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Abstract

Background: Transcranial direct current stimulation has shown promising clinical results, leading to increased demand for
an evidence-based review on its clinical effects.

Objective: We convened a team of transcranial direct current stimulation experts to conduct a systematic review of clinical
trials with more than 1 session of stimulation testing: pain, Parkinson’s disease motor function and cognition, stroke motor
function and language, epilepsy, major depressive disorder, obsessive compulsive disorder, Tourette syndrome, schizophrenia,
and drug addiction.

Methods: Experts were asked to conduct this systematic review according to the search methodology from PRISMA guidelines.
Recommendations on efficacy were categorized into Levels A (definitely effective), B (probably effective), C (possibly effective),
or no recommendation. We assessed risk of bias for all included studies to confirm whether results were driven by potentially
biased studies.

Results: Although most of the clinical trials have been designed as proof-of-concept trials, some of the indications analyzed
in this review can be considered as definitely effective (Level A), such as depression, and probably effective (Level B), such as
neuropathic pain, fibromyalgia, migraine, post-operative patient-controlled analgesia and pain, Parkinson’s disease (motor
and cognition), stroke (motor), epilepsy, schizophrenia, and alcohol addiction. Assessment of bias showed that most of the
studies had low risk of biases, and sensitivity analysis for bias did not change these results. Effect sizes vary from 0.01 to 0.70
and were significant in about 8 conditions, with the largest effect size being in postoperative acute pain and smaller in stroke
motor recovery (nonsignificant when combined with robotic therapy).

Conclusion: All recommendations listed here are based on current published PubMed-indexed data. Despite high levels of
evidence in some conditions, it must be underscored that effect sizes and duration of effects are often limited; thus, real

clinical impact needs to be further determined with different study designs.
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Introduction

Transcranial direct current stimulation (tDCS) is a non-invasive
neuromodulatory technique (Woods et al., 2016) that may help
treat various neurological and psychiatric disorders, even when
medically refractory, for example, intractable chronic pain
(Moreno-Duarte et al., 2014; Brietzke et al., 2016; Mendonca
et al., 2016). tDCS trials carry a “nonsignificant risk” designation;
typical side effects are transient and minor, for example, skin
irritation, itching, tingling, and erythema (Brunoni et al., 2011,
Bikson et al., 2019). As it is low risk, well tolerated (Aparicio et al.,
2016; Bikson et al., 2016), easy to use, portable (Charvet et al.,
2015; Dobbs et al., 2018; Im et al., 2019), and low cost, clinicians
should consider if and how to make tDCS treatment available,
particularly in patients with limited options (Bikson et al., 2016).

tDCS’ official regulatory status is in development in many
countries (Fregni et al.,, 2015; Antal et al.,, 2017), with early EU
clearances for depression and pain, and many centers world-
wide use tDCS as an investigational or off-label therapy (Fregni
et al., 2015). Despite hundreds of published human trials led by
independent researchers free of proprietary incentives, tDCS’
non-linear development path challenges its advancement as a
clinical tool. In drug trials, a single company validates a propri-
etary compound using an organized stepwise strategy, begin-
ning with preclinical testing and progressing through phase I,
phase II, and then phase III trials if results are confirmed. Clear
Go/No-Go criteria in phase I/Il randomized controlled trials

(RCTs) and “success” milestones in phase III drug trials (typically
developed in consultation with regulatory agencies) facilitate
clinical benefit assessments. Conversely, no single corporation
leads tDCS development, and studies are so diverse that clin-
icians might struggle to assess its potential benefits or decide on
therapeutic approaches.

We therefore convened an expert panel to perform an
evidence-based review of tDCS’ therapeutic efficacy. We empha-
size that the trials are heterogeneous, utilizing varying doses,
montages, adjunct treatments, and inclusion/exclusion cri-
teria (Brunoni et al., 2012; Woods et al., 2016; Bikson et al., 2016;
Ekhtiari et al., 2019). Clinicians should always refer to the ori-
ginal publications as any claims, limitations, or lacking or mixed
evidence must be interpreted in the context of different proto-
cols. We explain how that might work below.

tDCS Clinical Application and Mechanisms of Action

Neuromodulation by tDCS is thought to follow Hebbian Theory
(“neurons that fire together, wire together”) (Hebb, 1950). If pre-
synaptic and postsynaptic neurons are both active, the result
is synaptic strengthening; if one or both are inactive, either
no change occurs (co-occurrence rule) or, conversely, synaptic
weakening occurs if one is active while the other is inactive
(“neurons out of sync delink”), but no change occurs if both are
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inactive (correlation rule, anti-Hebbian) (Féldiak, 1990; Artola
and Singer, 1993; Pulvermiiller, 2018). Neural network excitation/
inhibition exists in a finely tuned balance; any abnormalities
can lead to pathology (Ziemann et al., 2015). Neuroplasticity in-
volves long-term potentiation and long-term depression, which
depend on post-synaptic calcium levels, with the involvement
of N-methyl-D-aspartate (NMDA) (Bliss and Gardner-Medwin,
1973; Rioult-Pedotti et al., 1998, 2000) and a-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) receptors (Bashir
et al,, 1991; Beattie et al., 2000; Malinow and Malenka, 2002),
metabotropic glutamate receptors, as well as gamma-aminobu-
tyric acid (GABA)-A and GABA-B receptors (Wigstrom and
Gustafsson, 1983; Davies et al., 1991).

tDCS occurs via a constant electric current produced by a
battery-operated current generator connected to at least 2 elec-
trodes (anode and cathode) applied to specific head locations
(or extracephalic regions in the case of the return electrodes).
Most of the electric current is shunted through scalp, skull, and
cerebrospinal fluid, but the remainder alters neuronal resting
membrane potentials, increasing the likelihood of depolariza-
tion or hyperpolarization without inducing action potentials
(El-Hagrassy et al., 2018). Polarization directionality depends
on axonal/dendritic orientations within the electric field. While
some literature has questioned tDCS efficacy and placebo ef-
fects given the weak current (Schambra et al., 2014) and its exact
mechanisms are unclear, the abundance of adequately blinded
positive sham-control RCTs speaks to tDCS’ therapeutic effects.

Multiple factors can alter tDCS after-effects, including the
polarity, duration, and frequency of stimulation; current density
(i.e., current intensity/electrode surface area); stimulation/return
electrode locations; neuroanatomy; underlying pathology/state;
and co-administered drugs/treatments (Nitsche et al.,, 2003).
Traditionally, anodal stimulation increases cortical excitability
and cathodal stimulation decreases it, but the net effects depend
on alterations in the overall network balance; for example, longer
durations and more frequent stimulation often lead to prolonged
after-effects (Nitsche and Paulus, 2001) up to a limit, after which
excitation may switch to inhibition or after-effects may be shorter
(Monte-Silva et al., 2010, 2013). Additionally, although tDCS’ ef-
fects are maximal under the electrodes, they do influence dis-
tant neural networks directly or indirectly (Marshall et al., 2004;
Ardolino et al., 2005; Lang et al., 2005; Boros et al., 2008; Kwon
et al., 2008; Vines et al., 2008). To ensure maximal effectiveness
(and for safety), it is important to avoid factors increasing resist-
ance (e.g., certain hair or skin products) or leading to shunting
across the scalp. For example, we would recommend careful
preparation of the scalp and hair and keeping a distance of at
least 7 cm between the electrodes to avoid shunting; however,
most people do not have 7 cm in distance between their motor
cortices or between their dorsolateral prefrontal cortices, adding
an extra challenge to bilateral montages. We recommend moving
the electrodes further apart—even if that moves the electrode
center away from the exact target so long as it still covers the
desired region; this will likely prevent shunting and overall im-
prove current delivery. However, studies do not typically report
on the distances between electrodes, and those that do some-
times allow for as little as 1 cm between electrodes.

Thus, it is critical to carefully select participants and mon-
tage/stimulation parameters considering the various possibil-
ities influencing tDCS outcomes in clinical trials.

Methodology

Review Criteria—Our team consists of international experts
on tDCS trials in specific neurological, rehabilitation, and
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Table 1. Evidence-Based Guidelines (Brainin et al., 2004; Lefaucheur
et al.,, 2014) (adapted from (Brainin et al., 2004))

Class I

Level A: Definitely effect-
ive or ineffective

Representative population—n > 25 of
patients receiving active treatment;

Data-supported, prospective,
randomized, placebo-controlled
clinical trials;

It should include all of these listed
criteria:

At least 2 convincing
Class I studies

or

1 convincing Class I study
and at least 2
consistent, convincing
Class II studies

Randomization concealment; clearly
defined primary outcomes; clearly
defined exclusion/inclusion criteria;
adequate accounting for dropouts
and crossovers w/ numbers
sufficiently low to have minimal or
potential for bias; relevant baseline 1 convincing Class II study
characteristics substantially and at least 2 consistent,
equivalent among treatment convincing Class 111
groups or appropriate statistical studies
adjustment for differences.

Level B: Probably effective
or ineffective

At least 2 convincing
Class II studies

Level C: Possibly effective
or ineffective
1 convincing Class II study
or
at least 2 convincing
Class III studies

Class II
Smaller sample size, n<25

No evidence
Absence of at least 2
convincing Class

Randomized, placebo-controlled trials

Or 111 studies w/ similar
Lacks at least 1 of above-listed criteria results on the same
(1-5) type of clinical features

w/ similar stimulation
method

Class III

All other controlled trials

Class IV

Uncontrolled studies;
Case series;
Case reports

Abbreviations: w/, with.

psychiatric conditions. We followed PRISMA guidelines
(Liberati et al., 2009) in conducting a systematic review on
interventional human tDCS studies (see supplementary
Table 1). In summary, for each of the selected conditions, the
inclusion criteria were PubMed-indexed English-language
Class I-III (Table 1) tDCS adult RCTs with a sham control
up to July 5, 2019. Obsessive compulsive disorder (OCD) and
Tourette syndrome (TS) were exceptions: we allowed Class IV
studies due to their intractability and limited evidence;
additionally, we did not exclude studies on pediatric patients
in epilepsy, OCD, and TS due to the limited adult data. We
only addressed major clinical outcomes and did not include
neurophysiologic outcomes such as motor evoked potentials
or electroencephalography (EEG).

We did not search databases other than PubMed; however,
we included a few additional papers identified by our authors
that had not shown up in search results but that fit the above
criteria (including the July deadline); these papers are detailed
in each section.



Search terms and main criteria for each condition:

Pain: “tDCS AND <the name of each pain condition>”, which
were neuropathic, fibromyalgia, migraine, post-operative,
myofascial, and low back pain, respectively. We included only
spontaneous pain outcomes.

Parkinson’s disease (PD): “transcranial direct current stimu-
lation” and “Parkinson Disease.” We included only motor and
cognitive functions. In studies with motor outcomes (PD and
stroke), we did not include scores primarily on activities of daily
living due to the difficulty of associating changes with a specific
montage.

Stroke: “tDCS and Stroke.” Briefly, stroke studies were classi-
fied as chronic (>6 months) or subacute (24 hours to 6 months),
using 3 montages (ipsilesional anodal bilateral M1 tDCS,
contralesional cathodal M1 tDCS, and bilateral M2 tDCS). We
included motor outcomes in chronic and subacute stroke, and
aphasia in chronic stroke only. Hemorrhagic strokes were also
included.

Epilepsy: “transcranial direct current stimulation” OR “tDCS”
OR “brain polarization” OR “galvanic stimulation” AND “epi-
lepsy.” We included seizure frequency.

Major depressive disorder: “transcranial direct current
stimulation” and “major depressive disorder.” We included
depression scores.

OCD and TS: “tDCS” and “OCD”; “tDCS” and “Gilles de la
Tourette syndrome.”

Schizophrenia: “tDCS AND schizophrenia.” We included audi-
tory hallucinations/positive or negative symptoms in schizo-
phrenia (schizoaffective disorder mixes were also allowed).

Addiction: “alcohol AND tDCS,” “cocaine AND tDCS”, and
“methamphetamine AND tDCS.” Addiction in each disorder was
assessed separately, assessing relapses and cravings.

Qualitative Analysis

We used the same methodology of a recent evidence-based re-
view on transcranial magnetic stimulation (TMS) (Brainin et al.,
2004; Lefaucheur et al., 2014). Each study was classified based on
population, sample size, randomization, placebo-control, alloca-
tion concealment, outcomes, inclusion/exclusion criteria, with-
drawals/dropouts, and baseline characteristics. Class [, II, III, and
IV studies have low, moderate, moderately high, and high risk of
bias, respectively. See Table 1 for our classification criteria and
how these classes were used for evidence level assessments and
recommendations.

Please note that Lefaucheur and colleagues (Lefaucheur
et al., 2017) published an evidence-based review on tDCS in
2017, employing somewhat different search terms than ours
but using a classification system derived from the same source
(Brainin et al., 2004). An important difference is that they clas-
sified Class II studies as having at least 10 patients in the ac-
tive group receiving “active” tDCS (Lefaucheur et al., 2017).
Also, their search period was up to 2015, although some of the
studies included in their review were published in 2016. While
we excluded case series/case reports (except in OCD/TS), we
did include RCTs with smaller samples in the active group as (1)
we have no evidence that a strict but arbitrary cutoff of active
n=10 will better estimate true effects; (2) this cutoff is not in
the original criteria (Brainin et al., 2004; Lefaucheur et al., 2014);
(3) pilot and especially device trials in emerging fields (par-
ticularly non-proprietary devices as tDCS) often have smaller
samples, so excluding RCTs with smaller samples would likely
exclude a large number of existing RCTs and bias the results;
(4) power is a function of both the sample size and the effect
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size, thus even small RCTs might be adequately powered and
show significant changes if the treatment is optimized and has
a large effect (conversely, larger trials with weak effects might
not show significant changes); and (5) given the same interven-
tion with the same effect size, a small sample may increase the
risk of false negatives (type II error) but would reduce the risk
of false positives (type I error)—for this reason we prioritize
positive results as they are less likely to be spurious.

Therefore, while our primary recommendations (the ones
described in the tables) did not restrict by sample size, in condi-
tions that included studies with n<10, we performed a “sensi-
tivity” analysis and described any changes in recommendations
if those studies were removed.

Also, we included single-session studies in our descriptive
data (table rows shaded in dark gray) and discussions as they
are important to understand the literature. However, we only
used studies with repeated tDCS sessions as well as comparable
protocols to determine levels of evidence and recommenda-
tions (similar to Lefaucheur et al., 2017), as most therapeutic
uses require multiple sessions. We would like to highlight that
most repeated-session studies do not measure outcomes after
the first tDCS session, making it harder to distinguish between
acute and cumulative within-study effects—although some did
take repeated measures at later points in the study (e.g., weekly
for 4 weeks).

Another important difference from Lefaucheur and col-
leagues’ work (Lefaucheur et al.,, 2017) is that we performed a
risk of bias assessment, which we describe further under “Risk
of Bias” below. We also summarize the pooled effect sizes of
the included disorders and performed meta-analyses to better
showcase existing data (see “Quantitative Analysis” section).

We use conventional nomenclature as applied across modern
tDCS publications (Bikson et al., 2019). “Anodal” and “cathodal”
tDCS indicate if a specific electrode (polarity) is hypothesized
to drive the outcome of interest and is thus near the intended
target region (e.g., anodal M1), even while computational models
suggest more nuanced brain current flow patterns (Datta et al.,
2009; Bikson et al., 2010). Similarly, “return” electrode indi-
cates an electrode not necessarily implicated in the outcome of
interest. “Bilateral” indicates that both electrodes are hypothe-
sized to be active for the outcome of interest.

Outcomes

We classified relevant clinical outcomes as positive (significant
improvement from baseline in active vs sham tDCS) or nega-
tive (no significant improvement compared with sham). For
instance, if a motor outcome was significantly improved from
baseline in the active tDCS group compared with sham, we con-
sidered the trial to be positive for motor function (i.e., tDCS im-
proved efficacy), irrespective of whether this outcome was the
primary endpoint of the trial or an exploratory outcome and
irrespective of whether there were statistical corrections for
multiple outcome measurements. This was necessary as many
papers do not clearly state the primary outcomes.

We also listed related negative outcomes within the same
trial but did not consider them to invalidate positive results as
many “negative” outcomes were simply underpowered for effi-
cacy (e.g., both active and sham groups improved from baseline,
or the active group improved more but without significant dif-
ferences between groups). Therefore, if a study was positive for 1
motor outcome but negative for several, we considered the trial
positive and made recommendations accordingly. We did not in-
clude scales on activities of daily living in other outcomes we
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considered too vague or nonspecific or where the score included
unrelated categories.

Study Classification

Class I or II studies require concurrent controls; crossover
studies are considered Class III as participants are used as their
own controls. This is central for Level B and C recommenda-
tions. Second, sample size per active arm (with a cutoff n = 25)
is used to classify studies as Class I vs all other classes (Table 1).
Therefore, while we allowed for small samples, we did consider
their representativeness of the target population and their po-
tential influences on systematic error (i.e., bias).

A study’s systematic error must first be assessed classify it,
and there should be a clear strategy to account for conflicting
evidence. An uncontrolled Class IV study is considered to
be more prone to bias than Class I-1II studies; therefore, only
Class I-1II studies are used to determine level of evidence. After
that, the studies selected for the recommendation are assessed
to see if they have conflicting results. Higher quality studies
with less bias and random error are prioritized; for example,
if a particular outcome such as motor function has a positive
Class I study but a negative Class II and negative Class III study,
the results of the Class I study would supersede the other 2
studies and the determination would be Level B rather than
Level A. Therefore, by providing the best level of available evi-
dence, a Class I study is enough to recommend a Level B of evi-
dence (i.e., probable effect).

Risk of Bias

We also assessed for risk of bias using the Jadad Scale (Jadad
et al., 1996), which is scored from 0 to 5 with questions relating
to adequacy of randomization and blinding, and the description
of withdrawals and dropouts. We conducted this bias risk as-
sessment for all repeated-sessions trials; then a sensitivity ana-
lysis was conducted by excluding papers with a high risk of bias,
defined as having less than 3 points in the Jadad Scale.

In each section, studies were divided differently according to
tDCS mechanisms and available data; for example, chronic pain
was divided by the main pain syndrome (i.e., neuropathic pain,
fibromyalgia, etc.). Only epilepsy and OCD/TS included pediatric
patients due to limited adult studies.

Panel Recommendations

Based on the qualitative review, the panel reached an agreement
on the recommendations for each clinical indication. In the first
step, each expert assessed studies published in his/her own field,
summarizing the studies in a table and then discussing recom-
mendations with the entire group. On the next step, M.M.E. read
and assessed all papers in this review for comprehensiveness and
discussed with EF. to maintain consistency with our methodology
across different sections in tables and text. In summary, we have
4 categories of recommendations: Level A (definitely effective
or ineffective), Level B (probably effective or ineffective), Level C
(possibly effective or ineffective), or no recommendation. All pan-
elists approved the final recommendations of the manuscript.

Table Display

We prioritized ease of recognizing stimulation parameters such
as montage, current density, duration, number of sessions,
concomitant therapies/tasks, and the main outcomes that we

would use to make recommendations for those sections. For this
reason, we displayed studies with multiple montages (whether
parallel or crossover) more than once in the tables; we did not
add extra rows for sham groups/conditions, irrespective of mon-
tage, but did add extra rows for active control groups to better
display their montages. Crossover studies are marked with a “+”
followed by the conditions; for example, “+as” indicates cross-
over with anodal and sham tDCS conditions.

The sample size (n) column describes the total sample ana-
lyzed in both parallel and crossover studies. For example, if 130
patients were randomized but only 120 analyzed, we listed an
n of 120 irrespective of how many groups this sample was div-
ided into. If a parallel RCT on stroke with an n of 120 has 2 table
entries, 1 in the ipsilesional and 1 in the contralesional sections,
that means 120 patients were analyzed for the whole study,
including both montages as well the sham group. For crossover
studies, number of sessions describes the number for each con-
dition; for example, 10 would mean they received 10 sessions
for each of the active and sham conditions. Washout periods
were variable, and we commented on them in the discussions
only when strictly necessary. If anode and cathode electrode
sizes were different (which usually meant the study had used
a large reference electrode to reduce its biological activity), cur-
rent densities for anodal conditions/groups were displayed un-
less the stimulation was specifically intended to be cathodal. All
sessions were consecutive unless stated otherwise.

We aimed to standardize the montage description as much
as possible by using 10-20 or 10-10 International EEG system no-
menclatures to describe active electrode positions (as they were
often described in this way, even when researchers used other
measurement methods such as TMS or neuronavigation). We
typically described reference electrodes as supraorbital (SO) as
that may be more intuitive for readers compared with “FP1/FP2”
(right and left frontopolar, the same location as supraorbital or
anterior prefrontal). However, in some cases, the supraorbital
cathode was active, and for consistency we kept the same no-
menclature (i.e., left SO instead of FP1). We used the descriptions
we thought most representative of where the electrodes had ac-
tually been placed, but papers sometimes described different lo-
cations for the same cortical regions. The most commonly used
locations were C3/C4 for left/right primary motor cortex (M1),
respectively; F3/F4 for left/right dorsolateral prefrontal cortex
(DLPFC), respectively; and SO; see Abbreviations for further
descriptions.

