.0133124.g005

Table 6. The detailed information of the 5 'unique' genes identified by PRFE.

NO. Affymetrix ID Gene
Symbol

Function of Genes

1 S53911_at CD34 The protein encoded by this gene may play a role in the attachment of stem cells to the bone marrow
extracellular matrix or to stromal cells.

2 AFFX-M27830_5_at GB virus C effect on hepatitis C virus (HCV)/human immunodeficiency virus (HIV) co-infected patients: liver.

3 M21624_at TRAJ17 T cell receptor alpha joining 17.

4 X60486_at HIST1H4C Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal
fiber in eukaryotes.

5 M57466_s_at HLA-DPB1 HLA-DPB belongs to the HLA class II beta chain paralogues. This class II molecule is a heterodimer
consisting of an alpha (DPA) and a beta chain (DPB), both anchored in the membrane. It plays a central role
in the immune system by presenting peptides derived from extracellular proteins.

doi:10.1371/journal.pone.0133124.t006
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Table 7. The detailed information of the 30 genes identified by PRFE.

NO. Affymetrix ID Gene
Symbol

Function of Genes

1 M25079_s_at HBD The delta (HBD) and beta (HBB) genes are normally expressed in the adult: two alpha chains plus two
beta chains constitute HbA, which in normal adult life comprises about 97% of the total hemoglobin.

2 X57351_s_at IFITM2 Interferon induced transmembrane protein 2.

3 X00274_at HLA-DRA HLA-DRA is one of the HLA class II alpha chain paralogues. This class II molecule is a heterodimer
consisting of an alpha and a beta chain, both anchored in the membrane. It plays a central role in the
immune system by presenting peptides derived from extracellular proteins.

4 Z84721_cds2_at HBA2 The human alpha globin gene cluster located on chromosome 16 spans about 30 kb and includes
seven loci: 5'- zeta-pseudozeta-mu-pseudoalpha-1-alpha-2 (HBA2)- alpha-1-theta-3'.

5 X00437_s_at TRBC1 T cell receptor beta constant 1.

6 D64142_at H1FX H1 histone family, member X. Histones are basic nuclear proteins that are responsible for the
nucleosome structure of the chromosomal fiber in eukaryotes.

7 M11147_at FTL This gene encodes the light subunit of the ferritin protein. Ferritin is the major intracellular iron storage
protein in prokaryotes and eukaryotes.

8 M13560_s_at CD74 The protein encoded by this gene associates with class II major histocompatibility complex (MHC) and
is an important chaperone that regulates antigen presentation for immune response. It also serves as
cell surface receptor for the cytokine macrophage migration inhibitory factor (MIF) which, when bound
to the encoded protein, initiates survival pathways and cell proliferation.

9 Y00433_at GPX1 This gene encodes a member of the glutathione peroxidase family. Glutathione peroxidase functions
in the detoxification of hydrogen peroxide, and is one of the most important antioxidant enzymes in
humans.

10 V00594_s_at MT2A Metallothionein 2A.

11 L19779_at HIST2H2AA4 Histone cluster 2, H2aa4. Histones are basic nuclear proteins that are responsible for the nucleosome
structure of the chromosomal fiber in eukaryotes.

12 AFFX-HUMRGE/
M10098_5_at

SRP68 This gene encodes a subunit of the signal recognition particle (SRP). The SRP is a ribonucleoprotein
complex that transports secreted and membrane proteins to the endoplasmic reticulum for processing.

13 AFFX-HUMRGE/
M10098_3_at

SRP68 This gene encodes a subunit of the signal recognition particle (SRP). The SRP is a ribonucleoprotein
complex that transports secreted and membrane proteins to the endoplasmic reticulum for processing.

14 M91036_rna1_at HBG2 The gamma globin genes (HBG1 and HBG2) are normally expressed in the fetal liver, spleen and
bone marrow.

15 M12886_at IL23A This gene encodes a subunit of the heterodimeric cytokine interleukin 23 (IL23). IL23 is composed of
this protein and the p40 subunit of interleukin 12 (IL12B).

16 X82240_rna1_at TCL1A Overexpression of the TCL1 gene in humans has been implicated in the development of mature T cell
leukemia.

17 M16279_at CD99 The protein encoded by this gene is a cell surface glycoprotein involved in leukocyte migration, T-cell
adhesion, ganglioside GM1 and transmembrane protein transport, and T-cell death by a caspase-
independent pathway.

18 M13792_at ADA This gene encodes an enzyme that catalyzes the hydrolysis of adenosine to inosine. Various
mutations have been described for this gene and have been linked to human diseases.

19 M33600_f_at HLA-DRB1 HLA-DRB1 belongs to the HLA class II beta chain paralogs. The class II molecule is a heterodimer
consisting of an alpha (DRA) and a beta chain (DRB), both anchored in the membrane. It plays a
central role in the immune system by presenting peptides derived from extracellular proteins.

20 M21186_at CYBA Cytochrome b is comprised of a light chain (alpha) and a heavy chain (beta). This gene encodes the
light, alpha subunit which has been proposed as a primary component of the microbicidal oxidase
system of phagocytes.

