Deepha et al. BMC Medical Genetics (2017) 18:67
DOI 10.1186/512881-017-0431-6 BMC Medical Genetics

MLPA identification of dystrophin @
mutations and in silico evaluation of the

predicted protein in dystrophinopathy

cases from India

Sekar Deepha', Seena Vengalil?, Veeramani Preethish-Kumar?, Kiran Polavarapu?, Atchayaram Nalini?,
Narayanappa Gayathri' and Meera Purushottam?®"

Abstract

Background: Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive
disorders caused by mutations in the DMD gene. The aim of this study was to predict the effect of gene mutations on
the dystrophin protein and study its impact on clinical phenotype.

Methods: In this study, 415 clinically diagnosed patients were tested for mutations by Multiplex ligation dependent
probe amplification (MLPA). Muscle biopsy was performed in 34 patients with negative MLPA. Phenotype-genotype
correlation was done using PROVEAN, hydrophobicity and eDystrophin analysis. We have utilized bioinformatics
tools in order to evaluate the observed mutations both at the level of primary as well as secondary structure.

Results: Mutations were identified in 75.42% cases, of which there were deletions in 91.6% and duplications in 8.
30%. As per the reading frame rule, 84.6% out-of frame and 15.3% in-frame mutations were noted. Exon 50 was
the most frequently deleted exon and the exon 45-52 region was the hot-spot for deletions in this cohort. There
was no correlation noted between age of onset or creatine kinase (CK) values with extent of gene mutation. The
PROVEAN analysis showed a deleterious effect in 94.5% cases and a neutral effect in 5.09% cases. Mutations in
exon 45-54 (out of frame) and exon 46-54 (in-frame) regions in the central rod domain of dystrophin showed more
negative scores compared to other domains in the present study. Hydrophobicity profile analysis showed that the
hydrophobic regions | & Il were equally affected. Analysis of deletions in hinge Ill hydrophobic region by the eDystrophin
programme also predicted a hybrid repeat seen to be associated with a BMD like disease progression, thus making the
hinge Ill region relatively tolerant to mutations.

Conclusions: We found that, while the predictions made by the software utilized might have overall significance,

the results were not convincing on a case by case basis. This reflects the inadequacy of the currently available tools and
also underlines the possible inadequacy of MLPA to detect other minor mutations that might enhance or suppress the
effect of the primary mutation in this large gene. Next Generation Sequencing or targeted Sanger sequencing
on a case by case basis might improve phenotype- genotype correlation.
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Background
Duchenne muscular dystrophy is the most severe and
common form of X-linked recessive neuromuscular
degenerative disorder affecting 1 in 3500 live male births
[1]. It is clinically characterized by progressive muscle
weakness, calf hypertrophy and elevated creatine kinase
(CK) levels, wheel chair bound before the age of 12 and
death due to respiratory failure. Becker muscular dys-
trophy is a milder form with an incidence of 1 in 20,000
male births [2, 3]. Both are caused due to defects in the
DMD gene that encodes a 427 kDa cytoskeletal protein
dystrophin located at Xp.21.2. Dystrophin is the largest
human gene consisting of 79 exons which encodes a
14.6 Kb mRNA expressed mainly in skeletal muscle,
heart and brain [4, 5]. Clinical severity depends on
whether the reading frame is maintained. Disruption of
the reading frame (out of frame) leading to prematurely
truncated nonfunctional dystrophin usually gives rise to
a severe DMD phenotype. Although (In-frame) muta-
tions retaining ORF, code for semi-functional dystrophin
and are predicted to be associated with a mild BMD
phenotype, there are exceptions to this general rule as
there are patients with severe DMD carrying in-frame
mutations [5-7]. About 65% of DMD gene mutations
are accounted for by intragenic deletions, 10-15% by
duplications and remaining by point mutations [8]. Dele-
tions are mostly clustered in two hotspots, either at
proximal (towards 5’end) or distal (towards 3’end) part
of the gene [9]. Therapeutic approaches are also
designed to transform the Duchenne phenotype to milder
Becker phenotype by restoring the expression of the dys-
trophin gene via exon - skipping strategies [10, 11]. As no
effective treatment is available for DMD/BMD, an accur-
ate genetic diagnosis for prenatal screening is very crucial.
Several techniques are available to identify mutations in
the dystrophin gene. Multiplex ligation dependent probe
amplification (MLPA) technique can determine the
chromosomal DNA copy number changes for each exon
in a single multiplex - PCR based reaction. MLPA covers
all 79 exons in the DMD gene and detects deletion/dupli-
cation of one or more exons in the dystrophin gene [12].
In this study, phenotype — genotype correlation was
performed based on mutational findings of 415 clinically
suspected DMD/BMD patients at our centre in Southern
India. This paper is an attempt to understand the impact
of mutations on the structure of the dystrophin protein
using bioinformatics tools.

