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Abstract: Maximal safe resection is the standard of care in the neurosurgical treatment of high-
grade gliomas. To aid surgeons in the operating room, adjuvant techniques and technologies
centered around improving intraoperative visualization of tumor tissue have been developed. In this
review, we will discuss the most advanced technologies, specifically fluorescence-guided surgery,
intraoperative imaging, neuromonitoring modalities, and microscopic imaging techniques. The goal
of these technologies is to improve detection of tumor tissue beyond what conventional microsurgery
has permitted. We describe the various advances, the current state of the literature that have tested the
utility of the different adjuvants in clinical practice, and future directions for improving intraoperative
technologies.

Keywords: extent of resection; fluorescence-guided surgery; 5-ALA; fluorescein; intraoperative
imaging; neuromonitoring; iMRI; ultrasound; glioma surgery; glioblastoma

1. Introduction

Maximal extent of resection has been shown to improve both progression-free survival
as well as overall survival in the surgical treatment of gliomas [1–3]. Since many of these
lesions involve or approach eloquent brain regions, there exists an important balance
between maximizing cytoreduction and minimizing neurological deficit [4]. The challenge
surgeons face technically is distinguishing the interface between tumor tissue and the
surrounding brain. Technological advancements have led to improvements in the visual
discrimination of the infiltrative tumor–brain margin in order to maximize safe resection.

The objective of this review is to outline the current advances in glioma surgery and
describe the adjuncts surgeons utilize to achieve the optimal cytoreductive result while
maintaining patient safety. Through the use of fluorescence-guided surgery (FGS), imaging,
neuromonitoring, and novel handheld devices, these intraoperative technologies have
allowed the surgeon to visualize tumor at the cellular level and perform microsurgery
with increasing precision. This review will discuss the technical aspects of various intra-
operative adjuncts currently available that can impact patient outcomes and cutting-edge
technologies to come.

2. Fluorescence-Guided Surgery (FGS)

Fluorescence-guided surgery (FGS) has provided the neurosurgeon real-time intraop-
erative visualization of brain tumors aiding in the maximal resection of tumors. The three
most common agents used during FGS in neurosurgical oncology (5-aminolevulinic acid (5-
ALA), fluorescein, and indocyanine green (ICG)) are discussed below. These fluorophores
emit light in both the visible and near infrared spectrum (Figure 1). This fluorescence
focuses at the surface of the surgical cavity, helping surgeons distinguish not only the
tumor core, but the tumor-brain interface that often dictates the extent of resection. Several
techniques to be discussed later have been established to improve light penetrance, as
a limitation of FGS is the surface visualization of the fluorescence, when compared to
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other imaging modalities, such as ultrasound and intraoperative MRI. In addition to the
main fluorophores currently used in practice, other fluorophores under investigation are
described, as well as the future direction for FGS. A table summarizing landmark studies
for the various fluorophores may be found in Table 1.

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 2 of 20 
 

 

Several techniques to be discussed later have been established to improve light pene-

trance, as a limitation of FGS is the surface visualization of the fluorescence, when com-

pared to other imaging modalities, such as ultrasound and intraoperative MRI. In addi-

tion to the main fluorophores currently used in practice, other fluorophores under inves-

tigation are described, as well as the future direction for FGS. A table summarizing land-

mark studies for the various fluorophores may be found in Table 1. 

 

Figure 1. Fluorescence emission wavelengths of the most commonly used fluorophores used in glioma surgery. 5-ALA, 5-

aminolevulinic acid; ICG, indocyanine green; FM, Frequency Modulation; AM, Amplitude Modulation. (Permission from 

Hadjianapyis CG, Stummer W. Fluorescence Guided Neurosurgery. New York: Thieme Medical Publishers; 2018) [5]. 

 

Figure 1. Fluorescence emission wavelengths of the most commonly used fluorophores used in glioma surgery. 5-ALA,
5-aminolevulinic acid; ICG, indocyanine green; FM, Frequency Modulation; AM, Amplitude Modulation. (Permission from
Hadjianapyis CG, Stummer W. Fluorescence Guided Neurosurgery. New York: Thieme Medical Publishers; 2018) [5].



J. Clin. Med. 2021, 10, 236 3 of 22

Table 1. Fluorescence-guided surgery for high-grade glioma evidentiary table.

Author (Year) Fluorophore Study Design Evidence Class Description Conclusions

Stummer et al. (2000) [6] 5-ALA (PpIX) Case series II
Prospective study of 52 patients receiving 5-ALA
for GBM resection. Rates of complete resection

and predictors of survival were assessed.

Complete resection of contrast-enhanced tumor
was achieved in 63% patients. Age, residual

fluorescence and absence of contrast-enhancement
on postoperative MRI were predictors of survival.

Stummer et al. (2006) [7] 5-ALA (PpIX) RCT I

Randomized, controlled multicenter phase III trial
of 322 patients who received either 5-ALA or

conventional surgery. EOR and PFS were
analyzed.

There was a significant improvement in complete
resection of contrast-enhancing tumor in the
5-ALA group (36% vs. 27%), and improved

six-month PFS (41.0% vs. 21.1%).

Eljamel et al. (2008) [8] 5-ALA (PpIX) RCT I

Randomized, prospective phase III single center
trial evaluating the use of 5-ALA and repetitive

photodynamic therapy (PDT) for the treatment of
GBM. Survival, Karnofsky performance score

(KPS) and time to tumor progression were
analyzed.