As mentioned above, single-session studies were shaded,
and our levels of evidence or recommendations included only
studies with repeated tDCS sessions. When useful, we sub-
divided tables by the studies we used for recommendations
and those studies that we did not use for recommendations
(e.g., because the protocol was too different to interpret them
together).

In summary, we aimed to organize the tables in a way that
would help provide a “recipe” for designing tDCS clinical trials.
However, it is important to consider the variability between
studies and how it might change sample size calculations or
therapeutic plans in a target population.

Quantitative Analysis

To provide additional quantitative data, we extracted baseline
and post-intervention values on each outcome of interest from
each study/montage used for EBM classification using a struc-
tured form. We used WebPlotDigitizer v.3.11 to extract data from
relevant graphs. The extracted data were tabulated, coded, and



then imported into a dataset for analysis. We selected only
studies with n = 10 or more participants.

We performed an exploratory meta-analysis on our priori-
tized outcomes per condition, that is, the ones used for clas-
sification in Tables 2-11. We decided to conduct an exploratory
synthesis to compare across the spectrum of available tDCS
approaches in each condition despite the variability of those
parameters. We did this because homogenizing would result in
too small a sample of studies to perform a valid meta-analysis
per disorder; additionally, pooled effect sizes are expected to
account for some variability, and clinicians can best make their
decisions when able to view the nuances of the existing litera-
ture in both the qualitative tables and the pooled quantitative
data. Where possible, we used pre- and post-tDCS scores to cal-
culate the mean difference between groups; this difference was
then converted to an effect size (ES). Given that Cohen d_ has a
slight bias to overestimate in small sample sizes (n<20 [Lakens
et al., 2013] or n<50 [Higgins et al., 2011]), we adjusted Cohen d
to Hedge’s g_by applying a correction factor (Lakens et al., 2013).
We assessed publication bias visually by funnel plot, and also
using Egger and Begg testing for meta-analyses with at least 10
included studies (Higgins et al., 2011).

In addition, we assessed heterogeneity using I? statistic
considering low heterogeneity when 12<40%. We consider the
random-effects models appropriate for use due to the overall
heterogeneity in populations and interventions. The data were
processed using Stata v15.0 software (StataCorp LLC).

Where pooled results were available and significant, they
were listed under the qualitative recommendations for each dis-
order. Otherwise, pooled results available for each disorder are
listed in Table 12; please note that they are often from a smaller
study sample than those used for the qualitative recommenda-
tions. Additionally, we restricted the outcomes of interest to
those that were in multiple studies and could thus be pooled.
We pooled both positive and negative outcomes in the quan-
titative analysis but highlight that as many of these outcomes
were exploratory (as opposed to primary outcomes), many of
the negative results are likely underpowered and do not affect
our qualitative recommendations. In fact, some of the positive
results in the qualitative tables were positive only on adjusted
analysis or modeling, and so their pooled effects may have been
nonsignificant for the purposes of our quantitative analysis. The
qualitative and quantitative analyses should thus be viewed as
separate but complementary methods to understand the data.

TDCS in Neurological Disorders

Pain—Chronic pain is a prevalent, disabling syndrome with
few evidence-based treatments, particularly in severe cases.
Recurrent pain leads to maladaptive neuroplasticity (El-
Hagrassy et al., 2018), perpetuating the sensation of chronic
pain in the presence of central sensitization; neuromodulating
maladaptive networks by tDCS is thus appealing (Naro et al.,
2016). A recent Cochrane review on chronic pain (O’Connell
et al., 2018) found a difference for pain intensity between active
and sham groups (0.82 points of control group outcome), but the
evidence was very low quality and clinically nonsignificant, with
heterogeneity and small study bias and it is unclear whether
experimental pain was included. While we cannot control for
study size and heterogeneity due to the nature of the field, we
evaluated spontaneous pain ratings and not experimental pain,
as the former is more clinically informative.

Aiming to understand the effects of different prevalent pain
conditions separately, we conducted a PubMed search using the

Fregnietal | 261

keywords “tDCS AND <the name of each pain condition>” that
yielded 12, 8, 2, 5, 2, and 3 results that fit our criteria for neuro-
pathic, fibromyalgia, migraine, post-operative, myofascial, and
low back pain, respectively (Table 2).

tDCS in Neuropathic Pain—Regarding studies with repeated tDCS
sessions, all but 1 of the Class II studies showed significant pain
improvements following anodal tDCS of M1 on the side opposite
to pain.The 1 negative trial (Lewis et al., 2018) was on neuropathic
upper limb pain and used one-half the current intensity (1 mA)
of the others; the crossover studies were negative. We describe
single- and repeated-session studies below:.

The first tDCS human pain study was on pain due to spinal
cord injury (Fregni et al., 2006f) and showed that anodal M1
tDCS improved pain cumulatively from the 2nd to 5th sessions,
though the effect was no longer significant at follow-up. Spinal
cord injury trials that followed had mixed results but were
overall consistent with cumulative analgesic effects (Jensen
et al., 2013; Wrigley et al., 2013; Thibaut et al., 2017). Meanwhile,
tDCS combined with a visual illusion encouraging participants
to “see” themselves walking reduced overall pain intensity as
well as continuous and paroxysmal pain (Soler et al., 2010); the
combined group had a shorter pain duration compared with
the others. One study found benefits for breathing-controlled
electrical stimulation, but the single session was insufficient in
long-standing pain patients.

Meanwhile, home-based tDCS had no pain benefits in pa-
tients with unilateral drug-resistant central/peripheral neuro-
pathic pain who previously received rTMS (O’'Neill et al., 2018);
they did not reach the minimal clinically important difference
(MCID) despite an adequate sample size and placing the anode
over the previous TMS-mapped M1 hotspot. Notably, there was
no relationship between previous rTMS responders and tDCS
responders, potentially highlighting mechanistic differences be-
tween the 2 techniques. Similarly, 1 RCT on radiculopathic pain
found that 10-Hz rTMS improved pain significantly more than
tDCS, which was no different than sham (Attal et al., 2016); tDCS
duration was 10 minutes longer than usual, raising the question
of altered after-effects.

Finally, tDCS reduced post-stroke pain (Bae et al., 2014), and
a single session RCT found that participants with neurogenic
arm pain had over twice the pain reduction (36.5% vs 15.5%) fol-
lowing 1 session of tDCS and transcutaneous electrical nerve
stimulation compared with tDCS alone (Boggio et al., 2009).

Recommendation: anodal M1 tDCS is probably effective
in reducing neuropathic pain (Level B) (Table 2). On excluding
the 1 study (Class II) with n<10, the recommendation does not
change.

tDCS in Fibromyalgia—Anodal M1 tDCS reduced pain in all Class II
repeated-session RCTs; other montages had mixed effects. Five
consecutive M1 tDCS sessions caused minor but significant pain
reduction in the first fibromyalgia study (Fregni et al., 2006e)
and a larger one where benefits lasted 30 days (Fagerlund et al.,
2015); meanwhile, 10 sessions at higher current density reduced
pain by 40% to 49% over 2 weeks (Khedr et al., 2017a). Later trials
found benefits to combining M1 tDCS with rehabilitation or
aerobic exercise (Riberto, 2011; Mendonca et al., 2016).
Computer modeling shows the importance of stimulation
parameters and current flow: 1 single-session RCT using a higher
current density and cervicothoracic junction return electrode
found that M1 tDCS (temporoparietal current flow) was ineffective,
but pain significantly decreased following both anodal and cath-
odal stimulation of the right prefrontal cortex (anterior prefrontal



International Journal of Neuropsychopharmacology, 2021

262

(g 19297) ured onppedornau Sudnpai ut aAR9Y3 A[qeqoid SHAI TN [EPOUE (UOTIEPUIUIUIOINY

11

11

I

I

(¢ZDdN-3S ‘1d9) @AneSaN

(3s10M

SVA ‘quasaid SYA ‘1sed] SYA)
aane3aN ‘(e8e1aak SYA) 9ATIISO

(1s10m SYA

quasaid syA) aanze3aN ‘(3sest
SVA ‘93eIdaAR SYA) 9ATIISOJ

(svA) aantsod

(rewsAxored syN :dnoid

SH@ ‘TewsAxored ‘snonunuod
‘I1e1240 SYN :dnoid paurquiod)
2ATIISOd

(svA) aantsod

(1d9) aane3aN

(SdN) aane3aN

(ured Arep S¥N) ane8sN

(ured Arep S¥N) 2anedaN

UOTSN[T [011UO0D/UOTSN[[T [BNSIA

ON

S
(1 € x3m
/£)6

0T
S
«
(Smit‘so@ e
2[1ered paysau) se+E
se+S

soer§

soe+G

uru 0z ‘982°0

urw 0Z ‘T£5°0

urw 0g ‘T£5°0

urw 0g ‘1£5°0

urw 0g ‘T£5°0
urw 0g ‘T£5°0

urw 0g ‘1£5°0

urw 0g ‘1£5°0
uru 0z ‘095°0

urw oz ‘095°0

0S [e191B[B1}IU0D

0S [e191B[B1IU0D

0S [eI91B[BIIU0D

0OS [eI91e[enuoD

OS [BI9}e[BIIUOD
0OS [BI91R[RIIUOD

OS [eI91e[RIIU0D

OS [BI91e[BIIU0D

0S [e191e[e1IU0D
ured aj1soddo
9pIs U0 $D/€D

quuiy 12ddn
pa1o9j3e asoddo
9pIs U0 $D/€D

ured xew ay1soddo
9pIs U0 $D/€D

ured xew aysoddo
9pIs U0 $D/€D

apts o13ardrway 03
ausoddo $D/eD

ured xew ay1soddo
9pIs U0 $D/€D

ured xew aj1soddo
SpIs U0 $D/€D

ured xew aysoddo
9PIsS U0 $D/ED

araydstway

JUBUTWOP U0
paseq ¥D/€D

ured aysoddo
9pIs U0 $D/€D

OS [eI91e[e1Iu0D

3 (8102) “TB 32 SIMaT
z @seyd /(£107)

6 e 39 InequyL
19seyd /(£102)

€€ T8 32 IeqIyL

2 (v107) T8 32 g

6 (oto7) T8 33 13108

JA" (3900¢) ‘Te 19 TuSa1g

se (9102) TR 30 TBMIV

ot (€102) T 39 Aor8um
124 (8107) 'T& 1° IPPNL.O

1T (8T0C) T8 33 TI19N,O

sse[D s)nsay syse}/AdeIay) yueTuoduo) SUOISS9S uoneinp apoyien spouy (u) aydures Ioyiny
JO I3qUINN ‘(euu/v) Lt
-SUap jua1InNd

ured

ured dTUOIYD UI S3Ipni1S SOA? T d[qel



263

Fregni et al

ured xew ay1soddo

I (svA) aanedaN suonoa(ur yurod 193311, S uruw 0z ‘145°0 OS [eis1e[RIIUOD 9pIs U0 $D/€D 1C » (¥107) T8 38 ToyD
ured xew aj1soddo
i (S¥N) aantsod Adereys SN prepuels S U0z ‘982°0  OS [BI3IB[RIIUOD SpIS U0 $D/€D 1€ (¥107) B39 refenyes
I (svA) aamedaN suonoa(ur yutod 1933117, S uruw 0z ‘145°0 OS [eis1e[RIIUOD €d 1% » (#102) ‘T8 39 10UD
(sdn) saworpuhs
ured [BIOSBJOAN
(g 19a97) ured aurexdru 3udnpal ul 2A1393J9 A[qeqoid SO TN [EPOUE (UOT}EPUSWIO0DY
(I o x3m g dno1n/(£102)
I (SVA) @an1S04 ON /€) et uru 0z ‘008°0 OS [e1ale[enuod €D €l ‘Te 39 speipuy
(m Hxp
(uonyeinp 1930 ured xew ay1soddo
I JoBNE JUIRISIW ‘SYA) SATISOJ ON £199) 01 uru 0z ‘1/S°0 OS [eI9)e[enuoD) 9PpIS U0 $D/ED €T (z107) 'TE 3° BALISEQ
(o1 &> {m D dnoxn/(£107)
I (Svn) @antsod ON /€) Tl urur 0z ‘008°0 OS [e1ajerenuo) €d el ‘Te 19 speipuy
sureidiN

$938}UOW I3]0 10J UOTIRPUSWIWIO0IS1 ou (g [9497) ured erdreAwoiqy Sumnpal ut 9A1093)9 A[qeqoid SO} TN [BPOUE :UOT}EPUSWI0IY

wie

i (svn) @antsod ON 0l U0z ‘€80 [e131B[RIIUOD €D 9 (B£102) TR 33 1paU
(9102)

I (SNA) 2aT31SOd 9SIDI9XD DIQOIdY S utw 0z ‘1450 OS [ela1e[RIIUOD €D [S72 ‘Té 19 BDUOPUSN
(sT02)

i (SYN) santsod ON S  uwQz‘1/S0  OS [eISie[enuo) €D 537 ‘e 12 punjrade]

(svn) (14 QT X[
i aanesaN ‘(ured 9¢-1S) SARISOd weioid qeya1 ured /T)OT U Oz ‘TS0 OS [eI1e[enuo) €D €T (1102) T 32 031=qRY
I (SVA) @anisod ON S  UWWQZ ‘TS0 OS [ele[RNU0D €D e »(29007) e 10 Wuda1g
(1 pxm
i (SUN) @nn150g ON /7)8  UIW OZ ‘6Z%°0 vd €d 47 »(£102) T8 32 oL
(o1 fx3m [EVSELH)

i (S4N) 2an1s0d ON /T)8  UIW 0T ‘62% 0 endpoo ysry  (9a19u) [e31d1000 3337 4% »(£102) ‘TR 19 OL

II (svn) aanesaN ON S ummQz ‘TS0 OS [eleie[enUo) €d € »(29007) Te 3 u8a1]
» (T107)

II (SNA) 21504 ON T UmWOZ ‘0S¢ T 0S sy OIDBIOYIODIAID) 0€ ‘T& 19 BDUOPUSIY
» (1107)

I (SNA) @anISOd ON T UWQZ ‘0S¢ T OIDBIOYI0DIAIDD 0S SN o€ ‘Te 32 BOUOPUSN
» (1702)

11 (SNA) 2a1139N ON T UutwQoz‘osz’T [0} DIDBIOYIODIAIDD) o€ ‘TE 32 BDUOPUIN
»(1102)

i (SNA) 2anESSN ON T UWOg ‘0S¢ T OIDBIOYIODIAIS) €D 0g Te 33 BOUOPUSIN

SSe[D s)nsay sysel/Aderayy JuelTuIodouo) SUOISSas uoneinp apoyeD apouy (u) aydures loyny

Jo 1squnN ‘(euyy) £t
-SUap juaLIiny
ured

panunuo) ‘g d[qeL



International Journal of Neuropsychopharmacology, 2021

264

JuawiLadxa/Apnys SWes U3 JO SWIE JUSISJIP Urym sadejuows s[dnnn v
‘uonelfiqeyai ‘qeyai aaneradoaid ‘doaid ‘aaneradoisod ‘doisod ‘oworpuhs ured [e1dSEJOAN ‘SN {[BWIXEW ‘XBUI {SUOTIIPUOD SO} WERLS/[EPOILD/[EPOUR (1M
I9A0SSOID ‘SOB+ 'S} WEYS/SINLLI WEYS 10 SO} [BPOUE/SINLLI ZHOT 03 SdNnoid 9oy} uryiim I9A0ssoid ‘sdnoid weys/weys 10 SATIDE/LATIDE YIIM (SINLLI ‘SOAI—T(eL) [9[[eled pajsau) ‘se+ {SUOTIIPUOD {DeqpadjoInau ‘uonepau ‘sisoudAy
—SD@} WRYS/[EPOUE U3IM ISAOSSOID ‘U‘WIY‘Se+ SUOTIIPUOD SNAL WEYS/SD} WeYS ‘SNIL Weys/SO) [ePoUE ‘SNIL 9ATOE/SD} [EPOUER UM I9A0SSOID [SSLSBLEE+ [SUOTIPUOD SO} WRYS/[EPOUE UM ISAOSSOID ‘Se+ :SUOIIRIARIqQY

UOI}BEPUSUIUIODSI ON

I (SvA) 2aneSaN 14D S ulIQz ‘1450 OS [eIeIR[elIU0D €D zer  (S107) Te 38 aMapanT
ured [e191e[Iq 10
[EI3USD JO 3SED UL
¥D/€D JUBUIWIOP 10
‘ured xew ay1soddo
i (SvA) aantsod aswI9xs dnon S WwWQZ‘TLS0  OS [eId1B[RNUOD SpIS UO $D/€D s (8107) “[e 19 pnENS
11 (S4dAq) 2ane3sN ON 0T  WWOZ ‘TS0 104 proisew 1ysry 1z (6107) T8 19 oueLey
ured 3oeq moT
(g 19297) ured pue ersad[eue pafjoriuod-jusned Sudnpar ut 210919 A[qeqoid SO TN [epoue aaneradolsod :UOHIEPUSWWOINY
ured sauy xew
(svA) aanedaN a11soddo
I ‘(SSNV'T ‘@sn vDd) eAnIsod ON (pdoisod/g)z  umwOg ‘€80 e [e1sierisd] 9PIS U0 ZD/1D 0S (a£102) TR 38 1PAU
(Bursrem usym ured 3sI0M SVA)
aAnye3aN ‘(3sa1 3uunp SyA ‘ured
AJrep 1s10m dATIE[NWIND SYA (pzxp
I ‘asn 21s93[eUY) SATIISOJ ON doaxd/z) % uru 0z ‘150 OS [eI9)e[e1Iuo) [50) ob (£107) ‘Te 32 o1raqry
urw
ot ‘(v
(seanseawt 2) 9z1s
ured 19130) aA11e39N ‘(3SBI] SH (p doysod 9pOo1d3[
I 1e ured SN ‘SN vDd) 2ARISOd ON Txp/R) ¥ Iespun iz zD [T (9102) 'Te 32 195B[D
(p doysod 2auy 19318 (€102)
I (SVA)°anedsN ‘(@sn yDd) 2anisod ON ZXP/7)¥  UlW 0T ‘0SC'T yd ~ Uo paIseqygD 10 YId 6¢ [E 32 Ip1ePIOg
(ured
11 STuIRUAQ SVA ‘@Sn yDd) 9A1nE3aN ON (do3sod) T urw 0z ‘982°0 e Ie3 1Y3L 9A0QY 65 » (ET0Z) ‘Te 12 stognQg
(ured
II  Snueukq SVA ‘9sn vod) 9AnEBSaN ON (doxsod) T umwi 0z ‘9820 183 JySU 2A0qY €d 65  (€T0¢) Te 3° stogqnag
£1931ns pajerai-ured druoIyd 1s)je ured ande saneIadoisod
UOT}BEPUSUINODI ON
sse[D s)nsay syse1/Aderat) JuelTIoduoD SUOISSas uoneinp apoyieD spouy  (u) sydures oyny
Jo QNN ‘(ew/v) £a1
-SUSP JUILIND
ured

panunuo) ‘g d[qeL



current flow) (Mendonca et al.,, 2011). Meanwhile, a single session
of high-definition tDCS (HD-tDCS) using a 4x 1 ring configuration
led to better pain relief (effect size 0.36 vs 0.30) with anode center
stimulation (inward current) compared with cathode center
stimulation (outward current), but the latter had more immediate
effects (Villamar et al.,, 2013). Finally, twice-weekly bi-occipital
tDCS significantly improved pain but not fatigue (unlike invasive
occipital nerve stimulation), while DLPFC tDCS improved pain
and fatigue, perhaps providing top-down regulation to midbrain-
thalamic-cingulate pathways (To et al., 2017).

Recommendation: anodal M1 tDCS is probably effective in
reducing fibromyalgia pain (Level B) (Table 2). Quantitative ana-
lysis of 5 studies shows a barely significant ES of —-0.62 (95%
confidence interval [CI] = -1.23, -0.01) in favor of tDCS, pri-
marily influenced by the favorable results of 1 study (Khedr
et al.,, 2017a); there is significant and substantial heterogeneity
(12=68.2%, P=.013) (Table 12; supplemental Figure 1a).

tDCS in Migraine—Anodal M1 tDCS reduced pain intensity in
2 Class II trials using nonconsecutive sessions (da Silva et al.,
2013; Andrade et al., 2017), although the pain reduction was not
significant until the fourth week of follow-up in 1 of them; this
same study also showed shortened migraine attacks (da Silva
et al.,, 2013). Using different parameters, pain reduction was
greater following left DLPFC than M1 tDCS in the other study
(Andrade et al., 2017).

Recommendation: anodal M1 tDCS is probably effective in
reducing migraine pain (Level B) (Table 2).

tDCS in Myofascial Pain Syndrome (MPS)—Anodal M1 tDCS Class II
studies had mixed results and used different concomitant
therapies. Combining standard MPS therapy with anodal M1
tDCS accelerated pain reduction (1st week effect), but MPS
therapy led to a ceiling effect at weeks 2-4 (Sakrajai et al., 2014).
Trigger point injections (Choi et al., 2014) resulted in reduced
pre-post session pain on days 2-5 in the left DLPFC tDCS group,
but after the last session the DLPFC, M1, and sham groups had
similar improvements.
Recommendation: none (Table 2).

tDCS in Postoperative Acute Pain After Chronic Pain-
Related Surgery—M1 anodal tDCS reduced patient-controlled
analgesia (PCA) in all Class II and 1 Class I repeated-session
studies; pain was reduced in 2 Class II studies and 1 Class I study.
M1 electrode location varied by type of surgery, and only 1 study
gave tDCS pre- rather than post-operatively (Ribeiro et al., 2017).
This novel RCT found a decrease in post-hallux valgus surgery
PCA use (72.3%) and pain (Ribeiro et al., 2017).