Methods

Subjects

Clinically suspected cases (n=415) of DMD/BMD
referred for genetic testing, as a part of diagnosis from
August 2013 to July 2015 were included in this study.
Diagnosis was based on clinical presentation, elevated
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CK level, pattern of inheritance and muscle biopsy.
Muscle biopsy was performed in thirtyfour patients where
the genetic analysis was negative. The study was
approved by the Institutional Ethics committee and writ-
ten informed consent was obtained from all patients.

Genetic testing by Multiplex ligation-dependent probe
amplification

Blood samples were collected in EDTA vacutainer and
genomic DNA was extracted by salting out method and
stored at -20 °C until tested [13]. The MLPA reaction
was carried out to screen all exons of the dystrophin
gene using SALSA MLPA P034 and P035 probe sets
(available commercially MRC Holland, Netherlands). The
procedure was performed according to manufacturer’s
instructions [12]. Amplified products were separated using
ABI 3500 XL Genetic analyzer and data were analyzed by
coffalyser software. Normal healthy individuals were used
as controls and included in every run.

Muscle biopsy
Open muscle biopsy was performed in 34 patients under
local anaesthesia after obtaining informed consent.
Tissue samples were immediately frozen in isopentane
precooled in liquid nitrogen. Serial 6-um thick sections
were cut using cryostat and stained for routine histological
stains — hematoxylin-eosin (HE), modified Gomori
trichrome and enzyme histochemical stains - NADH-
tetrazolium reductase, succinic dehydrogenase, cytochrome
oxidase and ATPase at PH 9.5 and 4.6.
Immunohistochemical staining using monoclonal anti-
bodies against dystrophin (dysl, dys2, dys3) and sarco-
glycans (a, B, v, 8) as primary, and HRP — conjugated
novalink polymer as secondary was carried out. All
sections were compared with control samples (from
patients other than muscular dystrophy) labelled in
parallel.

Bioinformatics analysis

SIFT, PolyPhen-2, Mutation Assessor, MAPP, PANTHER,
Condel and several others are the computational methods
developed based on evolutionary principles to predict the
effect of coding variants on protein function. These tools
focus only on single amino acid substitutions whereas, the
PROVEAN (Protein Variation Effect Analyzer) tool
predicts the functional impact for all classes of protein
sequence variations, not only single amino acid substitu-
tions, but also insertions, deletions, and multiple substitu-
tions (http://provean.jcvi.org). The PROVEAN tool was
applied to generate a PROVEAN score for each variant.
This score can be used as a measure to distinguish disease
variants and common polymorphisms. This tool was used
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in this study to predict the functional effects of protein
sequence variations (deletion/duplication) [14].

Hydrophobicity profile analysis was also carried out.
Dystrophin protein sequence was obtained from Genbank
(http://www.ncbi.nlm.nih.gov/genbank) and imported into
Bioedit software 7.0.1. Kyte-Doolittle scale mean hydro-
phobicity profile analysis was performed to construct the
hydrophobic regions of dystrophin protein to find out
whether mutation in the hydrophobic regions has a role in
pathogenesis of DMD [15].

eDystrophin database (http://edystrophin.genouest.org)
was used to analyze the consequences of in-frame muta-
tions in BMD patients on dystrophin protein in this
cohort. It provides three-dimensional structure model of
the mutation site and changes in the interacting partners
of the protein due to mutation [16].