Patients who received 5-ALA and PDT had a
significantly prolonged survival (53 vs. 25 weeks),

improved KPS and prolonged time to tumor
progression (8.6 vs. 4.8 months) compared to

controls.

Nabavi et al. (2009) [9] 5-ALA (PpIX) Case series II

Multicenter, prospective study of 36 patients with
HGG undergoing surgery with 5-ALA. Positive
predictive value (PPV) and survival data was

analyzed.

5-ALA had over 90% PPV in both areas of strong
(96.9%) and weak (90.3%) fluorescence. No
adverse events were found using the drug.

Diez Valle et al. (2011)
[10] 5-ALA (PpIX) Case series II

Prospective, single-center study of 36 patients
with GBM who received 5-ALA prior to surgery.
EOR, complete resection of contrast-enhanced
tumor and survival analysis was conducted.

Strong fluorescence yielded 100% PPV, while
vague fluorescence beyond the tumor core yielded

97% PPV and 66% negative predictive value
(NPV). Complete resection of the

contrast-enhanced tumor was removed in 83.3%
patients. Patients had a 8.2% morbidity rate one

month after surgery.

Stummer et al. (2011) [11] 5-ALA (PpIX) Case series II

Prospective, multicenter phase II safety trial
assessing adverse events in 219 patients

undergoing HGG resection with 5-ALA who were
also receiving concomitant radiochemotherapy
with adjuvant temozolomide (Stupp protocol).

Adverse events (AE) and survival analysis were
conducted.

Three patients experienced four AEs possibly
related to 5-ALA. GBM patients experienced a

survival advantage if they received
radiochemotherapy (16.3 vs. 11.9 months).

Elderly patients additionally saw a benefit from
concomitant therapies.
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Table 1. Cont.

Author (Year) Fluorophore Study Design Evidence Class Description Conclusions

Diez Valle et al. (2014)
[12] 5-ALA (PpIX) Cohort II

Retrospective, multicenter study of 251 patients
with malignant glioma who received 5-ALA with
intended chemoradiotherapy with temozolomide.

Complete resection rates and survival analyses
were conducted.

Rates of complete resection (67% vs. 45%) and
six-month progression-free survival for GBM

patients (69% vs. 48%) were significantly higher in
the 5-ALA group.

Eljamel (2015) [13] 5-ALA (PpIX) Meta-analysis II

Meta-analysis of 20 studies on the use of 5-ALA
for GBM surgery. Outcomes parameters included

GTR rates, time to tumor progression, overall
survival, and sensitivity and specificity data.

Mean GTR rate was 75.4%, and mean time to
tumor progression was 8.1 months. Mean overall

survival gain was 6.2 months. Mean specificity
was 88.9% and sensitivity of 82.6%. 5-ALA is

highly sensitive and specific, and improves GTR
and time to tumor progression.

Teixidor et al. (2016) [14] 5-ALA (PpIX) Cohort II

Prospective, multicenter cohort study of 85
patients with HGG receiving 5-ALA prior to

surgery. Safety data, EOR and survival analyses
were conducted.

Complete resection was achieved in 54% of
patients. Six-month PFS was 58% and median
overall survival was 14.2 months. No serious

adverse events were reported. One-month
postoperative morbidity was 6.5%.

Koc et al. (2008) [15] Fluorescein Cohort II

Prospective study of 80 patients with GBM, 47
who received fluorescein during surgery and 33
who did not. EOR and survival analyses were

conducted.

Patients who received fluorescein were more
likely to receive a GTR, however, there were no
differences in median survival between groups.

Acerbi et al. (2014) [16] Fluorescein Case series II
Prospective study of 20 patients with HGG who
received fluorescein during surgery. Safety data,

EOR and survival analyses were conducted.

No adverse events related to fluorescein were
observed. Complete removal of the

contrast-enhanced tumor was found in 80%
patients. Six-month PFS was found in 71.4% of

patients, and median overall survival was
11 months.

Martirosyan et al. (2016)
[17] Fluorescein Case series II

Prospective, single-center study of 74 patients
with gliomas and meningiomas who received
fluorescein during surgery and resection with
confocal laser endomicroscopy. Sensitivity and

specificity data were analyzed.

Sensitivity and specificity for glioma tissue was
91% and 94%, respectively.
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Table 1. Cont.

Author (Year) Fluorophore Study Design Evidence Class Description Conclusions

Acerbi et al. (2018) [18] Fluorescein Case series II
Prospective, multicenter phase II trial of 46

patients with HGG who underwent resection.
EOR, PFS and overall survival was recorded.

82.6% gross total resection, PFS-6 and PFS-12 were
56.6% and 15.2%. Median survival was 12 months.
No adverse reaction related to SF administration
was recorded. The sensitivity and specificity of

fluorescein in identifying tumor tissue were
respectively 80.8% and 79.1%.

Cho et al. (2020) [19] ICG Case series II
Retrospective study of 36 patients with HGG who

received ICG prior to surgery. Accuracy of
fluorescence was analyzed.

Near-infrared (NIR) imaging showed higher
sensitivity and accuracy in diagnosing HGG

tissue intraoperatively compared to white light.
NIR imaging predicted postoperativce MRI
gadolinium contrast with 91% accuracy, and

patients with no residual NIR signal following
resection were more likely to have complete

resection on postoperative MRI.