Two studies on total knee arthroplasty (Borckardt et al., 2013;
Khedr et al., 2017b) investigated reduced PCA use at higher cur-
rent densities. In one (Borckardt et al., 2013), the active group
used 46% less hydromorphone and found pain less unpleasant.
The same group found 23% less hydromorphone use and a 31%
decrease in “pain-at-its-least ratings” by discharge following
lumbar spine surgery (Glaser et al., 2016). In both cases, re-
searchers concluded that tDCS activation at the anode (motor
cortex intended to represent the knee or lower back/trunk) and
deactivation at the cathode (right DLPFC) might have reduced
pain perception. However, single-session anodal/cathodal left
DLPFC tDCS had no benefits. Due to the varying study param-
eters, we cannot give a “definitely effective” recommendation.

Recommendation: postoperative anodal M1 tDCS is prob-
ably effective in reducing PCA and pain (Level B) (Table 2).
Quantitative analysis of 3 studies shows a significant ES of -0.70
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(95% CI = -1.09, —0.30) in favor of tDCS effects on pain due to
favorable results in 2 of 3 studies (Borckardt et al., 2013; Ribeiro
et al., 2017) (Table 12; supplemental Figure 1a).

tDCS in Low Back Pain—Single Class I and Class Il M1 anodal tDCS
study results were mixed. M1 anodal tDCS plus offline cognitive
behavioral therapy (CBT) showed no significant pain reduction
at 2 primary endpoints measured after 1 week of tDCS and 4
weeks of CBT, respectively (Luedtke et al., 2015); however, the
RCT design was based on their negative single-session crossover
pilot on experimental pain (Luedtke et al., 2012) Additionally, if
tDCS’s maximum effect occurred during the 4 weeks of CBT, it
would go unmeasured; following CBT, both groups improved
to similar levels. In another study, 10 group exercise sessions
followed 1 week of tDCS, and pain significantly improved up
to the 1-month follow-up; exercise plus sham tDCS led to no
improvements at any timepoint (Straudi et al., 2018).
Meanwhile, cathodal frontocentral tDCS targeting the left
dorsal anterior cingulate cortex (ACC) may have improved af-
fective dimensions but not pain intensity (Mariano et al., 2019).
Recommendation: none (Table 2).

Summary and Literature Synthesis—Anodal M1 tDCS probably
improves neuropathic, fibromyalgia, migraine, and post-
operative pain as well as reduces PCA post-operatively.
Quantitative analysis of 18 studies in neuropathic, fibromyalgia,
migraine, and post-operative pain showed a significant and
moderate ES of -0.47 (95% CI = -0.71, -0.23) favoring tDCS effects
on pain (Table 12; supplemental Figure 1a) with significant but
low heterogeneity (12=39.7%, P=.043). No publication bias was
found (symmetrical funnel plot and non-significant Egger and
Begg tests; supplemental Figure 1b).

Consistent with the 2018 Cochrane review, studies often
used heterogeneous therapeutic strategies, and there is a clear
need for RCTs with larger samples and clinically meaningful
long-term outcomes. Careful outcome selection is critical as dif-
ferent stimulation parameters can lead to changes in onset of
pain relief (or pain threshold), intensity, duration, and location
and may have different effects on clinical vs experimental pain.
One tool to utilize is the IMMPACT consensus statement, which
classifies a decrease in pain of <15% as no important change,
>15% as a minimally important change, >30% as a moder-
ately important change, and >50% as a substantially important
change (Dworkin et al., 2008; O’Connell et al., 2018). It is im-
portant to carefully select the time period of pain measurement
(e.g., average of previous 24 hours, previous week) and to include
this consideration in the design and reporting of clinical trials.
Mobile apps may help avoid the problem of pain recall accuracy
if designed for clinical trial use as opposed to unvalidated com-
mercial apps (Salazar et al., 2018; Zhao et al., 2019).

On comparing our results with other qualitative/quanti-
tative studies, Lefaucheur et al. (2017) gave a similar recom-
mendation (Level B) in fibromyalgia for anodal left M1 tDCS,
although we had only 3 overlapping studies. Meanwhile, similar
to our results, the most recent meta-analysis on tDCS in fibro-
myalgia (Lloyd et al., 2020) found active tDCS to be beneficial,
but barely so (standardized mean difference (SMD) of —0.50 with
95% CI = -0.87, -0.14) with statistically significant but weak clin-
ical relevance (17% pain improvement) and high heterogeneity.
When only anodal M1 tDCS was considered, the effect size re-
mained the same. Their results were also driven by Khedr et al.
(2017a), and they plausibly suggested that the extra-cephalic ref-
erence may have better influenced pain processing in deep brain
and midbrain structures.


http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa051#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa051#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa051#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa051#supplementary-data
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As to migraines, a meta-analysis (Feng et al., 2019) found that
excitatory M1 non-invasive brain stimulation (NIBS) (tDCS and
rTMS studies pooled together) had a large effect size in reducing
migraine headache intensity (5 studies: Hedges’ g of —0.94, 95%
CI = -1.28, —0.59) and frequency (4 studies: Hedges’ g of —0.88,
95% CI = -1.38, -0.38). Meanwhile, our pooled effects of 2 studies
were null; however, we did not include TMS, did not have their
positive anodal tDCS studies (Feng et al., 2019), they did not have
1 of ours, and the 1 study we had in common was null at that
timepoint (the effects of da Silva et al., 2013 were positive only on
follow-up). Lefaucheur et al. (2017) made no recommendations.

A recent integrative review and meta-analysis on tDCS in
chronic non-cancer pain (Zortea et al., 2019) found that active
tDCS compared with sham improved pain with a pooled stand-
ardized mean difference of -0.66 (95% CI = -0.91, -0.41) and that
results appeared better for M1 anodal tDCS (0.68, 95% CI = -1.00,
-0.35) rather than anodal DLPFC tDCS (-0.54, 95% CI = -0.91,
-0.16), although there were less than a handful of studies for
DLPFC. Both measures are greater than the pooled effects for our
pooled analysis on neuropathic pain, which had an effect size of
-0.47, though the confidence limits overlapped (CI 95% = -0.71,
-0.23). The literature seems consistent that active tDCS can re-
duce pain, typically with a moderate effect size, and particularly
with M1 anodal tDCS. However, optimal strategies for each pain
disorder require further investigation.

Parkinson’s Disease

PD is a chronic progressive neurodegenerative disorder affecting
315/100000 people aged 40 years and older (Pringsheim et al,,
2014). Dopaminergic cell degeneration leads to dopamine deple-
tion (Dauer and Przedborski, 2003) and downstream changes in
basal ganglia circuitry (Niethammer and Eidelberg, 2012) with
motor cortico-striato-pallido-thalamocortical circuit abnor-
malities (DeLong and Wichmann, 2007). Evidence suggests that
contralateral M1 and bilateral cerebellar hemispheres are hyper-
active in PD and that the supplementary motor area (SMA), pre-
SMA, and putamen are hypoactive (Yu et al., 2007).

PD is characterized by resting tremor, bradykinesia, rigidity,
asymmetric onset, postural instability, and responsiveness to
dopaminergic agents (Gelb et al., 1999), although these medi-
cations can lead to serious side effects (Ray Chaudhuri et al.,
2018). Patients often also have cognitive symptoms relating to
executive functioning (Kehagia et al., 2010; Santangelo et al.,
2015). While deep brain stimulation (DBS) has long been used
for PD motor symptoms, it is associated with serious adverse
events (Buhmann et al., 2017), including cognitive deterioration
(Gruber et al., 2019). Therefore, we aimed to see if tDCS could
non-invasively improve motor and cognitive functions.

A PubMed search using the keywords “transcranial direct
current stimulation” and “Parkinson Disease” yielded 23 results
for motor and cognitive function, respectively, that fit our cri-
teria (Table 3).

tDCS for PD Motor Symptoms—Regarding motor improvement in
studies with repeated sessions, 1 Class IIl and 2/4 Class II studies
on anodal motor/premotor/SMA tDCS were positive; regarding
DLPFC tDCS, 3/4 Class II studies—1 repeated twice (Doruk et al.,
2014)—were negative, but the montage was largely intended for
comparison or cognitive functions.

Motor/Premotor/SMA tDCS—Most motor studies aimed to target
premotor and SMA regions, while others used M1 (the electrodes
likely overlapped with premotor regions in either case).

Bradykinesia, gait, and other motor functions were addressed
using tDCS on typically alternating days, and in all cases motor
function in the tDCS group improved beyond baseline; negative
results meant sham tDCS improved similarly.

Two negative RCTs combined tDCS with physical therapy
(Yotnuengnit et al., 2018) or gait training with visual cues (Costa-
Ribeiro et al., 2017), yet the cued gait-training study used similar
interventions to the group’s earlier RCT (Costa-Ribeiro et al,,
2016, 2017) where the active tDCS group improved more quickly
and maintained the benefit 1 month later. Meanwhile, 1 RCT
combining thrice-weekly M1 tDCS with dual task gait training
found significant cognitive—not motor—improvements during
motor testing (Schabrun et al., 2016).

Two trials of tDCS without concomitant motor therapy
were positive: 1 RCT alternated anode positions between pre-
motor and anterior prefrontal (SO) areas while likely inhibiting
the posterior quadrant bilaterally (Benninger et al., 2010); mul-
tiple outcomes were positive but the trial was terminated early.
One crossover RCT targeted the leg initiating movement after
freezing of gait (FOG) with 5 consecutive sessions and found
persistent benefits for 4 weeks (Valentino et al., 2014).

As to single-session crossover RCTs, protocols and results
were quite mixed, although they give mechanistic insight.
One ran 3 experiments (OFF state) and found that anodal
M1 but not cathodal M1 (Experiments 1a and 1b) nor anodal
DLPFC tDCS (as a control) (Fregni, et al., 2006d) significantly
improved motor outcomes. Importantly, motor evoked po-
tentials significantly increased and decreased following an-
odal and cathodal M1 tDCS, respectively, highlighting tDCS’
neurophysiologic effects. Conversely, 1 trial (ON) found a sig-
nificant decline in walking (Verheyden et al., 2013), and an-
odal M1 tDCS with treadmill training led to ceiling effects
(Fernandez-Lago et al., 2017). Meanwhile, HD-tDCS signifi-
cantly improved freezing and other gait parameters com-
pared with “active” sham (Dagan et al., 2018); the multi-target
approach may have enhanced dopaminergic circuitry or ex-
ecutive effects on motor control or improved communication
between DLPFC, M1, and subcortical regions (highlighting
functional decoupling between the cognitive control net-
work and basal ganglia in PD patients with freezing) (Shine
et al.,, 2013). Yet a neuronavigated crossover RCT on FOG (OFF
state) found no improvement in self-initiated anticipatory
postural adjustments and execution despite substantial cue-
induced improvements in gait initiation prior to baseline (Lu
et al., 2018). This may have been due to having greater cur-
rent densities anterior to SMA leg regions, or due to the lack
of dopaminergic activity (OFF). Finally, a nested trial with a
posterior current direction (small cathode at inion) showed
significant improvements in gait and stability only with com-
bined physical training plus tDCS (Kaski et al., 2014), perhaps
by modulating cortico-cerebellar and cortico-striatal circuits
involved in motor learning (Duchesne et al., 2016) and in-
ternal regulation of movement.

DLPFC tDCS—Both active/sham group patients with mild
cognitive impairment (Manenti et al, 2016) improved
significantly in static and dynamic balance for up to 3 months
and had a less lasting improvement of trunk flexibility. In a dual
NIBS study, patients with FOG (ON) safely received left DLPFC
anodal tDCS combined with excitatory M1 rTMS (Chang et al.,
2017); rTMS led to motor (and motor evoked potential) ceiling
effects except on post-5th session timed up-and-go test. Finally,
targeting cognition with repeated DLPFC stimulation had no
motor benefits (Doruk et al., 2014).
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Single-session RCT results were mixed (Fregni et al., 2006d;
Lattari et al., 2017), though 1 negative trial suggested less dual
task cost with active tDCS (Swank et al., 2016).

Overall, motor/premotor/SMA tDCS shows promise despite
varying parameters and outcomes, while prefrontal tDCS is
largely noneffective.

Recommendation: anodal motor/premotor/SMA tDCS is pos-
sibly effective for motor function in PD (Level C); anodal pre-
frontal tDCS is probably not effective for motor function in PD
(Level B) (Table 3).

Quantitative analysis of motor function in the ON state
(Unified Parkinson’s Disease Rating Scale [UPDRS] III: 4 studies/
montages, motor velocity: 4 studies/montages) irrespective of
location of stimulation showed a significant ES of —0.38 (95%
CI = -0.68, -0.09) in favor of tDCS despite none of the studies’
effect sizes reaching statistical significance (Table 12; supple-
mental Figure 2a).

tDCS for PD Cognitive Symptoms—All Class II repeated-session
DLPFC tDCS studies were positive for improved cognition, and
the 1 M1 tDCS study found more accurate responses on word
lists and counting during timed up-and-go test, as described
above (Schabrun et al., 2016).

One sham-control RCT with parallel anodal tDCS groups
(left DLPFC, right DLPFC, and either right or left DLPFC) (Doruk
et al., 2014) found that only the active tDCS groups maintained
improvements in Trail-Making Test B; no other cognitive meas-
ures were significant. Similarly, dual left DLPFC tDCS and ex-
citatory rTMS of lower limb M1 led to improvements in TMT-B
beyond rTMS effects alone (Chang et al., 2017), and using DLPFC/
frontotemporal tDCS with physical therapy improved PD with
mild cognitive impairment to the point that patients had normal
scores after active treatment (Manenti et al.,, 2016). Meanwhile,
left DLPFC tDCS with online computerized cognitive control
training focused on executive function (Manenti et al., 2018) sig-
nificantly improved phonemic fluency in the active group (in-
dependent of decreased depression); other cognitive measures
improved over time in both groups, but PD-CRS reached MCID in
the active group only.

Regarding single-session crossover RCTs, Boggio and col-
leagues’ Experiments 1 and 2 found improved cognition
(working memory) only following 2-mA anodal left DLPFC
tDCS, while 1-mA and M1 tDCS had no benefits (Boggio et al.,
2006). Multi-target left DLPFC and M1 tDCS—but not M1 tDCS
alone—significantly improved the correct number of words on
the Stroop test.

Recommendation: anodal DLPFC tDCS is probably effective
for cognitive function in PD (Level B) (Table 3).

Summary and Literature Synthesis—Most studies were good-
quality RCTs on idiopathic PD. While anodal motor/premotor/
SMA tDCS may benefit motor function and while DLPFC tDCS
likely improves cognition, there does seem to be a feedback loop
between motor and cognitive function. The quantitative analyses
measures grouped by motor UPDRS and velocity (for bradykinesia)
in ON periods were each nonsignificant, as were the cognitive
measures grouped by Trail-Making Test B; meanwhile, there were
significant pooled motor (but not cognitive) effects. These were the
most commonly measured quantifiable outcomes across studies.
Meanwhile, Lefaucheur et al. (2017) gave no recommendations for
either motor or nonmotor/cognitive benefits of tDCS in PD due to
the variability of outcome measures and targets, although they
thought that combining tDCS with rehabilitation or priming may
improve efficacy.

As to quantitative analyses in other studies, a recent meta-
analysis on PD locomotion (Lee et al., 2019) found that short-
term but not long-term benefits were significant with an effect
size of 0.36 (P=.001) and that multiregional targets improved
outcomes compared with single brain targets. A meta-analysis
(Kim et al., 2019) on freezing of gait combining both rTMS and
tDCS studies found better results in the PD subset than in par-
kinsonism overall; the FOG-Q effect size in PD was moderate
with an SMD of 0.57 (95% CI = 0.15, 0.98), and UPDRS III also im-
proved by a SMD of 0.43 (95% CI = 0.01, 0.86). As to cognition, an-
other pooled analysis (Goodwill et al., 2017) of 3 studies found no
significant benefit to tDCS, although they had combined many
more cognitive outcomes together.

Outcome selection is still challenging for motor and cognitive
function. Clinical scales used often combine multiple aspects
of motor function, for example, UPDRS part III rates speech,
facial expression, tremor, rigidity, various movements of the
hands and legs, bradykinesia, posture/stability, and gait. Varying
stimulation targets and parameters (and whether patients were
in OFF/ON states) could affect those motor subcomponents in
different ways. Outcome measurements and study protocols
varied for cognition as well. Larger PD motor/cognitive RCTs are
necessary to identify best practices, different outcome MCIDs,
and duration of effects.

Stroke

Stroke is the top cause of disability in the United States, with 3%
prevalence and high morbidity and mortality rates (Ovbiagele
and Nguyen-Huynh, 2011). There is tremendous need for ef-
fective therapies to help stroke survivors recover motor, lan-
guage, and other functions. Rehabilitation typically follows
recruitment of intact nearby tissues and reorganization of
the brain to compensate for the damaged area, but despite
high-quality rehabilitation patients often still have mild to se-
vere residual deficits. We aimed to evaluate the efficacy of tDCS
as a tool for stroke motor and language rehabilitation due to
their impact on disability and caregiver burden.

tDCS Effects on Motor Function in Stroke—Strokes can lead to
unilateral weakness in the face, arm, and leg as well as other
symptoms relating to impaired sensation, visual, and balance
problems, all of which may exacerbate motor disability. It may
be easier to enhance the magnitude of plasticity with tDCS
in acute/subacute vs chronic stroke due to the major plastic
changes in this phase, although those changes can make it
difficult to distinguish spontaneous recovery and therapeutic
effects (thus necessitating sham control, where recovery is
likely to be of similar magnitude). Spontaneous recovery is
minimal in chronic stroke; thus, methods promoting adaptive
neuroplasticity are desirable.

A PubMed search using the keywords “tDCS and Stroke”
yielded 63 results that fit our review criteria. We then selected
the categories we believe most critical to tDCS effects on motor
function and excluded the few studies that did not fit those
categories, as we discuss below. We were unable to categorize for
other relevant criteria such as patient characteristics (e.g., side,
volume of stroke, cortical vs subcortical stroke, anterior vs pos-
terior circulation, ischemic vs hemorrhagic stroke, severity of
impairment, age of patient, dominant side, concomitant treat-
ments) and specific tDCS parameters (e.g., active/reference elec-
trode sizes/presumed current distribution, stimulation duration,
interval, and number of sessions) due to the scope of this paper
and as the above information was not always available. Nor were


http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa051#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa051#supplementary-data

we able to categorize for outcome measures, although we list
measured motor outcomes in Tables 4 and 5. However, the type
of outcome is important for the research question, for example,
the Jebsen Taylor Hand Function Test is considered appropriate
for mild to moderate stroke due to a lack of ceiling effects, while
the Fugl Meyer Test may reach both ceiling and floor effects (Lin
et al., 2009; Thompson-Butel et al., 2015; Santisteban et al., 2016).

Classification of Studies—The first major category was time
since stroke: “subacute” (24 hours to 6 months) or “chronic”
(>6 months). It is important to note that some trials used
different cutoffs for “acute” vs “subacute” designations, and
while most strokes were infarcts, hemorrhagic “strokes” were
also included.

The second major category was side and polarity of stimu-
lation; patients received either (1) ipsilesional anodal M1 tDCS
(anode over M1 on same side as stroke), (2) contralesional cath-
odal M1 tDCS (cathode over M1 on opposite side of stroke), or
(3) bilateral M1 tDCS (ipsilesional M1 anode, contralesional M1
cathode). Therefore, we created 6 subcategories (see Tables 4-5).
In the chronic stroke category, we also subdivided by repeated-
session studies using tDCS to enhance robotic training and
studies without it. Some trials enrolled both subacute and
chronic stroke patients. The few papers with 1 to 2 subacute
stroke patients among many chronic patients were included in
the chronic stroke table (Lindenberg et al., 2010, 2012; Tanaka
et al., 2011). Meanwhile, papers with a larger mix of subacute
and chronic patients were marked (*) and added to both tables
(Tables 4-5); one showed no significant effect of time since stroke
(Fleming et al., 2017), mean time since stroke was 4.9 + 3 months
in another (Wu et al., 2013), and the third (Triccas et al., 2015)
had a near even mix of subacute and chronic patients.

Chronic Stroke—All repeated-session Class II and III studies
using ipsilesional anodal M1 tDCS were positive for motor
improvement; however, when tDCS was used to enhance motor
effects of robotic therapy/training, only 2/5 Class II studies
showed tDCS benefits. As to contralesional cathodal M1 tDCS, 1/2
Class II and both Class III studies were positive; 4/6 Class Il and 1
Class III study on bilateral tDCS were also positive. These studies
had comparable montages, and thus the recommendation
is that tDCS is probably effective in all 3 categories (Table 4),
although ipsilesional anodal tDCS has no benefits over robotic
training. Single-session studies were also mostly positive in all
but bilateral tDCS.