Result

Clinical findings

Totally 415 clinically suspected cases of DMD/BMD
were subjected to MLPA testing. Most of the patients
had delayed milestones, difficulty in climbing stairs and
rising from the floor. The mean age of onset for
DMD & BMD were 4.40+2.30 years and 12.53 +
6.55 years respectively. The mean age at presentation
was 9.72 £6.36 years and the mean creatine kinase
value was 11218.9+9799 U/L. Family history of
DMD/BMD was observed in 18.5% of cases. Contrac-
tures were common and observed in 64.6% of cases.
There were thirty patients in this cohort who were
wheel chair dependent at an average age of 9.5 years.
Intelligence quotient performed in 30 patients using
Binet Kamat scale showed average intelligence in 15
(50%), dull normal in 6(20%), mild mental retardation
in 3 (10%) and borderline intelligence in 3 (10%)
respectively.
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Genetic findings

Out of 415 cases, mutations were found in 313 (75.42%)
by MLPA testing. Among 313 cases, 265 (84.6%) showed
out of frame mutations (DMD) and 48 (15.33%) cases
showed in-frame mutations (BMD) [Fig. 1]. Clinically,
284 had been suspected to have DMD and 29 to have
BMD. Deletions were observed in 287 cases (91.6%) and
duplications in 26 cases (8.30%). Distal deletions
accounted for 74.2%, proximal were 16.56%, while nine
cases showed both proximal and distal mutations. Single
exon deletions were identified in 79/313 cases (25.23%) of
which exon 45 and 51 were commonly deleted. The hot
spot regions were exons 45-52 (17/263), exons 45-50
(16/263) and exon 46-47 (10/263). Multi-exon deletions
(>25 exons) were observed in 9 cases, of which 3 cases
showed severe DMD phenotype [Table 1]. Overall, exon
50 was the most frequently deleted followed by exons 49,
48, 47 & 46. Large duplications (>15 exons) were observed
in 3 out of 26 cases. The most frequently duplicated single
exon was from the exon 4-9 region. Overall, distal region
exons were more frequently duplicated than proximal.
Figure 2 shows the rearrangement frequency of each exon
in the DMD gene.

The maximum number of In-Frame mutations showed
exon 45-47 deletion (29.4%) followed by exon 45-48
deletion (12.5%). Majority of in-frame mutations were in
the distal region (68.6%) as compared to the proximal
(31.3%) region.

Immunohistochemical findings

Muscle biopsy performed in 34 of the 102 MLPA nega-
tive cases showed dystrophic features on routine histo-
logical stains. Immunostaining showed complete loss of
dystrophin expression in 23/34 (67%) cases, reduced and
patchy dystrophin expression at least on one domain in
3/34 (9%) cases, sarcoglycan (a,f,y,8) deficiency in 4/34
cases (12%), B sarcoglycan deficiency in 1/34 cases (3%),
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Fig. 1 Identified mutations & their phenotype
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Table 1 MLPA results of Multiexon deletion (> 25) and missing amino acids with the predicted PROVEAN scores. IF/OF

(In frame/ out of frame)

SNo Case no Diagnosis MLPA results OF/IF Protein deleted Pathogenicity score
1 P1 DMD Exon 8-47 deletion OF D217_L2255del —3506.484

2 P3 DMD Exon 17-52 deletion OF 1665_R2553del —3407.885

3 P4 DMD Exon 8-41 deletion OF D217_11974del —3205.69

4 P9 DMD Exon 11-41 deletion IF G384_11974del —313891

5 P10 BMD Exon 14-42 deletion IF V535_K2039del —2953.782

6 P11 DMD Exon 3-34 deletion IF F32_V1559del —2804.117

7 P12 DMD Exon 3-34 deletion IF F32_V1559del —2804.117

8 P13 DMD Exon 11-31 deletion IF G384_Q1448del —2374516

9 P16 DMD Exon 3-25 duplication IF F32_Q1144del —2020.217

a,p sarcoglycan deficiency in 1/34 cases (3%) and no

duplications in exon 2-7, 2-11 region in our cases.
deficiency in 2/34 cases (6%) [Figs. 3 and 4].

Figure 5 shows a graph of PROVEAN score plotted
against age of onset.