5-ALA, 5-aminolevulinic acid; PpIX, protoporphyrin IX; RCT, randomized controlled trial; GBM, glioblastoma; MRI, magnetic resonance imaging; EOR, extent of resection; HGG, high-grade glioma, GTR, gross
total resection; ICG, indocyanine green.
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2.1. 5-Aminolevulinic Acid (5-ALA)
2.1.1. 5-ALA: Background and Mechanism of Action

The most widely studied fluorophore used in glioma surgery is 5-aminolevulinic
acid (5-ALA). Ingested orally prior to surgery, 5-ALA is converted to protoporphyrin IX
(PPIX) in the heme biosynthesis pathway, and accumulates intracellularly within glioma
cells. Excited by blue light in the 400 nm range, PPIX fluoresces red-violet at two emission
peaks (635 and 704 nm) (Figure 2). 5-ALA is rapidly absorbed through the gastrointestinal
tract into the bloodstream and is converted into PPIX within glioma cells within hours.
Intracellular accumulation of PPIX has been shown to persist for at least nine hours [20].
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Figure 2. Fluorescence-guided surgery using 5-ALA for resection of a high-grade glioma. (A) shows
the resection cavity under white light and (B) shows the red and pink fluorescence under blue light
based upon tumor cell density, with the surrounding normal brain appearing blue without signs of
fluorescence. 5-ALA, 5-aminolevulinic acid. (Permission from Hadjipanayis CG et al. Fluorescence
Guided Brain Tumor Surgery. Youmans & Winn Neurological Surgery 8th Edition. Chapter 157B.
New York: Elsevier; 2021) [21].

2.1.2. 5-ALA: Limitations

While 5-ALA has shown generally high sensitivity and PPV for HGG tissue in multi-
ple studies [22], there are reports of false positive and negative fluorescence [23,24]. False
positive fluorescence has been reported in regions of recurrent HGGs that may be asso-
ciated with treatment effect [25]. Several studies have reported that 5-ALA has modest
specificity and negative PPV which is due to the fact that fluorescence becomes difficult
to detect with current visualization technology in the infiltrative margin of gliomas. As
the neurosurgeon resects tumor tissue further out in the infiltrative margin, lower tumor
cell density results in less or no fluorescence visualization. However, new visualization
devices can permit quantification of 5-ALA (PPIX) signal intensity and detection of fluo-
rescence [26], which correlates with tumor cell density [27], and has been also shown to
correlate with Ki-67/MIB-1 index [28,29]. Furthermore, 5-ALA induced fluorescence is
found with ependymal surfaces in the ventricles which in certain patients may be associated
with subependymal spread of their HGG [28,30,31].

2.1.3. 5-ALA: Evidence for Use

With over 40 clinical trials to date and regulatory approval in a number of countries
throughout the world, 5-ALA has been established as part of the standard of care in high-
grade glioma (HGG) surgery [22]. Dr. Walter Stummer first described the use of 5-ALA in
1998 where it was found to have a high sensitivity of 85% and specificity of 100% in 89 tissue
biopsies [32]. Due to its selective uptake in glioma cells, 5-ALA has consistently been found
in a number of studies to have high sensitivity and positive predictive value (PPV) in
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both new and recurrent HGG [9,22,23,28,33]. In addition to its study in HGG tumors, the
use of 5-ALA has been expanded to other tumor types, including meningioma [34], brain
metastases [35], primary CNS lymphoma [36], hemangioblastoma [37], ependymomas [38],
subependymomas [39], and ATRT [40]. The use of 5-ALA has also recently expanded to
low-grade gliomas (LGG). While initial observations by Stummer and others did not show
fluorescence in LGG portions of tumors [21], in the largest series to date Jaber et al. found
visible fluorescence in 59 of 76 WHO grade III gliomas, and only visible fluorescence in 13
of 82 WHO grade II gliomas. [41] Therefore, we conclude that most WHO grade III and IV
gliomas show 5-ALA fluorescence, while lower grade gliomas do not.

The only randomized controlled trial of FGS has been with the use of 5-ALA. In
2006, a landmark German study where newly diagnosed HGG patients were randomized
to undergo 5-ALA FGS or conventional microsurgery, found that 5-ALA FGS resulted
in almost a doubling of complete resection of the contrast-enhancing portion of tumors
in comparison to conventional microsurgery [7]. Furthermore, patient outcomes were
better in the 5-ALA FGS group where patients had an improvement (41% versus 21%) in
six-month progress-free survival (PFS-6) [7]. Patients in this study all underwent adjuvant
fractionated radiation therapy and only a small portion of patients underwent adjuvant
chemotherapy since the current standard of care use of concomitant temozolomide and
radiotherapy followed by adjuvant temozolomide (Stupp protocol) was not yet established.
Since this trial, Diez Valle et al. performed a retrospective, observational study where
patients underwent 5-ALA FGS and the Stupp protocol to determine the additive effect
on patient outcomes and found an even greater progression-free survival advantage (69%
versus 48%) [12]. The results of the Stummer randomized controlled trial, as well other
studies, served as the basis for the approval of 5-ALA by the Food and Drug Administration
(FDA) in 2017 for use as an optical imaging agent to visualize malignant tumor tissue
during glioma surgery [24]. Since its recent approval, 5-ALA has been widely utilized in
the United States (Gleolan©), and the first US multicenter trial has recently been completed
(NCT02632370). In a meta-analysis of 5-ALA studies for glioblastoma surgery, Eljamel
found that 5-ALA FGS contributed a mean overall survival advantage of 6.2 months.
However, this survival advantage may be influenced by the type and number of adjuvant
treatments GBM patients undergo [13]. Moreover, 5-ALA is generally well-tolerated
with minimal adverse events, most commonly skin photosensitivity in the immediate
postoperative period [7] and subclinical transient elevations in liver enzymes [14].