Most studies trained participants in motor tasks to reach
asymptotic levels prior to testing except when the intended
outcome was related to skill acquisition (e.g., Zimerman et al.,
2012). All but 1 of the ipsilesional repeat-session studies without
robotics used additional training, including constraint-induced
movement therapy, virtual reality, etc., yet tDCS benefits went
beyond those therapies. Conversely, robotic training was more
prone toward a ceiling effect, including the largest study (n=77
ischemic stroke), which used intensive robotic therapy after
each of 36 tDCS sessions (Edwards et al., 2019); improvements
in Fugl Myer (by 5 points) and Wolf Motor Function Tests were
not significantly different between groups. Most other tDCS
montages were also combined with other therapies, again with
mostly positive results, although there was great heterogeneity
in tDCS protocols and concomitant therapies (descriptions of
which are beyond the scope of this review).

An important question is whether one montage is superior
to another in a particular population or whether it could lead
to deleterious results. One single-session trial showed impaired
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motor function after contralesional anodal tDCS (i.e., facili-
tation of the intact hemisphere) and improved function with
ipsilesional anodal tDCS (Madhavan et al., 2011). The above
results may have related to the severity of corticospinal tract
damage, which we discuss further below. One single-session
study using robotics found a detrimental effect to cathodal
contralesional M1 tDCS (Yao et al., 2015), showcasing the possi-
bility that concomitant training/treatments may change or even
reverse expected tDCS effects.

Recommendations: anodal ipsilesional, cathodal
contralesional, and bilateral tDCS of M1 montages are probably
effective for motor rehabilitation in chronic stroke (Level B).
Anodal ipsilesional M1 tDCS to enhance robotic therapy is prob-
ably not effective in chronic stroke (Level B) (Table 4).

On excluding studies with n <10, in anodal ipsilesional tDCS
the exclusion of 2 studies—one without (Class III) and one with
robotics (Class II)—does not change recommendations; in cath-
odal contralesional tDCS, the exclusion of 1 study (Class II)
changes the recommendation from Level B to Level C (possibly
effective).

For motor function in chronic stroke without robotics, quan-
titative analysis of 7 ipsilesional, 2 contralesional, and 5 bilateral
tDCS studies showed a significant ES of 0.44 (95% CI = 0.10, 0.79)
in favor of bilateral tDCS effects, and the 3 montages pooled to-
gether have a significant effect of 0.51 (95% CI = 0.19, 0.84) in
favor of tDCS effects overall on chronic stroke, although there
is also significant and high heterogeneity (12=62.8%, P=.001)
(Table 12; Supplemental Figure 3.1.1).

Acute/Subacute Stroke—Regarding repeated-session tDCS studies,
4/6 Class II studies showed benefits to anodal ipsilesional M1
tDCS; however, when used to enhance motor effects of robotic
therapy/training, the 3 Class II studies and 1 Class I study
showed no tDCS benefits. As to contralesional cathodal M1 tDCS,
4/6 Class II studies were positive, but the same Class I robotics
study was negative. Finally, in bilateral tDCS, the largest Class II
study and a Class III study were positive, while 2 Class II studies
(with fewer sessions) were negative. Therefore, tDCS may be
effective in all 3 categories (Table 4), although it has no benefits
over robotic training. Almost all single-session studies were also
positive.

Similar to chronic stroke, intensive robotic therapy improved
clinical and sometimes kinematic (Triccas et al., 2015; Mazzoleni
et al.,, 2017) outcomes in both active and sham groups compar-
ably. Almost all non-robotic studies combined tDCS with other
therapies, but active tDCS tended to enhance the effects of those
therapies. We also highlight a single-session exploratory cross-
over RCT in subacute subcortical stroke showing that dual an-
odal tDCS of ipsilesional M1 and DLPFC significantly improved
continuous time-based outcomes (reaction/response time (RT)
and 9-hole peg test (9HPT)) compared with both sham and an-
odal M1 tDCS (Achacheluee et al., 2018). Dual tDCS benefits
may have related to high current density and distribution with
sensorimotor-cognitive integration.

Recommendations: anodal ipsilesional and cathodal
contralesional M1 tDCS montages are probably effective for
motor rehabilitation in subacute stroke (Level B). Bilateral M1
tDCS is possibly effective for motor rehabilitation in subacute
stroke (Level C). Anodal ipsilesional and cathodal contralesional
M1 tDCS to enhance robotic therapy are probably not effective
for motor rehabilitation in subacute stroke (Level B) (Table 5).

For motor function in subacute stroke without robotics,
quantitative analysis of 8 ipsilesional, 5 contralesional, and 3 bi-
lateral tDCS studies shows a significant ES of 0.47 (95% CI = 0.10,


http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa051#supplementary-data
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Table 5. Continued

Concomitant therapy

Number of
or motor tasks

sessions

Current density (A/

m?)

Class

Results

Cathode

Anode

Sample (n)

Author

I

Positive (FM UE, ARAT)

No

10

Contralesional C3/ 1.250, 30 min (C3/C4)

Ipsilesional C3/C4%,

20

Oveisgharan et al.

then 60 min (F3)

0.429, 20 min

C4, then right SO

Contralesional

then F3
Ipsilesional C3/C4

(2017)
Saeys et al.

111

Positive (Tinetti test total, RMA

PT + OT

16 (4/wk x4

31

leg-trunk), Negative (TIS, Tinetti
test and other RMA subscores)

Negative (ARAT, 9HPT, hand grip,

Wk)+bs

C3/C4

(2015)

II

Standardized PT

Ipsilesional C3/C4 Contralesional 0.571, 40 min

14

Di Lazzaro et al.

NIHSS)
Negative (ARAT, 9HPT, hand grip,

C3/C4
Contralesional

(2014)/Exp1
Di Lazzaro et al.

I

CIMT

0.571, 40 min

Ipsilesional C3/C4

20

NIHSS)
Positive (falls, FSST, OSI, FES-I,

C3/C4
Contralesional

(2014)/Exp2
Andrade et al.

II

10 PT

0.571, 20 min

Ipsilesional C3/C4

60

BBS, 6MWT, STS)

C3/C4

Recommendation: bilateral tDCS of M1 possibly effective (Level C) for motor rehab in subacute stroke

(2017)

Abbreviations: +is, crossover with ipsilesional anodal and sham tDCS conditions; +icbs, crossover with ipsilesional anodal, contralesional cathodal, bilateral, and sham tDCS conditions; +asCF,C, crossover with ipsilesional anodal/
sham M1 and DLPFC or M1 alone tDCS conditions; +bs, crossover with bilateral and sham tDCS conditions; LL, target was the motor cortex corresponding to the left or right lower limbs, placed mesial to the upper limbs/just lateral

to the sagittal plane, roughly corresponding with C1/C2 in the 10/10 International EEG system; rehab, rehabilitation.

a M1 tDCS was active in all while left DLPFC tDCS was active/sham.

b paper had a large or unclear mix of subacute and chronic stroke patients and was included in both subacute and chronic stroke tables.
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0.84) in favor of contralesional tDCS effects, and the 3 montages
pooled together had a significant ES of 0.45 (95% CI = 0.18, 0.72)
in favor of tDCS effects overall on subacute stroke, although
there was also significant and high heterogeneity (I* = 64.8%,
P<.001) (Table 12; Supplemental Figure 3.2.1.).

Other Relevant Parameters and Summary of Motor Function
in Stroke—As previously mentioned, we focused on modifiable
factors we think are most important to treatment; we were
unable to categorize for several non-modifiable factors that
may affect tDCS efficacy, for example, age, area of stroke, degree
of impairment, etc. (Marquez et al., 2015). The most critical
parameters appear to be montage, current density, number of
sessions, duration of stimulation, and concomitant treatments.
Higher current density and more frequent and longer sessions
tend to cause improved and more durable clinical effects;
however, a change in any of these factors can change outcomes,
and we do not have a systematic measurement of how these
factors interact.

Meanwhile, when planning the montage (electrode posi-
tions), it is important to consider stroke severity and whether
the M1/corticospinal tracts are damaged beyond the point of
effective neuroplasticity. In such cases, anodal stimulation of
ipsilesional M1 may be ineffective, and cathodal stimulation
of contralesional M1 may be detrimental due to the need for
intact corticospinal tracts from the intact hemisphere to take
over some motor functions of the lesioned hemisphere. We
may speculate that studies using reversed polarity (e.g., anodal
stimulation of contralesional M1 or reversed bilateral stimula-
tion) could produce better results in some such cases; however,
this must be formally studied as the outcome measure, and other
factors will likely have an effect. For example, online anodal
stimulation (with somewhat unusual parameters) of ipsilesional
leg M1 in mostly subcortical strokes improved an ankle-tracking
task, while anodal contralesional leg M1 stimulation had a det-
rimental effect on learning (Madhavan et al., 2011). In a nega-
tive trial on contralesional cathodal stimulation within a month
of stroke, one-half of the participants’ corticospinal tracts may
have been too damaged to modulate, and using a right shoulder
reference may have reduced current flow to the left M1 that was
damaged in one-half of the patients (Fusco et al., 2014).

Computational models show that electrode positions
(including “reference” electrodes) could dramatically change
current flow directions (Brunoni et al., 2012). Standard tDCS is
non-focal, and electrodes can overlap with and stimulate con-
tiguous regions responsible for different functions. Cha and col-
leagues (Cha et al., 2014) showed improved upper and lower limb
Fugl Meyer Test scores with an upper limb montage. Also, cor-
tical anatomy changes post-injury and target areas are meas-
ured in variable ways, including tape measurements, TMS, and
neuronavigation.

Most stroke studies included infarcts (predominantly) and
hemorrhages; however, Mortensen et al. (2016) included only
intracranial hemorrhages, mainly in the basal ganglia. One
may speculate if this affected the positive results for handgrip
strength (benefiting from intact M1) and negative results for
the Jebsen Taylor Hand Function Test (as basal ganglia dysfunc-
tion can impair speed). Functional recovery may vary between
ischemic and hemorrhagic strokes (Schepers et al., 2008); thus
an imbalance may be important, especially in acute/subacute
stroke and with longer treatment durations potentially con-
founding recovery.

Regarding trial duration, washout periods in crossovers are
important to avoid carryover effects. As placebo effects tend to


http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa051#supplementary-data

280 | International Journal of Neuropsychopharmacology, 2021

drop during follow-ups, parallel arm RCTs with longer follow-
ups may help identify whether tDCS alone is beneficial or
whether it prolongs the benefits of concomitant therapies, espe-
cially acutely effective therapies such as robotics.

Most trials were performed with concomitant treatments or
motor tasks that were online, offline, or both (sometimes de-
pending on treatment duration and feasibility). In some studies,
these associated therapies seemed to lead to improved out-
comes in tDCS groups, while in others they caused a ceiling
effect. The temporal relationship of concomitant treatments
might enhance, counteract, or cancel out tDCS effects, de-
pending on networks activated and desired outcomes. For ex-
ample, Giacobbe and colleagues (Giacobbe et al., 2013) showed
that tDCS applied prior to robotic training led to improvement,
but tDCS during or after training worsened outcomes. A careful
evaluation of the literature with power/sample size calculations
and strategies to optimize neuroplasticity is thus particularly
important for combined therapies. This is especially important
for tDCS to enhance robotic therapy, since the negative results
might be related to type II error. It is relevant to note that the
pooled effects of robotic therapy (with anodal ipsilesional tDCS)
on motor function were non-significant in both chronic and sub-
acute stroke; however, the pooled effects of 3 tDCS montages
without robotics were significantly favorable in both chronic
and subacute stroke despite high heterogeneity.

Therefore, more high-quality RCTs are needed to better
understand the effect of many parameters that can have a
major impact on motor function in different stroke populations.

Summary and Literature Synthesis—TDCS improves motor
rehabilitation in chronic and subacute stroke except when used
to enhance robotic therapy. The overall moderate effect size of
active tDCS does not seem to enhance the benefits of robotic
therapy on any motor outcome using the study protocols tested in
our sample, with the exception of 2 studies in chronic stroke. The
quantitative analysis is consistent with these findings, although
it is important to note that pooling multiple motor outcomes—
and the occasional alternative montage—for each study may
have affected the results. For example, while anodal ipsilesional
tDCS is probably effective in chronic and subacute stroke in
the qualitative assessment, the pooled motor results miss
significance for ipsilesional tDCS (mostly anodal). Contalesional
tDCS is probably effective in chronic stroke (possibly effective on
excluding a smaller study) and in subacute stroke, and although
its limited pooled sample missed significance in chronic stroke,
thelarger pooled sample is significantin subacute stroke. Bilateral
tDCS is effective in chronic stroke by quantitative and qualitative
measures. Overall, the pooled results of all montages in acute
and chronic stroke consistently show that tDCS is beneficial, and
there is substantial overlap of confidence intervals in favor of
tDCS. Additionally, while there is significantly high heterogeneity
among studies, there is no evidence of publication bias (Table 12;
supplemental Figure 3.1-3.2).

Lefaucheur et al. (2017) also noted the heterogeneity between
studies, giving no recommendations for tDCS in motor stroke
recovery/rehabilitation (with a much more limited sample than
ours), although they too suggested that tDCS seemed to trend
toward synergistic effects when combined with other ther-
apies. Meanwhile, a meta-analysis by Bai et al. (2019) analyzed
tDCS effects on patients with limb dysfunction following a first
unilateral stroke by various factors that are worth mentioning.
They found that tDCS significantly improved post-stroke motor
function in the upper limbs (SMD = 0.26, 95% CI = 0.09, 0.42)
and lower limbs (SMD = 0.47, 95% CI = 0.17, 0.77). In the case of

upper limb dysfunction, tDCS showed significant effects only in
chronic stroke, but not subacute or acute stroke, and even then
the effects were modest (SMD = 0.25, 95% CI = 0.04, 0.39); the
pooled effects of acute through chronic stroke were also modest
but significant (SMD = 0.22, 95% CI = 0.04, 0.39). Furthermore,
anodal (SMD = 0.25, 95% CI = 0.66, 0.43) and especially cathodal
(SMD = 0.41, 95% CI = 0.15, 0.67) but not bilateral tDCS signifi-
cantly improved upper limb function. Interestingly, more tDCS
sessions were not necessarily better; significant upper limb im-
provements were found following 10 or fewer sessions of anodal
(SMD = 0.40, 95% CI = 0.16, 0.65) and cathodal (SMD = 0.79, 95%
CI = 0.43, 1.16) tDCS at a current density greater than 0.29 A/m?,
but no improvements followed more than 10 tDCS sessions (in
4 anodal studies and 1 cathodal study). Our qualitative review
also showed no clear benefit to more than 10 tDCS sessions, al-
though this is confounded by the concomitant treatments. Bai
et al. (2019) also reported in a smaller sample of lower limb dys-
function that tDCS had a significant moderate effect on sub-
acute stroke (SMD = 0.56, 95% CI = 0.22, 0.90) as well as subacute
plus chronic stroke pooled together (SMD = 0.47, 95% CI = 0.17,
0.77), but not chronic stroke alone (only 2 studies). Furthermore,
bilateral tDCS (3 pooled studies) had a moderate effect size
on subacute stroke lower limb dysfunction (SMD = 0.59, 95%
CI = 0.14, 1.03). It is worth noting that this meta-analysis used
only 1 motor outcome for each study and that their selected
studies overlapped with ours but included other studies as well,
perhaps as they had searched more databases than PubMed.
They concluded that the optimal parameters and their timing
for upper and lower limb post-stroke dysfunction were different.

Other meta-analyses addressed other aspects of tDCS for
post-stroke motor function. For example, one found that rTMS
but not tDCS improved postural control and functional balance
(Kang et al., 2020); one found that tDCS improved fine motor
function with a moderate effect size of 0.31 (95% CI = 0.08, 0.55)
and had a large effect size of 1.25 (95% CI = 0.09, 2.41) on function
of the non-dominant hand when applied to the contralesional
non-dominant hemisphere (O’Brien et al., 2018); one found that
paretic limb force production (grip force, pinch force, knee ex-
tension torque, etc.) benefited from tDCS and rTMS in acute to
chronic stroke (Kang et al., 2016). Yet, despite multiple studies
and meta-analyses, there is a great need for larger RCT samples
and careful optimization of tDCS parameters.

tDCS Effects on Language Function in Stroke—One-third of strokes,
particularly left-sided strokes involving language networks,
lead to aphasia (Franzén-Dahlin et al., 2010; Basso et al., 2013;
Rohde et al.,, 2013), an acquired language expression and/or
comprehension disorder. Aphasia is one of the most socially
disabling post-stroke deficits; symptoms often persist after
therapy (Lazar et al., 2010), so new rehabilitation techniques are
needed, particularly low-risk therapies such as tDCS. Generally,
tDCS treatment aims to address interhemispheric competition
between residual language areas in the damaged left hemisphere
and the intact right hemisphere (Kiran, 2012). Thus, similar to
stroke motor function parameters, tDCS strategies often aim to
excite and thus enhance perilesional left hemispheric output or
inhibit the intact right hemisphere and counteract its inhibitory
effect on the ipsilesional hemisphere.

A PubMed search on “tDCS and aphasia” resulted in 25
studies on chronic aphasia that fulfilled our criteria, excluding
the few variable publications on acute/subacute aphasia.

tDCS in Chronic Aphasia—Our results were divided into anodal
(predominantly left-sided), cathodal (predominantly right-
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sided), and bilateral stimulation groups. We mostly classified
aphasia into nonfluent (expressive) and fluent (receptive),
giving more detail when relevant as this broad categorization
does not distinguish between different forms of nonfluent
aphasia (e.g., Broca’s aphasia, transcortical motor aphasia),
fluent aphasia (e.g., Wernicke’s aphasia, transcortical sensory
aphasia), and so on. For example, repetition is impaired in
perisylvian aphasias, including Broca’s, Wernicke’s, conduction,
and global (expressive and receptive) aphasias, but relatively
preserved in transcortical aphasias. Broca’s aphasia is typically
thought to follow damage to the inferior frontal gyrus (posterior
aspect of the operculum), while Wernicke’s aphasia follows
damage to the posterior superior temporal gyrus. However,
the exact areas can vary, subcortical regions may be involved,
and injuries to other areas may lead to similar or overlapping
deficits (Naeser et al., 1987; Alexander et al., 1990; Kreisler et al.,
2000; Hillis et al., 2008).

We included aphasia types in the sample size column
(Table 6). As areas targeted and their descriptions varied, some-
times guided by imaging, we mostly avoided EEG nomenclature
(which was variable and less intuitive than with motor areas)
and used what we thought was the clearest description of the
target region.

Anodal tDCS—Regarding repeated-session RCTs, 1 Class I study
was positive for non-futility, 2 Class II studies had different
parameters and results, and 15/18 Class III studies/montages
were positive (Table 6).

In line with approximate estimations of language regions,
the studies in this review mostly targeted anodal tDCS at left in-
ferior frontal regions for nonfluent aphasias and left posterior/
temporal regions for fluent aphasias. However, this was not al-
ways consistent, and studies often included a mix of different
types of aphasia. The vast majority were crossover RCTs, and all
included study-specific language training or treatment (ranging
from anomia treatment, to repetition tasks, melodic intonation
therapy, conversational therapy, speech therapy, etc.) except
for 1 crossover RCT where inpatients were undergoing speech
therapy that was not intended as a concomitant treatment for
tDCS (Volpato et al., 2013a). This RCT found no effect on object
and action naming, perhaps because the inpatient logopedic
therapy was separated from tDCS by 90 minutes (to avoid inter-
action) or perhaps because 6/8 patients had fluent aphasia but
they targeted Broca’s area (Volpato et al., 2013a). Nevertheless,
patients reported subjective everyday language improvement.
Likewise, 2 other studies were negative on providing anodal
tDCS to the left superior temporal gyrus but in patients with
nonfluent (including global) aphasia (You et al., 2011; Marangolo
et al.,, 2014a).

All other studies were positive for anodal tDCS, although 1
Class I study used a nonfutility design and was not powered for
efficacy (Fridriksson et al., 2018). Most crossover studies showed
significant improvements compared with sham, predominantly
in naming (for nouns and/or verbs) as well as reaction times,
response accuracy, repetition, and also production of (conversa-
tional) content units. Multiple crossover studies (Fiori et al., 2013;
Marangolo et al., 2013a) showed improvements in noun-naming
accuracy after left temporal anodal tDCS and in verb-naming ac-
curacy after left frontal anodal tDCS, highlighting the different
functions of those regions. Anodal tDCS with conversational
therapy led to significant improvements only when targeting
left inferior frontal areas (Marangolo et al., 2014a, 2014b).

Meanwhile, a study tested anodal stimulation over Broca’s
homologue at the right inferior frontal gyrus (Cipollari et al.,
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2015; Keser et al,, 2017) in patients with nonfluent aphasia. It
combined tDCS (enhancing the unaffected hemisphere) with
melodic intonation therapy and found improvements in word
and sentence repetition (Cipollari et al., 2015); additionally,
while cortical modulation occurred on TMS-EEG in active and
sham conditions, cortical excitability was maximized by anodal
tDCS. A smaller study that found improved verb fluency also
combined melodic intonation therapy with anodal right inferior
frontal tDCS, but more posteriorly and with only 3 (vs 15) tDCS
sessions at a higher current density (Vines et al., 2011). Another
study that combined right temporoparietal cortex anodal tDCS
with online anomia training found improved picture naming for
trained objects (Floel et al., 2011).