21 L06797_s_at CXCR4 This gene encodes a CXC chemokine receptor specific for stromal cell-derived factor-1. The protein
has 7 transmembrane regions and is located on the cell surface.

22 X68277_at DUSP1 The expression of DUSP1 gene is induced in human skin fibroblasts by oxidative/heat stress and
growth factors. It specifies a protein with structural features similar to members of the non-receptor-
type protein-tyrosine phosphatase family, and which has significant amino-acid sequence similarity to
a Tyr/Ser-protein phosphatase encoded by the late gene H1 of vaccinia virus.

23 M69043_at NFKBIA This gene encodes a member of the NF-kappa-B inhibitor family, which contain multiple ankrin repeat
domains. The encoded protein interacts with REL dimers to inhibit NF-kappa-B/REL complexes which
are involved in inflammatory responses.

(Continued)
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For fair comparison, 100 genes are identified by the five methods. The Gene Ontology (GO)
enrichment of functional annotation of the identified genes by five methods is detected by
ToppFun [30] which is publicly available at http://toppgene.cchmc.org/enrichment.jsp. Here,
GO: Biological Process is the main objective to analysis. The P-value is set to 0.01 and number
of gene limits is set to 2 by ToppFun.

(b) Terms relate to leukemia data
Table 5 lists the top 10 closely related terms corresponding to different methods. From

Table 5 it can be clearly found that PRFE method outperforms PMD and CIPMD in all 10
terms. Our method can identify the same number of genes as SPCA in the following three
terms: defense response, regulation of immune system process and leukocyte activation. How-
ever, we have lower P-values than SPCA in these three terms. Though in the term: cell activa-
tion our method is surpassed by SPCA, PRFE outperforms SPCA in the remaining terms.
SVM-RFE method performs best in all the five methods. But in the term: response to reactive
oxygen species, only PRFE and PMD can identify differentially expressed genes, in addition,
PRFE can identify more genes than PMD.

To further study the performance of the methods, a Venn diagram is shown in Fig 5. From
Fig 5 we can see that both PRFE and SVM-RFE identify less 'unique' differentially expressed
genes than PMD, SPCA and CIPMD. There are 17 genes shared by all the five methods. The
detailed information of the 5 'unique' differentially expressed genes extracted by PRFE are
shown in Table 6. From Table 6 we can see that the 5 'unique' differentially expressed genes
extracted by PRFE and neglected by other methods are associated with leukemia. Therefore,
this suggests that PRFE is an excellent method for identifying differentially expressed genes on
leukemia data set.

(c) Genes correlate with leukemia data
To further study the correlation between the identified genes and leukemia data, they are

verified based on the literatures. For simplicity, the top 30 genes identified by PRFE are taken
into consideration. Depending on [31], there are 50 genes most closely correlated with the leu-
kemia data set distinction in the known samples. Among these 50 genes, 3 genes are contained
in the top 30 genes identified by PRFE. The Affymetrix ID and Gene Symbol of 3 genes are
given as follows: M13792_at (ADA), M69043_at (NFKBIA), Y00787_s_at (IL8). The article
[31] was written by Golub et al. in 1999, at that time, only 50 genes were found to be associated

Table 7. (Continued)

NO. Affymetrix ID Gene
Symbol

Function of Genes

24 X58529_at IGHM Immunoglobulin heavy constant mu. Immunoglobulins (Ig) are the antigen recognition molecules of B
cells.

25 J04456_at LGALS1 The galectins are a family of beta-galactoside-binding proteins implicated in modulating cell-cell and
cell-matrix interactions. This gene product may act as an autocrine negative growth factor that
regulates cell proliferation.

26 X78992_at ZFP36L2 This gene is a member of the TIS11 family of early response genes. Family members are induced by
various agonists such as the phorbol ester TPA and the polypeptide mitogen EGF.

27 X12671_rna1_at HNRNPA1 The protein encoded by this gene has two repeats of quasi-RRM domains that bind to RNAs. It is one
of the most abundant core proteins of hnRNP complexes and it is localized to the nucleoplasm.

28 M33680_at CD81 The protein encoded by this gene is a member of the transmembrane 4 superfamily, also known as
the tetraspanin family. Most of these members are cell-surface proteins that are characterized by the
presence of four hydrophobic domains.

29 Y00787_s_at IL8 Gene expression profiling study of contribution of GM-CSF and IL-8 to the CD44-induced
differentiation of acute monoblastic leukemia.

30 S73591_at TXNIP Thioredoxin interacting protein.

doi:10.1371/journal.pone.0133124.t007
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with the leukemia data set. As time goes on, many other genes were found to be closely corre-
lated with leukemia. According to [32], there are 210 genes is related to leukemia. All the 30
genes identified by our method can be found in [32]. The detailed information of the 30 genes
are shown in Table 7.

Conclusion
In this paper, based on the Schatten p-norm and Lp-norm, we propose a novel feature extrac-
tion method named as PRFE to identify differentially expressed genes in gene expression data
sets. The method combined the Schatten p-norm and Lp-norm to provide an effective way for
gene identification. Numerous experiments on simulation data and real gene expression data
sets demonstrate that the proposed method has a better performance than the other state-of-
the-art gene identification methods. Moreover, the identified genes are confirmed that they are
closely correlated with the corresponding gene expression data.
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