2.2. Fluorescein
2.2.1. Fluorescein: Background and Mechanism of Action

Fluorescein sodium was the first fluorophore to be used to detect brain tumors. It
is FDA-approved in ophthalmology and widely used in retinal exams. Dr. George E.
Moore first described the use of fluorescein in identifying malignant gliomas in 1947 [42].
With a peak absorption between 465 and 480 nm and an emission peak just over 500 nm,
fluorescein exhibits a yellow-green fluorescence that allows for fluorescence detection with
ambient light conditions (Figure 3) [43]. It is well tolerated, with uncommon side effects
such as skin and urine discoloration at high doses [44]. Unlike 5-ALA, fluorescein is given
intravenously following anesthesia induction, and travels to areas of blood-brain barrier
(BBB) breakdown and increased vascularity, permitting accumulation in HGGs. However,
it does not accumulate intracellularly as seen with 5-ALA, but rather in the extracellular
space, which leads to non-specific signal due to the fluorescence of dura, blood vessels,
and any perturbed peritumoral tissue [45].

2.2.2. Fluorescein: Evidence for Use

To date, there have been over 10 clinical studies on the use of fluorescein for glioma
surgery [22]. A number of studies have confirmed positive extent of resection with the use
of fluorescein FGS [15,43,46,47]. In 2018, a European multicenter phase II non-randomized,
single-arm prospective trial (FLOUGLIO) was conducted and found that 82.6% of patient
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had complete resection of their contrast-enhancing tumor, or gross total resection (GTR),
with a median survival of 12 months [18]. In this study, fluorescein was found to have a
sensitivity and specificity of 80% for HGGs. These studies have found fluorescein to be
safe and effective, with minimal associated adverse events.
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Despite the increasing number of studies on its use in glioma surgery, there have been
no randomized controlled trials assessing the use of fluorescein. Additionally, many studies
have small sample sizes including the phase II trial, which only included 46 patients. While
prior studies have shown good correlation between contrast-enhancement on preoperative
MRI imaging and intraoperative fluorescence [18,46,48], the lack of any controlled studies
calls the true efficacy of this fluorophore in glioma surgery into question, and further
investigation is needed for stronger conclusions on its use.

Recently, in a dual-labeling study of combined 5-ALA and fluorescein, the background
fluorescence of fluorescein together with the specific intracellular signal of PpIX seemed to
improve intraoperative visualization of HGG compared to conventional white light [49].
Fluorescein and 5-ALA have also previously been compared, and in a retrospective single-
center study of over 200 patients receiving either 5-ALA or fluorescein for HGG resection,
there were no differences in extent of resection or mean overall survival [50].

2.2.3. Fluorescein: Limitations

Despite the advantages of fluorescein being widely available and cost-effective, non-
specific, extracellular accumulation is a major limitation of its use. Prior studies have
shown fluorescein as a marker for edema propagation [51], rather than tumor tissue itself.
Additionally, as the blood–brain barrier is disrupted during cytoreduction, fluorescein
extravasates, impairing the distinction of the tumor-brain interface at the infiltrative margin.
Finally, extravasated fluorescein may stain normal brain and edematous tissue surrounding
the tumor, which may create additional challenges with resection [52].

2.3. ICG
2.3.1. ICG: Background and Mechanism of Action

Indocyanine green (ICG) is a well-known fluorophore that is used in a variety of
medical fields including hepatology and ophthalmology [22], and is most commonly used
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in neurosurgery in the context of intraoperative videoangiography [53]. Unlike 5-ALA and
fluorescein, ICG emits light in the near-infrared (NIR) spectrum, which allows for deeper
penetration and visualization into target tissues [54]. Similar to fluorescein, ICG works by
passively collecting in the extracellular compartment of tumors after intravenous injection
in areas of BBB disruption. Second-window-ICG (SWIG) has recently been described,
where higher doses of ICG are given the day prior to surgery, allowing accumulation of
the fluorophore in brain tumors due to enhanced permeability through the endothelium,
known as the enhanced permeability and retention effect, or EPR effect [55]. ICG is believed
to bind to albumin intravascularly, prior to accumulating in tumors through areas of BBB
breakdown [56].