One trial gave twice daily anodal left M1 tDCS with
computer-assisted naming therapy, and yet this unusual mon-
tage improved aphasia (Meinzer et al., 2016).

The single-session crossover RCTs had unusual designs. One
targeted the left DLPFC and found improvements in phonemic
verbal fluency and in picture-naming RT, but only for very high-
frequency words (Pestalozzi et al., 2018). The other was a small
crossover RCT within a nested parallel study design (patients in
the anodal left and cathodal right frontotemporal groups were
randomized to active and sham tDCS conditions) (Monti et al.,
2008); only cathodal tDCS right frontotemporal region led to
positive results (in picture-naming accuracy but not response
time), but there were errors in polarity applications.

Recommendation: anodal tDCS of Broca’s area, its homo-
logue, or Wernicke’s area is possibly effective (Level C) in chronic
post-stroke aphasia (Table 6). On excluding 13 studies/montages
with n<10 (all Class III), the recommendation changes to an-
odal tDCS of Broca’s area is possibly effective (Level C) in chronic
post-stroke aphasia.

Quantitative analysis of 4 studies on ipsilesional anodal tDCS
over Broca’s area in aphasia (naming accuracy, production of
correct content, object and naming accuracy) showed a signifi-
cant ES of 0.65 (95% CI = 0.29, 1.01) in favor of tDCS (Table 12;
supplemental Figure 3.3.).

Cathodal tDCS—Two Class II and 2 Class III repeated-session
RCTs were positive. In the Class II study mentioned above,
cathodal tDCS of the right superior temporal gyrus led to
significant improvements (in auditory verbal comprehension),
while anodal tDCS of the left superior temporal gyrus did not—
perhaps because of the left infarcts (You et al., 2011). This may
be consistent with the interhemispheric competition theory
mentioned previously. Right temporoparietal cathodal (and
anodal, as mentioned above) tDCS conditions improved trained
picture naming (Fldel et al., 2011). The Class II and III studies on
cathodal tDCS of Broca’s homologue were both positive.

As to single-session studies, Monti and colleagues’ (Monti
et al.,, 2008) Experiment 1 was positive as mentioned above for
cathodal tDCS of the left frontotemporal region, but Experiment
2 was unsurprisingly negative for occipital tDCS (Monti et al.,
2008). Another crossover study shows the importance of tDCS
target relating to lesion location as it was positive for patients
with Broca’s area lesions and also correlated with arcuate fascic-
ulus integrity (Rosso et al., 2014).

Recommendation: cathodal right frontotemporal tDCS is
possibly effective (Level C) in chronic post-stroke aphasia re-
covery (Table 6).

Bilateral tDCS—Four Class III studies repeatedly targeting the left
inferior frontal gyrus with anodal tDCS and its homologue with
cathodal tDCS in combination with language or speech therapy


http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa051#supplementary-data

International Journal of Neuropsychopharmacology, 2021

282

uru BaIE (S,BD019) (e€102)
111 (utwreu uonoe pue 123(qo) aAneSAIN ON se+0T 0z ‘T45°0 0S [BUOISS[RIIU0D [eIUO1} I0UIBJUT 3J3T (3usnguou g 9usny 9) 8 ‘Te 19 oyed[op
(Surureu g1aa) urw eaIe (e€102)
III (Aoeindoe Surwieu q1aa) aanisod  Sururen sdenduet sieaerS 0T ‘982°0 0OS [BUOISS[EI}UOD (s,eo01g) [RIUOL T (yusnpguou) / ‘e 12 o[oSurIRN
(stres
(uonyezierauad 9SINODSTP)
JUSUIIBI} ‘SIDUIIUSS ‘SQIdA ‘SITUN) Aderayy uru eaIE (S,BD019) (9g102)
11 JUSIUO0Y 1031100 Jo uononpoid) 9AnIsod [RUOTIBSISAUOD szeaesOT 0z ‘9820 OS TeuoIsaenuod [B1UO]J IOLI_JUT 39T (quenguou) g1 ‘Te 39 ojo3uerey
(qauowt
e Aq pajeredas
‘Bururen gqiaa
pue unou) urw eare
11 (sazaa 10§ £oeIndoe Sutwieu) aanisod  Suturen agensue’] speses§ 0Z‘987°0  OS [eUOISI[ENIUOD  (S,8D0Ig) [BIUOL} 1JOT (busnpuou) £ (£107) T8 39 LOI]
(sxse1
(s109139 JUSUIIEDI] JO IDJSULI} SNOLIBA uonnadai) uru (eare sedo01g) snik3 (yooads (1102)
111 ‘foendoe ssuodsai paje[nonie) 9Anisod  3ururen adenduet se+G 0T ‘982°0 0S [BUOISS[EI}UOD [BIUOI} IOUIDJUL YT jo eixeide jusnpjuou) ¢ °[e 19 o[oSUBIBN
Adeiayy sni3
UOI}BUO}IUL urw [ejuo1j I0LIDJUL (1102)
Il (£>uanyy [eqraa) 9A1ISO4 JIPO[BN o€ 0z‘9¢£'0  OS [eUOIS3[ENUOD 1ouasod 1y3ry (yusnyuou) 9 ‘e 32 SaUIA
(xyse3 Sumnydrew
arnydid-piom)
(sunou paurenun jusunEan}
10J) 2A13e39N ‘(Sunou pauren jo BTUWIOUR uru (1702)
11 Surureu 1091100 SuLINp 1Y) dANISOJ pazueindwon ses§ 0z ‘00%°0 OS [BUOIS3[_IIUO0D X9110D 1ou91sod 3Ja7 (uenpy) 8  Te 39 UOSSHUIPLIY
(ssea
Sumyoews piom
-a1n3o1d aurfuo)
jusunEan}
(sunou pajeanun pue sunou BTUWIOUR uru (0102)
111 pajean 10y £>eIndde Surweu) SANISOd pazuaindwo) 504G 0z ‘00%°0 19pnoys 1Sy Bale [BJUOL 2T  (JUaN] 9 QUSN[UOU §) 0T ‘Te 19 193eg
s3se) Iauelq
‘uonnadal
(uonnadai ‘Surreu a1n3otd) saane3aN ‘“Aouanyy (1eqran) (uononpuod ‘Oruroue
‘(sprom Louanbaiy y3ry A1aa Surureu srwauoyd uru ‘1eqo18 ‘edoig—iuanyy (8102)
111 21n301d jo 1y ‘Aouanyj [eqiaA) 9ARISOJ ‘Surreu a1n3d1g ser 0¢ ‘00%°0 0S 13Ty el 0T ‘QUanpjjuou ) $T ‘Te 19 12Zo[e1sad
urw eale (reqor3 1dx3/(8002)
111 (¥ “Aoeinooe Surweu ainyord) aAne3aN ON sosesT 0T ‘TZS0 I9p[noys 1y3ry [erodwia)ojuoiy 37 ‘s, ed01g—lUaN[juou) ¥ ‘Te 32 NUON
[epouy
SSe[D synsay jyseyAdersyy  suorssss uone apoysed spouy (2d4y etseyde) oyny
JUBIILIODUOD) Jo 13q -Inp ‘(;w (u) sydwres
-wnN /V) Kaisuap
jyusLIND

erseydy 9)013S-1S0d dIUOIYD UL SATPNIS SO} "9 el



283

Fregni et al

Kdezayy
(Burureu ‘uonnadaz aden3ue
‘Uyoaads snoauejuods ‘uorsuaya1duwrod pue yoaads uru sniA3 rerodwiay
I 1eqI2A A1031pNE) 9ATIR3ON [BUOT}USAUOD o1 0€ ‘T/S°0 OS [BUOIS9[_1IUOD 1ot1adns 33917 (reqor8 yusnyuou) 1z (T102) Te 3@ Nox
(uonyezierauad eIk (S,93DIUISN)
JusUIIea) ‘S9dURI)RI dLoydopus Jo Aderayy uru rexoduia} rouadns (9¥T02)
11 Iaquinu) aAne3aN [EUOTIBSIDAUOD s1eqe:0T 0z ‘9820 0S [eUOIS9[ENU0D Jousod 3o (lusnpguou) g e 1 ojo3ueIe)
(Burureu g1aa) urwt Bale (S,93DIUIdN) (e€102)
11 (£>eIndoe urweu unou) aanisod — durureny a3endue s1eqesS 0z ‘982°0 OS [BUOIS3[BIIUOD rerodwia) 3j97 (yuanguou) £ ‘Ie 39 o[o3ueIeN
(stests
(uonyezierauad 9SINODSIP) eIk (S,93DIUIN)
JUSWIESI) ‘SIOUSIUSS ‘SQIdA ‘SITUN Aderayy uru rexoduia} rouadns (qeT02)
III  1USU0D 1291101 Jo uonodnpoid) aanedsN [eUOTIBSIDAUOD s1eqeOT 0z ‘982°0 0S [RUOISS[RIIUOD 1oure1sod o7 (yuenpuou) zT1 ‘T 18 ojoSueIR
(auowx
e Aq pajeredas
‘Bururen} giaa
pue unou) urwt eIk (S,93DIUIN)
11 (sunou 103 £>eINdOR SUTWIRU) 9ANISOd  Sururer 98endueT] sieaesS 0Z‘987°0  OS [BUOISS[RIIU0D [ezodwa) o7 (uanguou) £  (£10¢) Te 19 LIOI]
(sprom
1UsI9j31p JO
sysi—widipered
JusWIEaI}
(¥ TRDOA pOSEAIDAD plisifeléi)] urw zdx3/(1102)
11 ‘“Aoemodoe Surwreu a1n1oid) aanisod  Sururen sdensueT oG 0z ‘'982°0 OS [RUOISS[RIIUOD  BIIE S,33DIUISMN HOT (qusnyuou) g ‘Te 19 Uo1]
urw
0z ‘(vwr)
3ururen 9ZIS X9}100
(s103(qo pauren eIUIOUE 9po11d3[d rerauredoroduray
11 103 AdeInooe urwreu 21n3did) aAnISod pazueindwon soe+E IBIDUN OS TBUOIS9[BIIU0D Sty (Jusny pue jusnpjuou) T  (TTOZ) Te 32 [201d
Aderayy
(uonnadai Uor}eUOIUL uru (84) sni1A3 (s102)
[  S9OUdIUSS pUE SpIiom paaoidulir) dAISOJ JIPOPIN 5e+GT 02 ‘TLS°0 OSYoT  [BIUOI IOLIDJUI IYSTY (yuengyuou) 9 ‘Te 3@ rerjodin
(Butwreu graa Aderayy uru snIA3 (s102)
I pue unou ‘uondudssp a1n3did) 2A1RISOd [BUONBSIDAUOD se+0T 0T ‘1450 OS [RUOIS9[RIIUOD [e1UOIJ IOLISJUI 1J9T (yuanpguou) oz ‘1e 19 ruedwen
urw eaIE (orwoue (¥107)
111 (Burwreu a1njotd) aanisod ururen SurweN 50T 02 ‘0090 OS [BUOISS[_IIUOD [BIUOI} IOLISJUT 3J31] jusny T ‘YUSNUOU 7) € ‘Te 39 031ISIA
(uonezirerausd
JUSWIIEAI] ‘S9DULIS)AI dLIoydopus Jo Adeiayy urwt eale (s,edo1g) (e¥102)
11 I2quINu) SATHSOJ [EUOT}IBSISAUOD s1ege:OT 02 ‘9820 0S [eUOIS3[E1U0D [e1UO1J IOLISJUT 33T (usnpguou) g 'Te 32 ojo3ueIeN
[epouvy
sse[D synsay jsey/Aderayy SUOISSIS uone apoyien apouy (ad£y erseyde) oyny
JUBIIIOOUOD) Jo 19q -Imp ‘(;w (u) sydures
-wnN /V) Kytsuap
juaLIND

panunuo) ‘9 S[qelL



International Journal of Neuropsychopharmacology, 2021

284

uru

0z ‘(vu
2) 9z1s (wd §°¢ Jo snipex
9poIIdI[d (on8oowoy 1B 9pOoY3ed punoie ¢—(6102)
11 (A19A0D31 q19A) 9ATIISOd  I{SE] [EASLIIDI QI 4G Ie3[dUN s,ed01g) 94 sapo1ndaa ) 3urg (rusnguou) o1 ‘Te 19 uo1]
urw
0z ‘(v
1) 9z1s (wd §°¢ Jo snipex
9po1Id3[3 (anBorowoy 1B SpOoY3ed punoie 1—(6102)
111 (A19A0031 q19A) 9AT}ESON  3{SE} [BASLIIDI QI9A G Ie3[dUN s.edolq) 91 S9POIID ¥) Sury (yuanpguou) o1 ‘I 19 g uoig
urw
0z ‘(vur)
Sururen az1s X910
(s303(qo pauren eIWIOUE 9pondd rerauredoroduray
111 105 AdeInooe urwreu a1n3did) aANISOd pazusinduion soe+E IB3[DUN 1y3ry OS [BUOIS3[BIIUOD (yuany ¢ quanpyuou g) T (TT0Z) ‘T8 32 [201d
(Aoendoe
Surwreu 21n351d) SUOISI] BAIE S,BD0Ig
ou /m dnoi3 103 aane3aN ‘(Aoeindde
Surwreu 21n301d) sSNNOIOSE] 91ENDIE JO
£ui8aqur /m SUTIR[91I0D PUE SUOISI] uru X9}10D (¥T02)
11 eaIE sedol1g /m dnoid 10] SATIISOJ ON o T ST ‘982°0 IOLISJUT JYSTY 0S U971 (rusngyuou) gz ‘Ie 32 0ssoy
urw 1opnoys (reqor3 ¢dx3/(800¢)
111 (1¥ “AorIndoe Sutwreu 21m3d1d) sAnRSaN ON s+ T 0T ‘T£5°0 rendmoo  (3y3u) [euoIssEIU0D ‘s,eD01g—1USNJUOU) 8 ‘Te 32 IUON
(1) saneSeN urw [ezodwia)01u01] Iopnoys (reqor3 1dx3/(800¢)
111 ‘(£oeIndoe Sutwreu ain3oid) aATISOd ON sl 0T ‘T4S°0 (3y91) reuotsarisdy  (3y3tr) [RUOISSEIIUOD ‘s,eD0Ig—)UaN[JUO) ‘Te 19 IUON
[epoyied

qeyaz erseyde axoxns-3sod d1uoIyd Ul (D [9A9T) 9A1II21JS A[qIssod eale sa3DIUISN 10 ‘Onojowoy S)1 “edle S,ed0l1d JO SO} [BPOUE [UOTIEPUSWIWIOIY

(etwroue
Jo JusuIEaI}
[e1o1ABYRq T¥NJ UO UOTIBATIOR
(swayt pauren pazueinduwod) urwt Surwreu 3say31y /m (81T02)
I 08 Sutuwreu) £1[UNy-UOU 10§ SANISOJ Adezayy yosads St 0z ‘00%°0 0SSy  uoidaraqof [erodwd],  (FUSNY PUE JUSNFUOU) H/ ‘[e 32 uoSHIpLL]
JuswIEaI}
(uonEdIUNUWILIOD [BUOIIDUN] ‘SWS}T Surwreu (s, o3d1uUI9N dIISsUWE
paurenun o} I9jsuei) ‘9dUBUS}UTEW paisisse (p uru ‘18qoI3 ‘s,edorg—iusnyy (9102)
II SWIS}1 paurel} SUTWEU) SATHSOd -dwod  8xp/e) 9T 098’0  OS [eUOISI[RNIUOD €D pue Jusnpuou) 9z ‘B 12 IoZURI
[epouy
sserD synsay jsey/Aderayy SUOISS9S uone apoyieD spouy (od£y erseyde) oymy
JUBIIUIOOUOD) Jo 19q -Imp ‘(;w (u) sydures
~WNN /) Ki1suap
juaLIND

panunuo) ‘9 d[qeL



285

Fregni et al

“191e[ SYIUOW ‘Z JuswiLtadxd ur a1om syuedonred g [[e 181l 910U—SUONIPUOD SO} WEYS PUE [EPO
-13€D 10 WBYS PUE [EPOUE 0} I9A0 passoId a1am sjuednnied dnoid yoes urgiim pue ‘yoes syuedonied $ Jo sdnoid g ‘so‘se+ ‘weys sa SO} [BPOYIED JO YW T 10 YW g I9Y3IIS 0} I9A0 passold a1am syuednied jo sdnoid sjeredss zq
's109139 d130701sAyd ST proAe 01 SO WOIJ saINUTW 06 Aq pajeredss Afeuonuajur sem Sururen drpado3of 1ng ‘Aderayy yoseads Surpniout ‘uonielifiqeyar jusnedur utodiapun aiam syuedidnied v

I /M SUOTIBI[IqRYSI ‘qRYI ‘SUONIPUO0D SO WEBYS PUB [BPOYIED YIIM ISA0SSOID ‘SD+ ‘SUONIPUOD SO WEBYS PUR [BISIB[I] M

I9A0SS0ID ‘SQ+ ‘SUOTITPUOD SO} WIRYS PUE [BPOUER UM IDA0SSOID ‘Se+ ‘SUONIPUOD Weys pue ‘[eiodwa) [epoue ‘[ejuol] [epoue 3Im IDA0SSOID ‘SIeJe+ [SUONIPU0d SO WERYS PUE [EPOYIED ‘[BPOUR UIIM IDA0SSOID ‘SOB+ [SUOTIRIADIQQY

qeyaz eiseyde axo13s-3sod druoiyDd ur (D [9437) 9A1033J3 A[qissod st andojowoy S}t JO UOIIB[NUINS [BPOYIED pUE B3Ik S,BD0Ig JO UONB[NWIIS [EPOUR /M SO} [BISIE[I]q :UOTIBPUSIW WOy

(s9ouoiuas ‘spiom 10j elep sawn (erxexde sniA3
UOIOEaI [BDOA {S3DUSIUSS ‘SPIOM yoaads 10j) [e3uo1y I0LISJUL snik3 (9102)
111 ‘sa[qeriAs 10y eyep Loeindoe) aanisod — Aderayy adendue s0T  UIW 0Z‘T/S°0 [BUOIS3TBIIU0D [BIUOI} IOLISJUT 3J3] (juengyuou) g ‘e 12 o[o3uBIEN
sTIA3
(Burureu unou pue giaa urwt [B1UOI] IOLIDJUL sTIA3 (a¥102)
I pue uonduossp a1n3oid 31091100) SANISOd Aderayy yoaads 0T 02 ‘T/S°0 [BUOIS3TBIIU0D [BIUOI} IOLIDJUT 3] (yuenguou) 1  '[e 312 o[o3ueIEN
(s9ouoiuas ‘spiom 10j elep sawn (erxexde snIA3
UOIOEaI [BDOA {S3DUSIUSS ‘SPIOM yoaads 10j) urw [e3uo1j I0LISJUL snik3 (o£102)
111 ‘sa[qerAs 10y eyep Loeindoe) aanisod — Aderayy adendue 0T 02 ‘T/S°0 [eUOIS3TBIIU0D [BIUOI} IOLIDJUT 3] (juenpyuou) §  '[e 12 o[o3ueIEN
urw Og
‘(epotaed)
[Elésial 1/S°0 eare (andojowroy
asuodsai (103 A3a3ens/ewirn asuodsal ‘(epoue) S,BD01g) [BIUOI] eale (s,8201g) (£T02)
111 ‘A3s1ens/Burureu a1n3oid) sane3aN ON el 002°0 IOLISJUI 1Y3TY [eIUOIj IOLISJUI YT  (JUSNUOU pUE JUSN[) €T ‘[ 39 SOIUES SOP
[e1ayerig
qeya1 erseyde axons-1sod dTuoIyd Ul (D [9A97T) 2ATD3YJ8 A[qissod SO [erodwialoluosy Y31 [EPOYIED [UOTIBPUSUIUOINY
urw
(s31Y JO Swir} UBSW ‘SI393BIIS INOYIIM 0z ‘(Vwg)
/YA ST JO Iaquunu) aAne3aN 9ZIS
‘(A3o1e1mS /M sasuodsal 1091100 Spo11d3[d (83) an3ofowoy
I 10J W} UBSW 1S} U03ISOY) SANISOJ ON S I83[dUN BaIE SBd01g Y3y 0S ¥a1 (uenguou) ¥ (8T07) 'T& 32 BA[IS
(Butwreu Aderay
‘uonnadar ‘yoaads snosuejuods) a3en3uey
aAne3aN ‘(uotsusyaidurod pue yoaads uru snif3 rerodwiay
i} [eq1oA £1031pNE) 9ATIISOd [BUOTIUSAUOD ot 0€ ‘1450 Touadns Jysry 0s [euorsafisdl (reqoid—usnpuou) 1z (IT07) T8 3 NOX
(sasuodsaz ururen eare (sn3ojowoy
pand ‘sawin} UOOBal) SANE3SN [eASLIISI pIOM uru s,ed01g) [B1UOI]
11 ‘(£oenooe utwreu 21n301d) 2A1ISO4 [BUOTIUSAUOD 4G 0z ‘0080 IouRyUT 1Y3TY os reuotseqisd]  (yueny ¢ quanyuou 8) 0T (TT0Z) ‘T 32 Suey
[epouy
Sse[D synsay jsey/Aderayy SUOISS9S uone apoyieD spouy (od£y erseyde) oymy
JURIIUIOOUOD) Jo 13q -Imp ‘(;w (u) sydures
-wnN /) Ka1suap
juaLIND

panunuo) ‘9 J[qeL



286 | International Journal of Neuropsychopharmacology, 2021

were positive (Marangolo et al., 2013c, 2014b, 2016). The single-
session study was also positive (dos Santos et al., 2017).

Recommendation: bilateral tDCS with anodal stimulation of
Broca’s area and cathodal stimulation of its homologue is pos-
sibly effective (Level C) in chronic post-stroke aphasia recovery
(Table 6).

All 3 studies (Class III) had n< 10, so excluding them changed
the recommendation to none.

Summary and Literature Synthesis—The research on tDCS in
chronic post-stroke aphasia appears promising, though it is still
in early stages. While there were many more trials in the anodal
group than the others, they did not quite fulfill criteria for
probable effectiveness. However, limited quantitative analysis
of the only 4 studies we could extract showed that ipsilesional
anodal tDCS significantly improves aphasia, and all studies had
good overlap of their 95% confidence limits.

Conversely, Lefaucheur et al. (2017) gave no recommenda-
tion on anodal left Broca’s area tDCS in post-stroke nonfluent
aphasia. However, a previous meta-analysis (Bucur et al., 2019)
found that tDCS moderately improved post-stroke naming
with an effect size of 0.33 (95% CI = 0.03, 0.62), noting that ef-
fects were greater at follow-up (ES = 0.54, 95% CI = 0.21, 0.86)
than immediately after tDCS treatment (ES = 0.34, 95% CI = 0.02,
0.65); benefits were in chronic stroke (there were only 2 subacute
studies). Meanwhile, an individual patient data meta-analysis
(Rosso et al., 2018) on repeated tDCS sessions in chronic post-
stroke aphasia found a much higher improvement in naming
(SMD = 0.80, 95% CI = 0.27, 1.33); furthermore, a dose-dependent
relationship was found (more than 5 tDCS sessions), and
naming improved irrespective of aphasia severity, disorders of
comprehension, or time between stroke occurrence and tDCS
application.

The literature is therefore encouraging of further investiga-
tion into different tDCS protocols and language outcomes; we
recommend that methods of localization (by MRI as in much of
our sample) and aphasia subtypes should guide eligibility cri-
teria. We also recommend that future studies report primary
language outcomes in a way that can be calculated for future
meta-analyses.

Epilepsy

Epilepsy, a serious and prevalent chronic neurological dis-
order affecting nearly 70 million people (Ngugi et al., 2010),
is “a disorder of the brain characterized by an enduring pre-
disposition to generate epileptic seizures, and by the neuro-
biological, cognitive, psychological and social consequences
of this condition....” (Theodore et al., 2006; Fisher et al., 2014).
About 25% to 30% of epilepsy patients do not reach the treat-
ment goal of “no seizures and no side-effects” even on 2 ap-
propriate antiepileptic drugs; these patients often require
surgical evaluation (Kwan et al.,, 2010; Brodie et al., 2012).
However, surgery is not always possible, so various adjunctive
neuromodulation techniques have been used, predomin-
antly vagal nerve stimulation, and to a lesser extent more
invasive techniques such as cortical stimulation, responsive
neurostimulation and DBS (Theodore and Fisher, 2004, 2007;
Groves and Brown, 2005; Boon et al., 2007; Loscher et al., 2009;
Salanova et al., 2015; Thomas and Jobst, 2015) and noninvasive
techniques such as rTMS and tDCS. The underlying principle
is that extrinsic stimulation can reduce hyperexcitability, sup-
press seizures, and interfere with epileptiform discharges
(EDs) seen on EEGs (Loscher et al., 2009; San-Juan et al., 2015).

We therefore evaluated the literature for safety and efficacy of
tDCS in epilepsy regarding seizure frequency.

A PubMed search using the keywords “transcranial direct
current stimulation” OR “tDCS” OR “brain polarization” OR “gal-
vanic stimulation” AND “epilepsy” yielded 7 results that fit our
criteria, and we added 2 more papers identified by our authors
(Auvichayapat et al., 2016; Assenza et al., 2017). As mentioned
previously, this disorder was 1 of the exceptions where we in-
cluded trials with pediatric and/or adult patients.

tDCS in Epilepsy—Of repeated-sessions RCTs, 3/4 Class II and 1
Class III trial were positive for decreased seizure frequency. One
Class 1II trial showed safety but not efficacy. All trials were well-
tolerated.

A recent trial randomized patients with refractory me-
sial temporal lobe epilepsy with hippocampal sclerosis into 3
groups: 2 cathodal (3 vs 5 daily sessions) and 1 sham tDCS over
the epileptic focus (San-Juan et al., 2017). Despite a prominent
placebo effect with all groups improving, the 3- and 5-day active
groups each did significantly better than sham at the 2-month
follow-up (seizure frequency decreased respectively by 43.4%,
54.6% and 6.25%). Response was achieved by 50%, 62.5%, and
25% of those groups, respectively. The 2 active groups had no
significant differences in efficacy, and active tDCS did not im-
pact EDs. Meanwhile, a crossover RCT gave patients with re-
fractory mesial temporal lobe epilepsy with hippocampal
sclerosis modulated cathodal tDCS to decrease excitability
and also modulated the cortex with its natural rhythm (using
12-Hz frequency based on EEG-neurofeedback studies). Three
sessions significantly reduced seizure frequency up to 1 month
later. About 83% of the active group (mostly male) achieved
response (Tekturk et al., 2016). Another trial on TLE, this time
well-controlled, gave left DLPFC anodal tDCS aiming to improve
depression and working memory; indeed, depression improved,
with no change in seizure frequency or EDs, thereby suggesting
safety of even anodal tDCS in well-controlled epilepsy (Liu
et al.,, 2016).

The last repeated-session RCT targeted children with
Lennox-Gastaut Syndrome, a severe childhood epilepsy with
highly frequent and different types of seizures, most with motor
components. This study (Auvichayapat et al., 2016) found that
cathodal left M1 tDCS significantly reduced seizure frequency
compared with sham on each of the 5 days of tDCS, plus im-
mediately and at 1-, 2-, 3-, and 4-week follow-ups. In fact, the
baseline mean seizure frequency (nearly 81 seizures/day) of the
active group dropped 99.84% by day 5 and 55.96% by 4 weeks
later. The active group had significantly decreased frequency
of tonic, atonic, and absence seizures (not myoclonic or partial
seizures) compared with sham. Epileptiform discharges also de-
creased significantly up to 3 weeks later. Both groups tolerated
the treatment well with no differences in vital signs or oxygen
saturation during and after treatment.

As to single-session studies, the first aimed to investigate
safety (Fregni et al., 2006c) due to concerns about increasing
excitability under the (reference) anode. Patients with malfor-
mations of cortical development had a trend towards seizure
reduction (by 56% 1 month later) and marginally significant
ED reduction following cathodal tDCS (Fregni et al., 2006f).
In pediatric patients with severely intractable focal epilepsy
(Auvichayapat et al., 2013), 1 tDCS session led to a minor but sig-
nificant drop in clinical seizure frequency and a significant de-
crease of EDs up to 57.6% by 48 hours later (Auvichayapat et al.,
2013). Intractable TLE also had improved seizures after 1 session
(Assenza et al., 2017).



Table 7. tDCS Studies in Epilepsy

Concomi-

tant ther-
apy/tasks

Number of
sessions

Current dens-

ity (A/m?)

Sample

Class

Results

Cathode

Anode

Author

111
I

Positive (seizure frequency decreased)

Negative (seizure frequency not

q+es No

0.286, 20 min
0.286, 20 min

Epileptic focus

Contralateral homologue

Silent area

10
19

Assenza et al. (2017)
Fregni et al. (2006c¢)

No

Epileptic focus

increased or decreased)
Positive (seizure frequency decreased)

I

No

Epileptic focus 0.286, 20 min

36 Contralateral shoulder

Auvichayapat et al.

(2013)

111

Positive (seizure frequency decreased)

s No

0.571°, 30 min

Epileptic focus—HS

Contralateral SO

12

Tekturk et al. (2016)

side (T7 or T8)
Contralateral SO

Negative (seizure frequency not

No

0.571, 20 min

F3

33

Liu et al. (2016)

increased or decreased)
Positive (seizure frequency decreased)

I

No

0.571, 30 min

Cc3

Right shoulder

22

Auvichayapat et al.

(2016)
San-Juan et al. (2017)?

San-Juan et al. (2017)?

I
I

Positive (seizure frequency decreased)
Positive (seizure frequency decreased)

No

0.571, 30 min
0.571, 30 min

Epileptic focus

Contralateral (silent) SO

28
28

No

Epileptic focus

Contralateral (silent) SO

Recommendation: cathodal tDCS probably safe (no increase in seizures) and effective (decrease in seizures) in epilepsy (Level B)

Abbreviations: +cs, crossover study with cathodal and sham conditions.

aOne trial with 3 arms (3 sessions, 5 sessions and sham).

b modulated tDCS peak sinusoidal direct current, 12-Hz frequency.
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Recommendation: cathodal tDCS is probably safe (no in-
crease in seizures) and effective (decreased seizures) in epilepsy
(Level B) (Table 7).

Quantitative analysis of 4 studies/montages shows a signifi-
cant ES of -0.70 (95% CI = -1.38, -0.02) in favor of cathodal tDCS
effects on seizure frequency in epilepsy (Table 12; supplemental
Figure 4).

Summary and Literature Synthesis—While Lefaucheur et al. (2017)
gave no recommendations for tDCS in epilepsy, in our review all
cathodal tDCS studies/montages showed statistically significant,
clinically relevant, and long-lasting reductions in seizure
frequency in patients with intractable epilepsy with as few as
3 to 5 sessions. This was confirmed on quantitative analysis of
pooled effects despite the small sample, and there was overlap
of confidence limits in all studies included. Additionally, anodal
tDCS to treat comorbid neuropsychiatric symptoms may be safe
in well-controlled epilepsy. However, larger RCTs are needed
to investigate different stimulation parameters and forms of
tDCS on seizure control, EEG findings, long-term effects, and
mechanisms of action. AED use should also be considered
in epilepsy trials. While anodal tDCS might be inhibited by
sodium-channel blockers such as carbamazepine, they may not
influence cathodal tDCS. This is important as many antiepileptic
drugs are sodium-channel blockers, and thus cathodal tDCS is a
promising adjunctive treatment, even in women on lamotrigine
who are pregnant or of child-bearing age. TDCS also theoretically
poses no risk to the fetus (Vigod et al., 2014), and early results
from a trial on depressed pregnant women show tolerability
(Palm et al., 2017a).

tDCS in Psychiatric Disorders

Major Depressive Disorder (MDD)—MDD is a disabling chronic
condition affecting 4.4% of the global population in 2015 and
severely impairing millions (Murray and Lopez, 1997; Hedden
et al.,, 2016; Anon, 2017). MDD symptoms include persistent
low mood, anhedonia (diminished pleasure in previously
enjoyable activities), negative thoughts, sleep impairments,
and psychomotor retardation. Depression has an estimated
all-cause mortality risk of 1.6 and suicide risk of 19.7 (Chesney
et al,, 2014). Additionally, nearly 30% of patients have refractory
depression despite receiving appropriate psychological and
pharmaceutical therapy (Rush et al.,, 2006) and thus need other
treatment options.

Such options include electroconvulsive therapy (ECT) and
NIBS techniques, for example, rTMS, which is now FDA approved
for MDD even in refractory depression (Burt et al., 2002; Horvath
et al., 2014), and deep-TMS (Yip et al., 2017). tDCS is safer than
both techniques and has had positive results on multiple meta-
analyses (Kalu et al., 2012; Berlim et al., 2013; Shiozawa et al,,
2014). We therefore aimed to investigate the effects of tDCS on
depression in MDD.

Lefaucheur and colleagues (Lefaucheur et al.,, 2017) gave a
Level B recommendation (probable efficacy) for left DLPFC an-
odal/right DLPFC cathodal tDCS in non-resistant major depres-
sive episodes. Electrode placement and polarity are important
for network modulation in different populations, and MDD
brains have structural and functional alterations, for example,
in fronto-cingulo-striato-pallido-thalamic circuits (Bora et al.,
2012a, 2012b) and other areas relating to emotional and cog-
nitive regulation. These differences can relate to the severity,
chronicity, and treatment responsiveness of the disease (Chen
et al., 2007; Sacher et al., 2012; Fu et al., 2013; Sdmann et al.,


http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa051#supplementary-data
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2013; Chi et al., 2015; Dichter et al., 2015). For example, pa-
tients with more gray matter in the pregenual ACC had faster
and longer lasting improvement with fluoxetine (Chen et al,,
2007). Additionally, resting-state hyperconnectivity in the de-
fault mode network and hypoconnectivity in the cognitive con-
trol network (which includes DLPFC and ACC) are greater in
treatment-resistant MDD compared with treatment-sensitive
MDD; the latter occurs with higher fronto-limbic connectivity
(Dichter et al., 2015). When designing NIBS protocols such as
TMS or tDCS, it is important to consider the specific cortical and
subcortical imbalances in MDD pathophysiology, the efficacy of
modulating chosen targets, and the likely downstream effects
of this modulation.

A PubMed search using the keywords “transcranial direct
current stimulation” and “major depressive disorder” yielded 15
results that fit our criteria. It is relevant to note that while most
papers excluded bipolar disorder, 2 studies included unipolar
depression (primarily) and bipolar disorder patients (Palm et al.,
2012; Loo et al., 2018). We did not restrict our recommenda-
tions to response and remission, influenced by a meta-analysis
(Shiozawa et al., 2014) that showed efficacy with continuous
outcomes (i.e., depression improvement) but not categorical
outcomes (response or remission); most trials had small sam-
ples (Table 8), so we consider them underpowered for categor-
ical/binary outcomes.

tDCS in MDD—AIl studies had at least 5 tDCS sessions, and
the overwhelming majority placed the anode over the left
DLPFC (F3) or just anterior to the left DLPFC (“pF3”). Seven
studies placed the cathode over the right DLPFC (F4), while
the rest placed the cathode over the right supraorbital area
(frontopolar/orbitofrontal stimulation) or more laterally at
F8 (frontotemporal), except for 1 RCT using an extracephalic
reference. Due to evidence of hypofunction in the left DLPFC and
hyperfunction in the right DLPFC in MDD (Mayberg et al., 2000),
multiple recent studies targeted those sites for excitation and
inhibition respectively (Table 8).

Left DLPFC Anode, Right DLPFC Cathode—Two Class I and 1/4
Class II studies were positive for this montage (a study on
pregnancy was analyzed separately).

The negative studies included 1 on treatment-resistant
MDD patients (many resistant to ECT) where both active and
sham tDCS groups improved after 15 sessions (Blumberger
et al,, 2012); 1 combined active/sham tDCS with online cogni-
tive control therapy (CCT); again, both groups improved but
with no differences between them, suggesting that CCT had a
ceiling effect (Brunoni et al., 2014) despite the higher current
density and longer tDCS session (Table 8). Meanwhile, a pilot
trial on severely depressed inpatients provided right unilat-
eral ultrabrief ECT following bilateral DLPFC active/sham tDCS.
Again, depression improved in the active tDCS group by the end
of the second week, but it was not significant, perhaps over-
shadowed by stronger ECT effects (Mayur et al., 2018). Aside
from demonstrating safety and feasibility of the combined
intervention, it is interesting to note that the active tDCS group
required a significantly higher stimulus dose at 6 times the
seizure threshold (from the second to the sixth and last ECT
session) compared with the sham tDCS group. It suggests that
either the right cathodal DLPFC tDCS or the combination of left
anodal and right cathodal tDCS raised the seizure threshold sig-
nificantly, which might have implications for how to combine
the 2 treatments in the future and also for patients at risk of
seizures outside of ECT.

Of the positive studies, 1 found improved depression (and
cognitive tasks including attention and working memory) in
antidepressant-free patients with moderate to severe depres-
sion; there was an association between cognitive control and
depression improvement (Salehinejad et al., 2017). The other
positive studies were Class I RCTs comparing tDCS with se-
lective serotonin reuptake inhibitors.

SELECT-tDCS (n=120), a 2x2 factorial trial on sertraline vs
tDCS (Brunoni et al., 2013), found significant and clinically rele-
vant additive sertraline and tDCS effects; additionally, the com-
bined tDCS+sertraline group and tDCS alone had significantly
improved response (63.3% and 43.3%) and remission rates (46.7%
and 40%), respectively. Driven initially by tDCS, only the com-
bined group improved significantly at 2 weeks.

ELECT-TDCS (n=245) compared tDCS with escitalopram
in moderately to severely depressed but antidepressant-free
patients. While they did not find tDCS to be noninferior to
escitalopram (escitalopram had better results though this
cannot be confirmed with a noninferiority design), tDCS was
better than placebo and the difference was clinically relevant
though delayed (by week 10 but not week 3); previous trials also
showed delayed tDCS effects (Brunoni et al., 2017). By week 10,
response (not remission) rates were significantly improved in
each of the tDCS and escitalopram groups. Despite using 22 tDCS
sessions, clinical improvements were similar to prior studies.

It is important to note that the combined group in SELECT-
tDCS and tDCS group in ELECT-tDCS had more treatment-
emergent mania/hypomania; however, patients had been
antidepressant-free prior to enrollment.

Finally, a pilot study on pregnant women who declined anti-
depressants to avoid fetal effects showed nonsignificant im-
provements after active/sham treatment; nevertheless, the
4-point change on Montgomery-Asberg Depression Rating
Scale (MADRS) was greater than the MCID of 1.6 to 1.9 (Vigod
et al., 2019). Significantly, 75% vs 15% of active vs sham tDCS pa-
tients were in remission 1 month postpartum. Safety outcomes
for mother and child were similar between groups, showing
that tDCS may be a good option for pregnancy, although larger
studies are needed in this vulnerable population.

Left DLPFC Anode, Right Frontotemporal Cathode—For this
montage, 1/2 Class I and 1/2 Class II studies were positive; all
included moderately to severely depressed patients who were
not necessarily antidepressant free.

One RCT combined active/sham CCT with active/sham tDCS
(Segrave et al., 2014) and found significantly improved depression
(and 44% response rates) in the tDCS+CCT group 3 weeks later
but not immediately after the 5 sessions (the half-sham groups
had the opposite effect). This montage may have better targeted
the ACC (including the pregenual area) compared with the bilat-
eral DLPFC montage used with CCT above, perhaps explaining
the significant but delayed improvement in the combined group
here, which correlated with improved working memory.

Meanwhile, Loo and colleagues (Loo et al., 2010) gave moder-
ately treatment-resistant patients 5 active/sham tDCS sessions
followed by 5 active tDCS sessions for both groups; both groups
had similarly improved (and clinically relevant) depression, re-
sponse, and remission rates. In Loo and colleagues’ (Loo et al.,
2012) later study, patients (n=64) received double the cur-
rent density over 15 sessions, and tDCS significantly improved
MADRS with an effect size of 0.49. The patients then entered
into an open-label phase, with better results; 27 patients be-
came responders from both groups, though the active group
had a longer duration of response. But then Loo and colleagues’
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Table 8. Continued
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Number of
sessions

Current dens-
ity (A/m?)

Class

Results

Concomitant therapy

Anode Cathode

Sample (n)

Author
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I

Negative (HDRS, BDI, CGI)

No

10+as

0.286 and

Contralateral SO

F3

22

Palm et al. (2012)

0.571, 20

min

0.286, 20 min

Positive (HDRS, BDI)

No

5 (on alternate

Contralateral SO

F3

Fregni et al.

days)
5 (on alternate

(2006b)
Fregni et al.

No Positive (HDRS)

0.286, 20 min

Contralateral SO

F3

18

days)

(2006a)
Boggio et al.

Positive (HDRS, BDI)

No

10

0.286, 20 min

Contralateral SO

F3

40

(2008a)"
Bennabi et al.

I

Negative (HDRS, MADRS)

Escitalopram

10 (2x/d x 1 wk)

0.571, 30 min

Contralateral SO

F3

24

(2015)

Recommendation: anodal left DLPFC tDCS definitely effective (Level A) for treatment of depression in MDD

Abbreviations: +as: crossover study with anodal and sham conditions.

a Multiple montages in 1 study.

(Loo et al., 2018) largest study on stable patients using greater
current density, stimulation duration, and frequency showed
only modest improvement in the sample (n=120) in both uni-
polar (n=84) and bipolar (n=36) depression, and it was nega-
tive for differences between active/sham groups. That said, the
authors later found that their sham technique (giving 0.034
mA throughout) was biologically active. This suggests that 20
sessions of “sham” current density of 0.010 A/m? led to MADRS
results similar to a current density of 0.714 A/m? and that per-
haps the higher current intensity of 2.5 mA was not optimal—in
fact, in unipolar depression the “sham” group had higher remis-
sion than the active group.

Left DLPFC Anode, Right Frontopolar Cathode—Class II studies (3/4)
were mostly positive, and the 1 Class III study was negative for
this montage. The first 2 MDD studies successfully used this
montage on 5 alternate days (Fregni et al., 2006a). Another early
study found that this montage improved depression, response,
and remission compared with sham and active control
groups, which did not differ (Boggio et al., 2008a); the effects
persisted 1 month later in the DLPFC group. The purpose of the
active control (with occipital anode) was to investigate right
supraorbital cathodal effects, but it was the left DLPFC anode
that improved depression. It is worth noting that while occipital
bending is more common among MDD patients than healthy
controls (Maller et al., 2014), any impact on occipital stimulation
is unclear.