2.3.2. ICG: Evidence for Use

There have been several recent studies assessing the use of ICG in the resection of
gliomas and other CNS tumors. Two prior clinical trials showed that ICG improves tumor
visualization at the tumor margin [57,58], and Li et al. showed that NIR excitation of
ICG improved the signal to background ratio (SBR) with the addition of lasers in the NIR
spectrum, compared to “non-boosted” samples [59]. Recently, the second-window-ICG
(SWIG) technique has been shown to have utility in gliomas, as well as meningiomas,
metastatic lesions, chordomas, and other primary brain tumors [19,55]. In a small study
of 15 glioma resections, Lee et al. found a sensitivity and specificity of 84% and 80%,
respectively, with ICG FGS, and demonstrated strong correlation with the degree of contrast
on postoperative MRI [56]. Currently, there have been no trials on the effect of ICG on
patient outcomes following surgery, and ICG has not previously been shown to improve
EOR [58]. ICG has been shown to be safe and well tolerated [53].

2.3.3. ICG: Limitations

ICG has the potential benefit of being a NIR agent which may permit for better detec-
tion and visualization of fluorescence transdurally and in the brain. However, technical
limitations of ICG fluorescence must be mentioned. The major limitation to ICG is the
high false-positive detection. All gadolinium-enhancing tissue will exhibit an ICG signal,
including areas of inflammation and necrosis [55]. Additionally, as the NIR spectrum
is not part of the spectrum typically used in microscopic surgery, it can be difficult to
operate in this range, requiring transitioning between white light and the near-infrared. In
most instances, visualization of NIR fluorescence requires a separate display monitor that
only displays the ICG fluorescence and a dark background that is difficult to distinguish
surrounding brain structures. In order to use ICG for FGS, tumor tissue fluorescence must
be overlaid on the standard operative view with conventional light since the NIR spectrum
is not visible with the human eye. ICG can be cost-prohibitive, with imaging systems
costing well over $100,000 [55]. There have also been no substantial clinical trials assessing
its effect on extent of resection and patient outcomes.

2.4. Future Targets

As fluorescein and ICG are non-specific markers of BBB breakdown and not markers
of tumor tissue, ongoing investigation has focused on targeted fluorescence agents for
higher precision fluorescence.

Tozuleristide (BLZ-100), also known as “Tumor Paint” is a conjugate molecule of ICG
and the tumor-specific peptide chlorotoxin. Extracted from scorpion venom, chlorotoxin
binds to cell-surface targets on both low- and high-grade glial tissue [60]. Early clinical
studies have demonstrated safety [61], and there are ongoing clinical trials assessing extent
of resection and progression-free survival in malignant brain tumors in both adult and
pediatric populations (NCT02234297 and NCT02462629, respectively).

Alkylphosphocholine analogs (APCs) are synthetic phospholipid ether molecules
that selectively target tumors via overexpressed lipid rafts, and are retained for prolonged
periods of time in the tumor microenvironment due to their resistance to catabolic break-
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down [62]. In a preclinical study, two APCs, CLR1501 and CLR1502, showed a tumor-
to-brain fluorescence ratio similar to 5-ALA [63]. Originally developed for PET imaging
and targeted radiation, APCs may serve a future role as a surgical adjunct as well as
radiotherapy for treatment, depending upon the conjugated radiolabel used.

The epidermal growth factor receptor (EGFR) has been commonly found to be over-
expressed in glioblastoma, and as a result, is a target for antibodies and peptides [64].
Cetuximab-IRDye 800, represents a new NIR agent that can target EGFR. Conjugation
of the EGFR inhibitor, cetuximab, with a NIR fluorophore, has recently been found to be
safe and effective in distinguishing tumor in both contrast-enhancing and non-contrast-
enhancing tumor regions with a good signal to noise background [65]. ABY-029, another
EGFR inhibitor conjugated with IRDye800, has also been shown to be safe for human use
in preclinical studies [66].

3. Image Guidance

Various imaging modalities, including neuronavigation, intraoperative MRI (iMRI),
ultrasound and most recently the exoscope have been studied to further improve intraop-
erative visualization and detection of brain tumors. Each modality is described below, and
corresponding landmark studies are summarized in Table 2.

Table 2. Intraoperative image guidance for high-grade glioma evidentiary table.

Author (Year) Modality Study Design Evidence Class Description Conclusions

Willems et al.
(2006) [67] Neuronavigation RCT I

45 patients randomized
to surgery with or

without
neuronavigation.

Residual
contrast-enhancing

tumor and survival data
was analyzed.

There were no
differences in residual

contrast-enhancing.
Median survival was

shorter in patients
who received

neuronavigation.

Senft et al.
(2011) [68] iMRI RCT I

58 patients randomly
selected to iMRI or
control for glioma
surgery. Extent of

resection and
postoperative

neurological deficits
were analyzed.

Patients in the iMRI
group had higher rates

of complete tumor
resection, and no

increased
postoperative

neurological deficits.

Roder et al.
(2014) [69] iMRI + 5-ALA Case series II

Retrospective
comparative study of

117 patients undergoing
GBM surgery with iMRI

compared to
conventional surgery

with and without
5-ALA.

iMRI patients had a
lower residual tumor
volume and higher

proportion of complete
resection. Improved
six-month PFS was

seen in cases of
complete resection.

Kubben et al.
(2014) [70] iMRI RCT I

Randomization of
14 patients with

supratentorial GBM
received iMRI or

conventional
neuronavigation.

Residual tumor volume
and postoperative

outcomes were
calculated.

There were no
differences found in

residual tumor volume
or median survival.

iMRI did not appear to
be cost-effective, but

limited by a small
patient sample.
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Table 2. Cont.