Patients were off antidepressants in the early studies
above. However, combining twice-daily tDCS sessions with
escitalopram in treatment-resistant MDD found no benefits for
tDCS beyond those of the drug (Bennabi et al., 2015). Meanwhile,
the 1 crossover study (Palm et al., 2012) evaluated treatment-
resistant depression (including 2 bipolar patients) and found
that tDCS improved depression minimally better than placebo
and also improved positive emotions. They initially used 1 mA
(for safety) and then 2 mA, but these changes did not affect the
results, although notably they had no washout period.

Finally, an RCT on moderate-to-severe depression combined
a working memory task with tDCS followed by CBT and found
nonsignificantly greater improvements in depression scores
(and response and remission) following active tDCS compared
with sham (Nord et al., 2019). This may be because they used 7 to
8 weekly sessions at low current density as well as a left DLPFC
anode with left deltoid reference. However, functional MRI
(fMRI) did find that greater left DLPFC activation at baseline was
associated with greater improvements in depression only in the
active tDCS group, thereby demonstrating a potential biomarker.

Recommendation: anodal left DLPFC tDCS is definitely ef-
fective in improving depression in MDD (Level A) (Table 8).

Quantitative analysis of 13 studies on left DLPFC anodal tDCS
effects on depression (HDRS, BDI, MADRS) showed a significant
ES of -0.36 (95% CI = -0.66, —0.06) in favor of tDCS effects but
with significant and moderately high heterogeneity (12=44.7%,
P=.041) (Table 12; supplemental Figure 5).

Summary and Literature Synthesis—Left DLPFC tDCS is effective
in treating depression in MDD according to the qualitative
review and quantitative analysis, with significant heterogeneity
between different studies but no sign of publication bias
(supplemental Figure 5b). Lefaucheur et al. (2017) reported that
anodal left DLPFC tDCS with right orbitofrontal (defined as
FP2 or F8) cathode is probably effective (Level B) in depression
without drug-resistant major depressive episodes, but probably
ineffective (Level B) in those with such episodes. They gave


http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa051#supplementary-data
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no recommendation for bilateral DLPFC tDCS (left anode,
right cathode). For our purposes, the study protocols using
bilateral DLPFC tDCS tended to differ from those using a right
supraorbital (FP2) or frontotemporal (F8) cathode, so we do not
make that distinction.

A number of meta-analyses took different approaches as-
sessing tDCS effects in depression. A 2018 systematic meta-
review of previous-decade meta-analyses (McGirr et al., 2018)
reported that active tDCS as well as rTMS in major depression
have shown small to moderate effect sizes. One study com-
pared various non-surgical brain stimulation techniques in a
network meta-analysis: Mutz et al. (2019) found that, compared
with sham, the summary odds ratio of improving MDD or bi-
polar depression response rose across the following techniques:
tDCS showing the least improvement (odds ratio = 2.65, 95%
CI = 1.55, 4.55) followed by high-frequency left rTMS, intermit-
tent theta burst stimulation, low-frequency right rTMS, bilat-
eral theta burst stimulation, bilateral r'TMS, magnetic seizure
therapy, priming TMS, and high-dose right unilateral ECT; the
greatest improvement was in bitemporal ECT (odds ratio = 8.91,
95% CI = 2.57,30.91). That is, although tDCS was not as effective
as bitemporal ECT, it was still quite effective and showed much
a much tighter 95% confidence interval; furthermore, tDCS is
much safer.

Meanwhile, an individual patient data (rather than aggregate
data) meta-analysis (Moffa et al., 2020) showed that compared
with sham, active tDCS significantly improved depression (ef-
fect size: B of 0.31, 95% CI = 0.15, 0.47), as well as response (odds
ratio = 1.96, 95% CI = 1.30, 2.95; number needed to treat [NNT]J:
9) and remission (odds ratio = 1.94, 95% CI = 1.19, 3.16; NNT: 13).
Finally, the most recent meta-analysis on depressive episodes
(Razza et al., 2020) had similar findings for active tDCS vs sham:
improved depression scores (effect size g: 0.46, 95% CI = 0.22,
0.70), response (odds ratio = 2.28, 95% CI = 1.52, 3.42; NNT: 6),
and remission (odds ratio = 2.12, 95% CI = 1.42, 3.16; NNR: 10.7).

Therefore, both the qualitative and quantitative literature
shows efficacy of active tDCS in depression; however, there is
much room to enhance tDCS parameters and strengthen its
benefits. We suggest giving more than 10 sessions of anodal left
DLPFC tDCS lasting 20 to 30 minutes at a current density of at
least 0.571 A/m? Whether to place the cathode over the right
DLPFC to improve the imbalance or over the right supraorbital
or frontotemporal regions to better target the ACC and subcor-
tical regions is less clear and may depend on the severity and
treatment-resistance of the population. CCT and pharmaceut-
icals such as sertraline and escitalopram may improve tDCS
effects on depressive symptoms, but future studies should be
carefully powered and adverse events such as treatment-onset
mania/hypomania should be carefully monitored (particularly
in populations with low treatment resistance).

OCD and TS

OCD and TS are disabling neuropsychiatric disorders; OCD is
characterized by the presence of obsessions and/or compul-
sions, and TS by rapid, stereotyped movements and vocaliza-
tions (i.e., motor and vocal tics). Neuroimaging studies suggest
that cortico-striato-thalamo-cortical loop alterations are im-
plicated in the pathophysiology of OCD (Gongalves et al., 2011,
2015) and TS (Wang et al., 2011), with the SMAs and pre-SMAS
showing deficient response inhibition (Maltby et al., 2005;
Nachev et al., 2008; Hsu et al., 2011; de Wit et al., 2012). Both con-
ditions are often resistant to drugs and CBT, but early rTMS and
tDCS studies show some promising effects (Mantovani et al.,
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2006; Kwon et al., 2011; Saba et al., 2015) in targeting dysfunc-
tional circuits.

PubMed searches on “tDCS” and “OCD,” and on “tDCS”
and “Gilles de la Tourette syndrome” yielded 8 and 3 results,
respectively, that fulfilled our criteria. As mentioned previ-
ously, we allowed for uncontrolled trials due to the limited
literature. All OCD and TS results were Class IV studies except
for 2 OCD Class III crossover RCTs; we identified additional
PubMed-indexed papers through our authors, including a
case study (Carvalho et al., 2015) and a recent Class II study
(Gowda et al., 2019). All were on treatment-resistant patients
receiving tDCS as an add-on to pharmacological treatment
(Table 9).

OCD—Based on a Class II, a Class III, and multiple Class IV
studies, pre-SMA/SMA tDCS showed potential, but polarity
impact (vs. individual variability) is unclear. The 1 Class II
study (Gowda et al., 2019) gave anodal tDCS over the pre-SMA
and found significant improvement; furthermore, active group
participants who did not achieve response during the RCT were
enrolled in the open-label extension and their scores improved
significantly, although they still did not achieve response. A case
series aimed to target the pre-SMA and SMA via an Fz anode
(with right supraorbital cathode) based on the hypothesis that
striatal hyperactivity in OCD results from deficient pre-SMA
inhibition (Narayanaswamy et al., 2015). Yale Brown Obsessive
Compulsive Scale (YBOCS) scores (40% and 46.7%) as well as
depression and anxiety improved, and clinical results were
sustained for 1 to 2 months; 1 patient had an fMRI confirming
increased left SMA activity. Conversely, SMA cathodal tDCS in 2
cases led to a minor and delayed response in one while the other
improved by 20 sessions and had 45% improvement 6 months
later (da Silva et al., 2016). One case from another group had
worsening of YBOCS with 10 sessions of anodal pre-SMA tDCS,
so she was switched over to 10 sessions of cathodal tDCS, and
YBOCS improved (D’Urso et al., 2016a). This was followed by
a partial crossover study (D’Urso et al., 2016b) that placed the
active anode/cathode anterior to Cz (closer to Fz) with a right
deltoid reference (to better target the hyperactive pre-SMAs
based on their computational model). The researchers found
that only cathodal stimulation led to significant improvements,
and 2 patients worsened with anodal tDCS, improving after
being crossed over to cathodal tDCS.

An early case report used active/sham monopolar cathodal
tDCS and low-frequency (inhibitory) rTMS over the left DLPFC,
as fMRI had shown baseline hyperactivation and hypoactivation
of the left and right anterior circuits, respectively (Volpato
et al., 2013b). However, none of the conditions improved YBOCS
(Volpato et al., 2013b). Meanwhile, another patient received left
orbitofrontal cortex cathodal tDCS (Mondino et al., 2015a)—with
a large right occipital reference—and YBOCS decreased by 26%
only 1 month later. Likewise, an open-label study aimed to modu-
late the orbitofronto-striato-pallido-thalamic loop by inhibiting
the hyperactive left orbitofrontal cortex and increasing excit-
ability in the right hypoactive cerebellum (Bation et al., 2016) and
found significant improvements on YBOC (26.4% decrease) and
OCD-VAS (45.6% decrease) lasting 3 months. Finally, 1 case im-
proved following bilateral DLPFC tDCS combined with sertraline
(Palm et al., 2017b).

Our recommendation is based on 1 convincing Class II study
and its open-label extension. Individual variability and expect-
ations may have impacted the other cases.

Recommendation: anodal pre-SMA tDCS is possibly effective
in improving OCD (Level C) (Table 9).
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On excluding 8 studies/montages with n<10 (all Class IV),
the recommendation does not change.

TS—AIl cases used variable parameters. Cathodal tDCS over
the left motor-premotor areas of 2 TS patients decreased their
motor and vocal tics compared with sham and dramatically
increased their feelings of general well-being (Mrakic-Sposta
et al., 2008). A severely refractory 16-year old received pre-SMA
cathodal tDCS as compassionate treatment and had decreases
of 41% and 46% in tic severity and global score, respectively
(verbal tics improving before motor tics), by the end of 10
sessions; the benefits lasted at least 6 months (Carvalho et al.,
2015). Additionally, fMRI showed decreased left precentral
sensorimotor resting state network and cerebellar activity
after cathodal tDCS (Carvalho et al., 2015). However, twice-daily
sessions over 1 week using a different montage led to worsened
tic counts in 3/3 other cases despite decreased tic severity and
YGTSS in 1 patient (who had TS onset during childhood) (Behler
etal.,, 2018).

Recommendation: no recommendation for TS (Table 9).

All 3 studies (Class IV) had n<10, so excluding them did not
change the recommendation.

Summary and Literature Synthesis—Overall, the studies showed
promising but very preliminary results for tDCS in OCD and
TS. Anodal pre-SMA tDCS was positive in a convincing Class II
OCD study, but the cases showed variable results. It seems
the bilateral pre/SMAs, left DLPFC, and orbitofrontal regions
might be the most targets to study in future RCTs. Lefaucheur
et al. (2017) adds no recommendations and there are no meta-
analyses on these topics; our own limited quantitative analysis
showed no significant results (Table 12; supplemental Figure 6).
However, considering that DBS was FDA approved in severely
intractable OCD under a humanitarian exemption (Bernad
2009), a systematic investigation of non-invasive measures is
important, and off-label tDCS is an option for compassionate
care.

Schizophrenia

Schizophrenia is a debilitating chronic neuropsychiatric dis-
order characterized by delusions (typically verbal auditory),
hallucinations, disorganized speech/behavior, and decreased
emotional expression. It might be the “most disabling” disease
globally (Salomon et al., 2012). About 20% of patients are treat-
ment resistant but may respond to ECT (Kennedy et al., 2014),
so NIBS techniques including rTMS and tDCS have been investi-
gated to treat resistant symptoms (Agarwal et al., 2013; Kubera
et al.,, 2015; Mondino et al., 2015a). The typical tDCS montage
is based on neuroimaging findings: cathodal stimulation of the
hyperactive left temporoparietal region targeting auditory hal-
lucinations (Jardri et al., 2011) and anodal stimulation of the
hypoactive frontal areas (mainly left DLPFC and ACC) targeting
negative symptoms (Molina Rodriguez et al., 1997; Sanfilipo
et al., 2000; Brunelin et al., 2012).

A PubMed search on “tDCS AND schizophrenia” yielded 11
results that fit our criteria, including auditory hallucinations/
positive or negative symptoms in schizophrenia (we also al-
lowed studies that included schizoaffective disorder). We also
added another paper identified by an author that fit our criteria
(Bose et al., 2018).

tDCS Effects on Auditory Hallucinations, Negative and Positive
Symptoms in Schizophrenia—Almost all montages placed
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the anode on the left DLPFC (F3) or midway between it and
frontopolar/supraorbital region (FP1 in Table 10, left SO in other
tables) than at a more anterior and mesial prefrontal location;
cathode was typically on the left temporoparietal region
(between midtemporal T7 and parietocentral P3), although some
montage variations were used.

Left Prefrontal Anode, Left Temporoparietal Cathode—All were
Class II RCTs using twice-daily tDCS with similar parameters,
and 6/7 studies showed improvements in auditory hallucinations
using Auditory Hallucinations Rating Scale scores (AHRS).

In the first RCT (Brunelin et al., 2012), after 1 week of
twice-daily tDCS, the active group had a significant 31% drop
in AHRS scores and a 38% improvement 3 months later. Two
other studies (most of whose patients had participated in the
one above; Brunelin et al., 2012) also found significant auditory
verbal hallucination (AVH) improvements (Mondino et al., 2015b,
2016). After active tDCS, patients had fewer misattributions of
covert and overt speech, which correlated with a (46%) drop in
AVH frequency, supporting the hypothesis that hallucinations
related to internal events were wrongly perceived as occurring
in external space (Mondino et al., 2015b). The third study also
showed decreased auditory hallucination severity following ac-
tive tDCS, which correlated with decreased left temporoparietal
junction resting state functional connectivity (rs-FC) with the
left anterior insula; additionally, tDCS significantly reduced
left temporoparietal rs-FC with the right inferior frontal gyrus
(which is active during AVHs) but increased this rs-FC with the
left DLPFC, left angular gyrus, and precuneus (Mondino et al.,
2016).

Conversely, a study on patients with medication-resistant
AVHs showed no difference in AHRS between active and sham
tDCS groups despite being adequately powered and control-
ling for confounders, nor was it significant for positive/negative
symptoms (Chang et al., 2018). However, the study had unclear
eligibility criteria and included patients with schizoaffective
disorder (n=9/60) with schizophrenia, and they were on low
doses of medications relative to the group’s pilot study. Yet, the
active tDCS group demonstrated significantly improved insight
into their symptoms, particularly positive symptoms.

In a larger multicenter RCT (Kantrowitz et al., 2019) using
similar stimulation parameters, AHRS improved in active vs
sham groups only when chlorpromazine equivalents (which
correlated with higher baseline AHRS) was added as a covariate.
The authors suggested covariation for baseline medication doses
when analyzing future AVH studies and that participants with
putative high cognitive symptoms were less responsive. There
were no differences between schizophrenic and schizoaffective
(n=17/53) patients, nor among sites, but outpatients receiving
active tDCS had significantly improved remission and hallucin-
ation scores; conversely, inpatients on active tDCS had signifi-
cantly less improvement than both active outpatients and sham
inpatients.

In another study on inpatients with treatment-resistant
schizophrenia or schizoaffective disorder (n=9/28) that was
also clozapine-resistant, an increased number of sessions (40 vs
10) was possibly helpful, as AHRS total scores decreased signifi-
cantly by 21.9% with active tDCS and the decrease at week 4
was greater than week 2. Subscores on hallucination frequency
and length and number of voices also decreased. While clin-
ical significance is preliminary, the results are encouraging in
this “ultra-treatment-resistant” inpatient sample (Lindenmayer
et al., 2019). However, another 10-session study (Bose et al., 2018)
found significant AHRS improvement with an effect size of 1.98
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Table 10. tDCS Studies in Schizophrenia (and Schizoaffective Disorder)

Current
density
(A/m?), Number Con-
Sample session of comitant
Author (n) Anode? Cathode duration  sessions therapy Results® Class
Auditory hallucinations/negative and positive symptoms
Brunelin et al. 30 Midway Midway 0.571,20 10 No Improvement (AHRS, 1I
(2012) between between T7-P3 min (2/d x 1 wk) PANSS total and

F3-FP1 negative), no
improvement
(PANSS positive)

Mondino et al. 28 Midway Midway 0.571,20 10 No Improvement (AVH II
(2015b) between between T7-P3 min (2/d x1 wk) frequency, covert/

F3-FP1 overt speech

misattribution)
Mondino et al. 23 Midway Midway 0.571,20 10 No Improvement (AHRS) II
(2016) between between T7-P3 min (2/d x 1 wk)
F3-FP1
Chang et al. 60 Midway Midway 0.571,20 10 No No improvement II
(2018) between between T7-P3 min (2/d x 1 wk) (AHRS, PANSS total
F3-FP1 and subscores)
Kantrowitz etal. 89 Midway Midway 0.515,20 10 No Improvement (AHRSS, II
(2019) between between T7-P3 min (2/d x 1 wk) AHRS Loudness,

F3-FP1 PANSS Hallucinatory
behavior), no
improvement (other
AHRS items, PANSS
total and subscores)

Bose et al. (2018) 25 Midway Midway 0.571, 20 10 No Improvement (AHRS) 11
between between T7-P3 min (2/d x1 wk)

F3-FP1

Lindenmayer 28 Midway Midway 0.571,20 40 No Improvement (AHRS 11
et al. (2019) between between T7-P3 min (2/d x4 wk) and frequency, no.

F3-FP1 of voices, and length
of AH subscores,

PANSS total), no
improvement
(other AHRS and
PANSS subscores,
PANSS Hallucinatory
behavior)
Shiozawa et al. 9 F3 F4 0.571,20 10 Cognitive No improvement II
(2016) min (2/d x1 wk) training (PANSS)
Jeon et al. (2018) 39 F3 F4 0.800, 30 10 No No improvement I
min (PANSS total
and subscores,
CGI positive and
negative symptoms)
Fitzgerald et al. 11 F3 Midway 0.571, 20 15 No No improvement I
(2014)¢ between T7-P3 min (PANSS, SANS)
Fitzgerald et al. 13 F3 and F4 Midway 0.571,20 15 No No improvement 1I
(2014)¢ between T7- min (PANSS, SANS)
P3 and T8-P4
Palm et al. 20 F3 Contralateral SO  0.571, 10 No Improvement (SANS, 11
(2016) 20 min PANSS total and

negative)

Recommendation: anodal left prefrontal w/ cathodal left temporoparietal tDCS probably effective (Level B) for reducing auditory
hallucinations in schizophrenia

Abbreviations: +al,a2,s: crossover anodal 1 mA, anodal 2 mA, sham; note, F3-FP1 targeted left prefrontal regions, T7-P3 targeted left temporoparietal regions; w/, with.
a FP1 is the left SO region.
b To avoid confusion with positive/negative symptoms in schizophrenia, we used the terminology “improvement” for studies showing significant improvement com-
pared with sham, and “no improvement” for nonsignificant changes.

¢ AHRS showed improvement only when chlorpromazine equivalents (which had correlated significantly with higher baseline AHRS and PANSS Hallucinations
scores) was added as a covariate.

dIn the same paper.



(>1.58 in the study they were replicating; Brunelin et al., 2012);
furthermore, the sham tDCS patients improved significantly
more in the open-label phase than during the RCT.

Left DLPFC Anode, Right DLPFC Cathode—Both Class II studies
were nonsignificant for positive/negative symptom changes
with this bilateral DLPFC montage. Ten sessions of active
bilateral tDCS did not improve these symptoms whether at a
higher current density and duration (with daily sessions) in
clinically stable multicenter schizophrenia patients (Jeon et al.,
2018), or at the typical twice-daily dose combined with cognitive
training (Shiozawa et al., 2016).

Other Montages—Only 1/3 of the remaining Class II trials showed
apparent improvement in positive and negative symptoms. In
this proof-of-concept RCT on severe paranoid/disorganized
schizophrenia, left DLPFC anodal-right orbitofrontal cathodal
tDCS (both electrodes considered active) improved the Positive
and Negative Symptom Scale (PANSS) total and negative
subscales and the Scale for Assessment of Negative Symptoms.
Functional connectivity MRI data showed significant tDCS
effects in the bilateral DLPFC and subgenual regions, but the
relationship to symptoms was unclear (Palm et al., 2016).

Meanwhile, Fitzgerald and colleagues (Fitzgerald et al., 2014)
conducted 2 pilot studies comparing left unilateral and bilat-
eral tDCS (DLPFC anode, temporoparietal cathode) over 15 daily
sessions but found no significant improvements in auditory hal-
lucinations or positive or negative symptoms for unilateral or
bilateral tDCS or for the whole sample (schizoaffective disorder
n=7/24).

Therefore, while there are clear benefits to tDCS in auditory
hallucinations, effects on positive and negative symptoms are
harder to determine. However, we did not include a Class I RCT
(n=100) by Valiengo and colleagues (Valiengo et al., 2019) that
was published after our search date limits; this study showed
significant and clinically relative benefits of anodal left pre-
frontal and cathodal left temporoparietal tDCS to negative
symptoms, which would change our classification to probably
effective (Level B) for negative symptoms in schizophrenia.

Recommendation: anodal left prefrontal with cathodal left
temporoparietal tDCS is probably effective for reducing auditory
hallucinations in schizophrenia (Level B) (Table 10).

On excluding the 1 study (Class II) with n<10, the recom-
mendation does not change.

Quantitative analysis of 7 studies/montages on auditory
hallucinations (AHRS) showed a significant ES of -0.52 (95%
CI = -0.86, -0.17) in favor of tDCS. Quantitative analysis of 6
studies/montages on positive and negative symptoms (PANSS)
showed a significant ES of -0.45 (95% CI = —-0.84, -0.06) in favor
of tDCS, albeit with significantly high heterogeneity (I* = 57.4%,
P=.029). Pooled analysis showed a significant ES of -0.47 (95%
Cl=-0.72,-0.22) favoring tDCS effects on AHRS and PANSS com-
bined, although again with significant and high heterogeneity
(I2=50.2%, P=.020) (Table 12; supplemental Figure 7a).

Summary and Literature Synthesis—Our findings are overall
consistent with and promising for twice-daily (3 hours apart)
left prefrontal anodal and left temporoparietal cathodal tDCS
modulation of the network producing and monitoring internal
speech, thereby improving auditory verbal hallucinations. Our
quantitative analysis shows that tDCS (all montages pooled)
significantly improves AHRS and PANSS to a moderate degree,
but with high heterogeneity and some evidence of publication
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bias (supplemental Figure 2a-b). Lefaucheur et al. (2017) gave
no recommendations for tDCS in schizophrenia based on fewer
studies.

Meanwhile, a prior meta-analysis (Yang et al., 2019) showed
that active left DLPFC-left temporo-parietal tDCS significantly
improved auditory hallucinations compared with sham with a
standardized mean difference of -4.59 (95% CI = -7.91, -1.27);
the results were nonsignificant when pooled with a study using
a left DLPFC-right supraorbital tDCS montage (Smith et al., 2015)
in a population of smokers with schizophrenia or schizoaffective
disorder. Additionally, another meta-analysis (Kim et al., 2019)
showed that while tDCS did not improve auditory hallucinations
or positive or negative symptoms on the main analyses, there
were more specific benefits on subgroup analyses that confirm
our own results and add direction for stimulation protocols.
Specifically, based on 3 to 7 pooled studies, there were signifi-
cant improvements in auditory hallucination severity following
twice-daily tDCS (SMD = 1.04, P=.02), while 10 or more stimu-
lation sessions improved auditory hallucinations (SMD = 0.86,
95% CI = 0.22, 1.51) as well as severity of negative symptoms
(SMD = 0.41, 95% CI = 0.01, 0.81). Upon meta-regression, mean
age was negatively associated with auditory hallucinations
(slope -0.15, 95% CI = -0.22, —-0.09) and negative symptoms
(slope —0.08, 95% CI = -0.16, -0.02); also, studies with greater
severity of negative symptoms at baseline seemed to respond
better to tDCS (Kim et al., 2019). These are all factors to consider
in future RCT design.

Drug Addiction

Drug addiction or dependence is a chronic disease leading to
severe medical, psychiatric, psychological, and social conse-
quences (Healey et al., 1998; Daley et al., 2013). Alcoholism is an
important risk factor for disease (Navarro et al., 2011), disability,
and death (Suokas et al., 2005), yet medical treatments for al-
cohol dependence are often underutilized and have limiting
contraindications or side effects (Goh and Morgan, 2017).
Meanwhile, the psychoactive stimulant crack-cocaine (Fischer
et al., 2015) establishes a rapid and severe dependence with
powerful withdrawal effects and a poor prognosis (Hatsukami
and Fischman, 1996; Moura et al., 2014). Methamphetamine
or “crystal meth” is also a potent psychoactive stimulant with
numerous healthcare consequences, including psychosis; de-
pendent patients have few effective medical options (Hartel-Petri
et al.,, 2017). Bio-psychosocial and pharmacological therapeutics
often focus on managing acute or protracted abstinence (Siegal
et al., 2002; McKay et al., 2005) but seldom focus on craving (the
uncontrolled urge to use drugs) (Robinson and Berridge, 1993;
Hormes et al., 2012) and/or relapses (resuming previous patterns
of heavy drug use) (Wesson et al., 1986; Iruzubieta et al., 2013);
they tend to have only modest efficacy (Assanangkornchai and
Srisurapanont, 2007; Miller et al., 2011; Fischer et al., 2015).
Addiction  results from  progressive  maladaptive
neuroplasticity, beginning with an initial impulsive action (Koob
and Volkow, 2016); later environmental cues can lead to crav-
ings and trigger relapses. Addicted patients have impaired ex-
ecutive functions, likely due to decreased volume and disrupted
activity in relevant areas such as the DLPFC and cingulate and
orbitofrontal cortices (Moselhy et al., 2001; Di Sclafani et al.,
2002; Duka et al., 2011; Koob and Volkow, 2016). The DLPFC is in-
volved in “top-down” regulation of attention (Cummings, 1993;
Arnsten and Rubia, 2012) and the ability to control drug intake
(Duka et al., 2011). As such, modulating excitability in the DLPFC


http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa051#supplementary-data
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa051#supplementary-data
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and other regions by tDCS may help improve success in abstin-
ence from drugs.

PubMed searches on “alcohol AND tDCS,” “cocaine AND
tDCS,” and “methamphetamine AND tDCS” yielded 9, 2, and 1
studies, respectively, that fit our criteria. We focused on cravings
and relapses.

Alcohol Dependence—Of repeated-session RCTs, 2/2 Class II
studies on right DLPFC anode and left DLPFC cathode were
positive, 2 Class II studies with reversed polarity and bias
modification training were negative, and other montages
were mixed.

Klaus and colleagues had 2 RCTs using right/left DLPFC
anodal/cathodal tDCS. One study using twice daily tDCS for 1
week found 3 times less relapse in the active group at 6 months
compared with sham even though both groups had similarly
improved cravings (Klauss et al., 2014). Their next study (using al-
ternating days) found that craving scores significantly decreased
in a linear fashion over the weeks from baseline to 1 week after
tDCS with a large effect size (1.1 Cohen d), a 3-fold drop in al-
cohol cravings, and an NNT of 3.5 patients (Klauss et al., 2018b).
Additionally, 72.7% of the active group (vs 27.8% of sham) main-
tained alcohol abstinence over 3 months post-treatment. Our
recommendations are thus based on these results.

Meanwhile, den Uyl et al. (2017) used left/right DLPFC anode/
cathode tDCS for 4 sessions. The first combined tDCS with cog-
nitive bias modification/its control but found no significant im-
provements in alcohol craving or relapse with either online or
offline cognitive bias modification. This study listed a number
of limitations such as missing data, change in primary outcome,
and some baseline differences. Their next study on alcohol-
dependent but abstinent patients combined the above tDCS
montage with active/control attentional bias modification with
active/sham tDCS (den Uyl et al., 2018), but tDCS did not help
craving (which was very low at baseline), automatic biases, or
relapse; however, the study was limited by the large number of
dropouts in follow-up, and there was still 16% less relapse with
active tDCS (similar magnitude to the previous study). The limi-
tations of those studies led to them being Class II rather than
Class I RCTs despite larger samples.

As to other tDCS montages, 1 RCT aimed to modulate the
right inferior frontal gyrus with anodal tDCS while combining it
with mindfulness-based relapse prevention to reduce drinking
in alcohol use disorder but found no benefit to tDCS (Witkiewitz
et al., 2019). Weekly left DLPFC tDCS in Lesch IV alcoholics im-
proved depression and craving on one scale but unfortunately
led to a trend toward more relapses and less abstinence in the
anodal group (which drank twice as much at baseline) compared
with sham (da Silva et al., 2013).

As to single-session RCTs, all DLPFC tDCS irrespective of po-
larity improved outcomes, but left inferior frontal gyrus tDCS
did not help (Table 11).

Recommendation: right DLPFC anodal with left DLPFC cath-
odal tDCS is probably effective in decreasing relapses or craving
in alcohol addiction (Level B) (Table 11).

Crack-Cocaine—Two Class II RCTs using right/left DLPFC anodal/
cathodal tDCS had mixed results. TDCS for 5 alternate days
significantly decreased cravingand had other neuropsychological
benefits in crack-cocaine addicts admitted to an addiction clinic
(abstinent for 35 days) (Batista et al., 2015). This is consistent
with the efficacy of the right/left DLPFC montage in addiction.
In a second study on more severe crack-cocaine use, baseline
craving scores were greater and the effect size after treatment

was also larger (Hedge’s g 0.97 vs 0.54)—however, there were no
significant differences between groups in cravings or relapse 30
and 60 days later (Klauss et al., 2018a).

Recommendation: none (Table 11).

Methamphetamine Dependence—A single-session crossover RCT
on abstinent methamphetamine users found that 1 session
of right DLPFC anodal tDCS with an online computerized cue-
induced craving task reduced immediate craving at rest but
worsened craving on exposure to meth-related cues (Shahbabaie
et al., 2014). This was possibly due to DLPFC effects on drug cue
saliency and craving.
Recommendation: none (Table 11).

Summary and Literature Synthesis—While available evidence for
tDCS use in drug addiction is somewhat promising, there is a
need for larger studies. Lefaucheur et al. recommended that
combined right DLPFC anodal with left DLPFC cathodal tDCS
is probably effective (Level B) in addiction/craving reduction (of
alcohol, crack-cocaine, and smoking combined). We found this
montage to be probably effective for alcoholic cravings or relapses
(Level B), although our limited quantitative analysis combining
Pennsylvania Alcohol Craving Scale, Obsessive Compulsive
Drinking Scale, and relapse missed significance (Table 12;
supplemental Figure 8). We can give no recommendation for
crack-cocaine or methamphetamine users.

Risk of Bias Assessment and Sensitivity Analysis

Mean Jadad scores for each condition in this review can be found
in Table 13. We conducted a sensitivity analysis by excluding pa-
pers with high risk of bias. There were no changes in the recom-
mendations for all clinical conditions.

Additionally, for the secondary meta-analyses, we included
funnel plots and Egger and Begg tests to evaluate publication
bias in disorders with 10 or more pooled studies (Supplemental
Material); in each disorder we mentioned when there was evi-
dence of publication bias.

Discussion

tDCS is a flexible, low-cost, and relatively benign tool. In this re-
view, a panel of tDCS experts gave evidence-based recommenda-
tions on tDCS use in 9 neurological and psychiatric conditions:
pain, PD (motor function and cognition), stroke (motor function
and language), epilepsy, MDD, OCD, TS, schizophrenia, and drug
addiction (Table 12). Although many tDCS studies appear prom-
ising, the heterogeneity in populations, outcomes, tDCS param-
eters, and concomitant therapies necessitate further research
before its clinical benefits can be fully demonstrated. This re-
view is therefore important to provide initial guidance to assess
tDCS’ potential clinical benefits.

Most clinical trials primarily aimed to investigate efficacy,
and safety profiles typically came from secondary analyses
(Brunoni et al., 2011; Poreisz et al., 2007), although no moderate
or severe adverse events have been reported thus far. That said,
clinicians should exert caution when using tDCS off-label before
more conclusive reports are published; long-term effects have
not been established, nor is it clear in what conditions tDCS can
reach at least MCIDs. It is also important to note that electrode
locations were measured in different ways while electrode sizes
were almost always standardized across patients. Considering
the varying measurements and head sizes and shapes, we
cannot guarantee that the current distribution is comparable
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Table 12. Summary of Recommendations on tDCS Efficacy According to Clinical Indications ¢

Condition

Recommendation

Pooled effect sizes *

Pain

PD

Chronic stroke

Subacute stroke

Epilepsy

MDD

OCD and TS

Schizophrenia

Addiction

Neuropathic pain
Fibromyalgia
Migraine

MPS
Postoperative acute pain

Low back pain

Anodal M1 tDCS probably effective in reducing neuropathic
pain (Level B)

Anodal M1 tDCS probably effective in reducing fibromyalgia
pain (Level B)

Anodal M1 tDCS probably effective in reducing migraine pain
(Level B)

No recommendation

Postoperative anodal M1 tDCS probably effective in reducing
patient-controlled analgesia and pain (Level B)

No recommendation

-0.29 (~0.60, 0.02)
-0.62 (-1.23,-0.01)
-0.41 (~1.40, 0.59)°

Not estimable
-0.70 (~1.09, -0.30)

Not estimable

Motor function

Cognitive function

Anodal motor/premotor/SMA tDCS possibly effective for motor
function in PD (Level C); anodal prefrontal tDCS probably not
effective for motor function in PD (Level B)

Anodal DLPFC tDCS probably effective for cognitive function in
PD (Level B)

-0.38 (~0.68, ~0.09)

-0.33 (-1.02, 0.35)

Motor function

Aphasia

Anodal tDCS of ipsilesional M1 probably effective for motor rehab in
chronic stroke (Level B);

Anodal tDCS of ipsilesional M1 to enhance robotic therapy probably not
effective for motor rehab in chronic stroke (Level B);

Cathodal tDCS of contralesional M1 probably effective for
motor rehab in chronic stroke (Level B);

Bilateral tDCS of M1 probably effective for motor rehab in chronic stroke
(Level B)

Anodal tDCS of Broca’s area, its homologue, or Wernicke’s
area is possibly effective in chronic post-stroke aphasia
rehab (Level C)

Cathodal right frontotemporal tDCS is possibly effective in chronic post—
stroke aphasia rehab (Level C)

Bilateral tDCS w/ anodal stimulation of Broca’s area and cathodal
stimulation of its homologue is possibly effective
in chronic post-stroke aphasia rehab (Level C)

0.52 (~0.04, 1.09)

0.23 (~0.31, 0.77)

0.44 (-.18, 1.06)

0.44 (0.10, 0.79)

Broca’s Area: 0.65 (0.29,
1.01)

Not estimable
Not estimable

Motor function

Anodal tDCS of ipsilesional M1 probably effective for motor rehab in
subacute stroke (Level B)

Anodal tDCS of ipsilesional M1 to enhance robotic therapy is definitely
not effective for motor rehab in subacute stroke (Level A)

Cathodal tDCS of contralesional M1 probably effective for
motor rehab in subacute stroke (Level B)

Cathodal tDCS of contralesional M1 to enhance robotic
therapy probably not effective for motor rehab in subacute stroke
(Level B)

Bilateral tDCS of M1 is possibly effective for motor rehab in subacute stroke

(Level C)

0.4 (~0.03, 0.91)
0.01 (~0.33, 0.34)
0.47 (0.10, 0.84)

Not estimable

0.39 (~0.07, 0.86)

Seizure frequency

Cathodal tDCS probably safe (no increase in seizures) and effective
(decrease in seizures) in epilepsy (Level B)

-0.70 (-1.38, -0.02)

Depression Anodal left DLPFC tDCS is definitely effective for treatment of depression -0.36 (-0.66, —0.06)
in MDD (Level A)

OCD Anodal pre-SMA tDCS is possibly effective in improving OCD symptoms  -0.61 (-1.87, 0.64)
(Level C)

TS No recommendation Not estimable

Auditory hallucinations and positive/
negative symptoms

Anodal left prefrontal w/ cathodal left temporoparietal tDCS probably
effective for reducing auditory hallucinations in schizophrenia (Level B)

-0.47 (-0.72,-0.22)

Alcohol: craving or relapses

Right DLPFC anodal w/ left DLPFC cathodal tDCS probably effective in
decreasing relapses or craving in alcohol
addiction (Level B)

0.21 (-0.08, 0.49)

Crack-cocaine

Methamphetamine

No recommendation

No recommendation

Not estimable

Not estimable

Abbreviations: MDD, Major Depressive Disorder; MPS, Myofascial Pain Syndrome; OCD, obsessive compulsive disorder; PD, Parkinson’s disease; rehab, rehabilitation; TS, Tourette syndrome.

a Effect sizes are based on a smaller number of studies due to data availability.
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Table 13. Risk of Bias Assessment for Each Condition (Studies With Repeated tDCS Sessions)
Does remov-
% of low Mean Jadad SD of Jadad ing studies
risk of on exc. on exc. w/ Jadad <3
Jadad bias (=3 studies w/ studies w/ Studies w/ Jadad change recom-
Condition score (SD) points) score <3 score <3 score <3 mendation?
Pain Neuropathic pain ~ 4.40 (0.70) 100 4.38 0.70 None N/A
Fibromyalgia 5.00 (0.41) 100 4.83 0.00 None N/A
Migraine 4.50 (0.71) 100 4.50 0.71 None N/A
MPS 3.50(2.12) 50 5.00 2.12 Choi et al., 2014 No
Postoperative acute 4.25(0.96) 100 4.25 0.96 None N/A
pain
Low back pain 4.67 (0.58) 100 4.67 0.58 None N/A
PD Motor function 4.50 (0.73) 100 4.44 0.73 None N/A
Cognitive function  4.60 (0.55) 100 4.60 0.55 None N/A
Chronic stroke Motor function 4.32(0.72) 100.00 4.45 0.72 None N/A
Aphasia 3.90 (0.62) 100.00 4.53 0.62 None N/A
Subacute stroke Motor function 4.45 (0.76)  100.00 3.95 0.76 None N/A
Epilepsy Seizure frequency  4.00 (0.00) 100.00 3.75 0.00 None N/A
MDD Depression 4.53(0.74) 100.00 4.53 0.74 None N/A
OCD and TS OCD 1.56 (1.67) 25.00 3.67 1.67 Mondino, 2015; No
Narayanaswamy,
2015; Bation, 2016;
Silva, 2016; Palm,
2017b
TS 1.67 (1.15) 33.33 3.00 1.15 Carvalho, 2015; No
Behler 2018
Schizophrenia Auditory 4.00 (0.77) 90.91 4.20 0.77 Fitzgerald 2014 No
hallucinations
Addiction Alcohol 4.33(1.21) 83.33 4.80 1.21 da Silva, 2013 No
Crack/cocaine 5.00 (-) 50 5.00 0.00 None N/A

Abbreviations: exc., excluding; MDD, Major Depressive Disorder; MPS, Myofascial Pain Syndrome; OCD, obsessive compulsive disorder; PD, Parkinson’s disease; TS,

Tourette syndrome; w/, with.
Jadad scores are presented as mean and SD.

between different patients across studies. One potential solu-
tion is HD-tDCS (Villamar et al., 2013; Karvigh et al., 2017), which
can account for head shape and size variations and perhaps
lead to more comparable current distributions in tDCS. Most
tDCS studies thus far are underpowered to show significance in
categorical outcomes, and effect sizes should be evaluated in
larger RCTs, which are necessary to find optimal parameters for
stimulation across different populations and disorders.
Importantly, few RCTs in this review were Class I. As a result,
most recommendations are either Level B or Level C (probably
or possibly effective), and in a number of conditions no recom-
mendations could be given. These levels of recommendation
should only be used when no better treatments exist or when
they have failed, in which case tDCS could be offered off-label
as long as local regulatory policies are followed. Also, while we
excluded single-session RCTs from our recommendations, we
cannot guarantee that repeated-session tDCS changes were al-
ways due to cumulative as opposed to acute benefits, as many
studies did not measure changes immediately after the first
stimulation session; however, some did take repeated measure-
ments over time showing cumulative neuroplastic benefits. We
consider the inclusion of single-session studies important to
demonstrate the history and mechanisms of the intervention.

Despite the above limitations, we believe that our work has
certain strengths, such as our team of experts, our comprehen-
sive review of repeated- and single-session studies, our assess-
ment of methodological bias and sensitivity analyses excluding
low-quality and smaller studies, and our easy-to-read tables
showcasing the heterogeneity of parameters used in tDCS trial
design. Furthermore, our secondary meta-analyses strengthen
our claims for tDCS benefits in most disorders, including, neuro-
pathic pain, PD (motor), epilepsy, depression, schizophrenia,
chronic and subacute stroke (motor without robotics), and post-
stroke aphasia. Additionally, the quantitative analyses also pro-
vide objective measures of heterogeneity and publication bias
although sometimes with very limited samples.

While it may impact outcomes, we have no evidence that
this heterogeneity in tDCS trials outweighs that of surgical or be-
havioral trials or even drug trials considering pharmacokinetic
and pharmacodynamic variabilities. Finally, there are many re-
commendations but little consensus on how to investigate clin-
ical heterogeneity (or “clinical diversity”) in systematic reviews
of RCTs, although we believe we covered many of the suggested
methods, including using a team of clinical experts, careful
covariate selection based on scientific rationales, and cautious in-
terpretation of our findings (West et al., 2010; Gagnier et al., 2012).
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Conclusions

According to this evidence-based review, we are able to recom-
mend specific tDCS protocols for only some indications (e.g.,
MDD). These results were confirmed when studies with high
risk of bias were excluded. Table 12 summarizes the recom-
mendations on tDCS efficacy/safety according to clinical indi-
cation in 9 neurological and psychiatric disorders. A secondary
meta-analysis provides even stronger evidence of tDCS benefits
in multiple disorders, although sometimes with very limited
samples. We summarize our results and synthesize them with
the literature.

Supplementary Materials

Supplementary data are available at: International Journal of
Neuropsychopharmacology (JNPPY) online.
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