Author (Year) Modality Study Design Evidence Class Description Conclusions

Wu et al. (2014)
[71] iMRI RCT I

114 patients were
randomized to iMRI or

conventional
neuronavigation. EOR

was the primary
endpoint, with

secondary endpoints
survival and morbidity

data.

No differences in rates
of GTR were detected

in HGG patients.
Six-month PFS

trended toward the
iMRI group in HGG

patients.

Coburger et al.
(2015) [72] iMRI + 5-ALA Case series II

Prospective trial of 33
patients undergoing

GBM surgery with iMRI
and 5-ALA, compared to

retrospective controls,
EOR and survival data

was analyzed.

EOR was higher in the
iMRI+5-ALA group
compared to iMRI

alone. There were no
differences in
postoperative

neurological deficits or
survival data between

groups.

Schatlo et al.
(2015) [73] iMRI + 5-ALA Case series II

Retrospective series of
200 HGG patients

undergoing surgery
with iMRI and 5-ALA or

conventional surgery.
EOR and survival data

was analyzed.

Patients in the iMRI +
5-ALA group

experienced prolonged
overall survival upon

univariate analysis,
but no differences

were detected upon
multivariate analyses.

Neidert et al.
(2016) [74] Ultrasound Case series II

Retrospective analysis of
76 patients who

underwent glioblastoma
resection with
intraoperative
ultrasound or

conventional surgery.
Only patients who had a

GTR achieved were
included. Survival data

was analyzed.

Median overall
survival was longer in

GTR patients were
ultrasound was used,
and ultrasound was

associated with
prolonged overall and

progression-free
survival.

Golub et al.
(2020) [75]

iMRI + 5-ALA,
Neuronavigation Meta-analysis II

Meta-analysis of 11
studies assessing

neuronavigation, iMRI
and 5-ALA for HGG

resection. Rates of GTR
and survival

comparisons were
analyzed.

iMRI and 5-ALA were
superior to

neuronavigation in
achieving GTR, and

both modalities were
shown to improve
patient survival.

However, no
differences were found

between iMRI and
5-ALA.

3.1. Neuronavigation

The use of neuronavigation has become a common and routine technology utilized
in neurosurgical oncology. Neuronavigation provides the neurosurgeon guidance in
localization of tumor tissues and eloquent regions of the brain. However, since preoperative
imaging is used to register most neuronavigation systems at the start of surgery, brain shift
during actual tumor resection can render neuronavigation systems inaccurate. There has
only been one randomized controlled trial conducted assessing the use of neuronavigation
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on patient outcomes, which found no differences in residual contrast-enhancing tumor,
and a shorter median survival in the navigation group [67]. While neuronavigation has not
proven itself as a sole adjunct, it has been attributed to increasing surgeon confidence and
safety, as well as allowing for smaller craniotomies. [76]. Additionally, neuronavigation
has been shown to improve resection and survival when combined with iMRI in multiple
prospective studies [77,78].

3.2. Intraoperative MRI

Since the 1990s, neurosurgeons have brought MRI technology into the operating room
to improve neuronavigation and maximize the extent of resection of brain tumors [79,80].
Intraoperative MRI (iMRI) can assist surgeons in demarcating the limits of resection in
relation to eloquent or critical brain structures, and in deciding if the goals of surgery have
been achieved. iMRI can permit re-registration of neuronavigation systems to account
for brain shift during surgery. To enhance functional navigation, iMRI can also permit
diffusion tensor imaging (DTI), allowing for preservation white matter connections such as
the corticospinal tract while maximizing the extent of resection [81]. In 135 glioblastoma
patients who underwent resection, Kuhnt et al. found that residual contrast-enhancing
tumor was identified by iMRI in 65% of cases, leading to additional resection in 19 cases [82].
In almost half of these cases, EOR was improved to a GTR with further resection of contrast
enhancing tumor tissue. Patients who received a GTR (EOR ≥ 98%) had a mean OS of
14 months, compared to nine months in those who did not [82].

Improved six-month PFS and overall survival rates with iMRI have been demonstrated
in other non-randomized studies. The strongest evidence to date on the efficacy of iMRI in
glioma surgery outcomes is a randomized controlled trial by Senft et al. where 58 patients
were randomized to conventional surgery with or without iMRI use. The EOR (96%
vs. 68%, p = 0.023) in the iMRI group was significantly higher, and patients who had a
GTR experienced better outcomes with longer PFS [68]. In a recent multicenter study,
iMRI increased tumor EOR (78.4% vs. 72.7% in patients with intended GTR) and the
GTR rate from 30.7% to 71.5% postoperatively. iMRI was a significant predictor of GTR
on multivariate analysis. However, iMRI was not an independent predictor of overall
survival [83].

Despite the significant advantages of iMRI capability, it does have limitations, mostly
in its feasibility and cost. iMRI is not widely available due to extensive operating room
infrastructure requirements and expertise required to carry out its use. Additionally, iMRI
has been found to increase the operative time by approximately one hour [84], which
may potentially pose greater intraoperative risk to patients due to prolonged anesthesia
time [85]. However, iMRI has been shown to be cost-effective in the treatment of HGG,
showing an incremental benefit of 0.18 quality-adjusted life years (QALYs), making the
argument for a wider adaptation of the technology [86].

3.3. Intraoperative MRI and 5-ALA

Combined intraoperative MRI and 5-ALA FGS may have advantages over either
adjunct alone. In two studies, one prospective cohort and one a retrospective case-control
study, iMRI plus 5-ALA has been shown to yield GTR (defined as complete resection of
contrast-enhancing tumor (CRET) in one study, EOR > 95% in the other) rates of 45–100% in
lesions amenable to complete resection [72,73]. Additionally, in a study aimed at supratotal
resection beyond the contrast-enhancing tumor, Eyupoglu et al., found that patients who
underwent iMRI plus 5-ALA had a longer overall survival compared to patients who
underwent iMRI alone (18.5 vs. 14 months, p < 0.0001) [87]. In a comparative study, 5-ALA
was found to be both higher in sensitivity and specificity in detecting pathological tissue
at the infiltrative margin [88], and Roder et al., found a higher rate of GTR in patients
undergoing iMRI versus those who received 5-ALA [69].
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3.4. Exoscope

While the conventional microscope has stood the test of time as the mainstay for
visualization during glioma surgery, the exoscope has been introduced into neurosurgery
as a visualization device for the resection of brain tumors. The exoscope permits the
neurosurgeon and the operative team to visualize the surgical area on a high-definition
heads-up display. There are several advantages of the exoscope that have made it a
favorable alternative to the conventional microscope. The exoscope provides approximately
double the optical zoom of the microscope and employs light-emitting diode (LED) lighting,
which reduces tissue glare, the risk of thermal damage to tissue, and may delineate tumor
tissue better [89]. Recently, exoscope visualization technology and patient outcomes have
been studied in glioblastoma tumors, in a cohort of 26 patients with mostly eloquent
tumors. The use of a robotic-assisted exoscope in combination with neuronavigation
that incorporated diffusion tensor tractography (DTI) for eloquent pathway visualization,
permitted for large EOR (over 78%) of contrast-enhancing tumor tissue and six-month PFS
in 86% of patients [90]. These findings are comparable to recent studies on GBM surgery
using other adjuncts [69,71,83]. Combined use of the exoscope and fluorescence-guided
surgery is currently under active investigation.

3.5. Intraoperative Ultrasound

Intraoperative ultrasound (IOUS) is inexpensive, widely available, and provides
real-time visualization of tumor. It can be integrated into neuronavigation systems to com-
pensate for brain-shifts that may render neuronavigation inaccurate [91]. IOUS has been
shown to have high sensitivity and specificity both adult and pediatric brain tumors [92].
Ultrasound is a highly multi-modal technology, and may be used to determine tissue
composition with elastosonography [81], detect flow patterns in tumor vessels with micro
vessel power doppler [93] and may be fused with MR imaging to reduce radiation with
fluoroscopy [94].

Contrast-enhanced ultrasound (CEUS) is a contrast-specific imaging modality that
allows for better delineation of tumors compared to conventional ultrasound [95]. Over the
past decade, CEUS has been studied, with the advantage of providing Doppler to visualize
areas of increased vasculature and perfusion [95]. Prada et al. found that in all 10 cases of
glioblastoma resection, additional tumor was found using CEUS and was confirmed with
histopathology [96]. In a retrospective review of 76 patients with glioblastoma, Neidert et al.
found an increase in overall survival (21.9 vs. 18.8 months) and PFS (7.1 vs. 3.4 months)
with intraoperative ultrasound (iUS) compared to the non-iUS group [74].

3.6. Intraoperative Mapping and Neuromonitoring
3.6.1. Intraoperative Mapping

Intraoperative mapping has been established as the gold-standard for identifying
eloquent brain tissue during tumor surgery [97]. Stimulation mapping with bipolar or
monopolar stimulation in the cortical and subcortical tissues can sensitively detect motor,
language, and other eloquent pathways during surgery [98]. While operating in and around
functional territories, stimulation mapping, assists surgeons in identifying safe corridors
of access to tumors and provides real-time feedback on the proximity of the resection
cavity to critical structures [99]. However, mapping can be limited by the presence of
preoperative neurological deficits, such as hemiparesis and dysphasia, and the ability of
the patient to cooperate during awake surgery. Combined with 5-ALA, intraoperative
mapping has been shown to be a useful adjunct in eloquent region surgery, by enabling
complete resection in up to 96% of patients, with minimal postoperative neurological
declines [100,101]. Awake mapping combined with iMRI may also provide benefit in
eloquent region resections [102,103].
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3.6.2. Intraoperative Neurophysiologic Monitoring (IONM)

While prior studies have not identified a patient survival advantage with the use of
neuromonitoring, monitoring for functional preservation has remained a primary objective
with the use of IONM [104]. Despite previous criticisms of false-negative motor evoked po-
tential (MEP) monitoring affecting IONM reliability, previous studies have shown reliability
in MEP monitoring, with few to no false-negative results [105,106].

3.7. Intraoperative Histopathology and Imaging Probe Devices

Since the era of Harvey Cushing, understanding the histopathology of a central
nervous system tumor in the operating room has been crucial in guiding surgery [107].
Intraoperative histopathological data provides the surgeon information regarding the
level and type of malignancy, which is an important factor in surgical decision-making.
Conventionally, an intraoperative pathological diagnosis requires frozen sectioning, cyto-
logical preparations, and technicians and pathologists available in real-time to interpret
slides. This labor-intensive system creates delays in clinical decision-making and increases
operative time.

3.8. Raman Microscopy

In 2008, the creation of stimulated Raman scattering (SRS) microscopy allowed for
high-resolution imaging of label-free, unprocessed tissue [108]. Since then, SRS has been
used over the past decade to diagnose various types of cancers [109]. Orringer et al. were
able to engineer an SRS microscope that was employed in the operating room, to process
imaging of tissues acquired at surgery and simulate hematoxylin and eosin (H & E) staining,
called stimulated Raman histology (SRH) [110]. Additionally, Orringer et al. were able
to create an algorithm that could use this technology to predict tumor subtypes with 90%
accuracy. Handheld probes using Raman spectroscopy have pushed the envelope of what
can be visualized in the operating room, by being able to detect infiltrative cells at tumor
margins [111], and differentiating high- and low-density tumor regions [112]. Artificial
intelligence (AI) has further permitted the actual diagnosis of tumor tissues with use of the
SRS system, with diagnostic abilities non-inferior to pathologist-based interpretation [113].

3.8.1. Probe-Based Microscopy

Handheld probe devices have been developed to further aid the neurosurgeon in
detecting tumor tissue in the resection cavity. While certain patient factors such as tumor
molecular signatures and MGMT methylation may portend prolonged survival [114], as
prior studies have shown, extent of resection does matter, with differences in time to tumor
progression and overall survival seen between gross and near-total resection [115]. For
this reason, probes are being developed to detect tumor tissue at the cellular level. These
probes can combine lasers, lenses and filters, connected with a camera and spectrometer to
provide better detection and visualization of tumor cells, while not adding hindrance to
operating room conditions for surgeons [116–118].

Several studies have applied handheld Raman spectroscopy to the operating room
setting. In a case series of patients undergoing resection of WHO grade II–IV gliomas,
Jermyn et al. concluded that Raman imaging allowed more accurate detection of cancer
cells compared to white light microscopy and MRI [119]. Using a detection system that
combines intrinsic fluorescence spectroscopy, diffuse reflectance spectroscopy, and Raman
spectroscopy, Jermyn et al. and others have detected brain, lung, colon, and skin cancers
with 97% accuracy and 100% sensitivity [120–122]. While other technologies have focused
on improving visualization of the contrast-enhancement regions of tumors on MRI, Raman
spectroscopy allows for distant visualization of tumor cells, beyond what T1 post-contrast
and T2 imaging can detect, which may translate to prolonged survival [123]. Handheld
confocal microscopy has also been shown to detect and quantify PPIX fluorescence at the
cell level in gliomas [124,125].
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While visually inspecting the tumor architecture with microscopy is useful, providing
a quantitative assessment of the tumor-cell density of the region of interest has the potential
of permitting the neurosurgeon to maximize extent of tumor resection at the cellular level.
Handheld probes have been shown to provide greater sensitivity of 5-ALA detection in
both low and high-grade gliomas [126–128]. This increased sensitivity is limited, however,
by the small surface area of detection, which is difficult to assess in a large resection
cavity. Quantitative spectroscopy is also limited by its processing speeds, and ongoing
research is focusing on improving speed and precision of fluorescence detection, to allow
for surveillance of larger resection cavities [129].

3.8.2. Wide-Field Endomicroscopy

To address the challenge of tumor margin assessment in constrained operative corri-
dors, the use of a modified endoscope has been explored. By placing the endoscope tip
near tumor tissues in difficult to visualize corridors, blind spots may be more easily visual-
ized. Multiple studies have combined PPIX fluorescence from 5-ALA and fluorescein with
endomicroscopy to detect and quantify fluorescence [130–133]. In a study of 74 patients
who underwent resection with laser endomicroscopy and fluorescein sodium, there was
a sensitivity and specificity for gliomas of 91% and 94%, respectively [17]. Additionally,
confocal laser endomicroscopy has been shown to be not only effective in high-quality
visualization, but ergonomically friendly to surgeons with ease of use [134].

4. Summary

Technological advancements have provided neurosurgeons with a plethora of surgical
adjuncts to maximize the resection of high-grade gliomas, as seen in the schematic outlined
in Figure 4. Maximal cytoreduction has been associated with better patient outcomes in
glioma surgery. Supported by a strong body of evidence, both fluorescence-guided surgery
and intraoperative image guidance have been adapted by many neurosurgeons and have
now become standard of care in the operating room. Newer visualization technologies
such as the exoscope may permit greater magnification and delineation of tumor tissue.
Microscopy techniques, such as SRH, have made significant strides over the past decade,
and for the first time, surgeons are able to evaluate the tumor architecture at a microscopic
level in the operating room. Handheld devices may also permit resection down to the
tumor cellular level to further push the limits of EOR. All of the surgical adjuncts discussed
are not mutually exclusive, and as previous studies have shown, may be more effective in
improving surgical outcomes when combined. Surgeons must select adjuncts to employ
based on tumor characteristics and their own experience with the various technologies. It
is possible that an adjunct with clear benefit for one case may not be useful or appropriate
for another. Furthermore, the patient’s safety and preservation of neurologic function must
be the goal of every surgery. While some technologies are more resource-intensive than
others, what has been established is that the bar has been raised in neurosurgical oncology
with the surgical adjuncts available. Safety and maximal extent of tumor resection are no
longer merely the goal, but the expectation.
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