PROVEAN analysis

The possible biological functional effect of sequence
variations on the dystrophin protein was tested for 313
cases by PROVEAN analysis. The output consisted of a
PROVEAN score and a prediction of ‘deleterious’ or
‘neutral’ based on the magnitude of the score and a set
threshold of (-2.5) . Deleterious effect was observed in
297 (94.5%) cases and neutral effect in 16 (5.09%) cases.
Further examination of the neutral effect mutations which  eDystrophin analysis

included both out of frame and in-frame mutations revealed =~ Using eDystrophin database, we analyzed consequences

Hydrophobicity profile analysis

Kyte-Doolittle scale mean hydrophobicity profile analysis
was performed for 48 cases with in-frame mutation.
Mutational disruption in the hydrophobic regions I & III
was found in 7 cases each. In this group of cases, hydro-
phobic region I & III was equally affected. Table 2 repre-
sents the Dystrophin hydrophobic regions mutations.

the deletions to be either exon 51 deletion/duplication or

of in-frame mutations on dystrophin protein structure
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Fig. 3 Transversely cut skeletal muscle tissue shows dystrophic features on HE staining in both DMD and 3- sarcoglycanopathy (Fig | & Q) as against
normal muscle tissue (Fig A). Immunohistochemically, antibodies against dystrophin (dys1,2,3) and sarcoglycans (a,8,y,0) shows preserved expression
along the membrane in all the fibres (Fig B-H) in normal muscle tissue, while total loss of expression for dystrophin (Fig JKL) and preserved expression
for sarcoglycans (Fig M,N,O,P) indicates the diagnosis of the DMD. Note: Preserved expression of dystrophin (Fig RS,T) and & &y sarcoglycans (Fig W.,X)
reduced a-sarcoglycan (Fig U)and complete absence of -sarcoglycan (Fig V) in a case of b-sarcoglycanopathy

for 44 available mutations. On 3D structure modelling of
the dystrophin protein, 12 cases retain the typical fila-
mentous structure of dystrophin, while the filamentous
structure was not maintained in 25 cases. We found that

mutations between exon 1-30 did not affect the protein
structural domains (7 out of 44 cases). Figure 6 depicts
the effect of the most frequent in-frame mutation exon
45-47 deletion in our sample.
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Fig. 4 MLPA negative cases analysed by immunostaining (n = 34)
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Table 2 Hydrophobic region mutations identified in this cohort
by Kyte-Doolittle scale mean hydrophobicity profile analysis
using BioEdit software

Hydrophobic region No. of cases with in-frame mutation

(n=48)

Not involved 33
Involved 15
Region | 7
Region Il 1
Region Il 7
Region IV 0
Discussion

This study presents the retrospective analysis of genetic
testing for 415 clinically suspected DMD/BMD patients
in our centre located in southern India using MLPA.
MLPA is a rapid and highly sensitive technique used to
detect deletions and duplications in the DMD gene
[17-21]. In this cohort, the overall detection rate by
MLPA was 75.42%. Our findings are comparable to
the study Wang et al.,, [22], who reported a mutation
rate of 72.5% in the Chinese population. The present
study showed deletions in 91.6% cases and duplications in
8.30% cases in the dystrophin gene. The frequency of dele-
tion was more common than duplications, similar to fre-
quency reported from other parts of India [23-27]. The
reported deletion rates in Pakistanis is 40.7%, Chinese
66.25%, Korean 45.5% and in Taiwanese patients 36%, thus
showing possible variations among different populations
[22, 28-30]. The duplication rate in our cases mainly
involved larger fragments and the pattern of duplication
was more towards the distal part of the gene unlike other
populations [22]. Random age distribution was observed
in this cohort, i.e. there was no correlation between extent
of deletion/duplication or position of mutation, and the
age of onset of clinical symptoms. This finding was similar
to the Dubowitz study where no correlations could be
drawn between age of onset or severity to the extent of
mutation [31].

Muscle biopsy was undertaken for patients who tested
negative by MLPA. Immunohistochemically, the diagnosis
of DMD was established for the patients with complete
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absence of staining along the sarcolemma. However, BMD
patients showed heterogenous dystrophin expression ran-
ging from reduced patchy staining to normal staining on
IHC [32-34]. The dystrophin — glycoprotein complex is
responsible for stabilizing the muscle fiber, a perturbation
in any of its components may result in overlapping clinical
presentation. Six patients with suspected DMD showed
normal dystrophin labelling, but absence of sarcoglycans
expression. Immunohistochemistry thus still remains the
gold standard method for diagnosing muscular dystro-
phies [24]. IHC should be considered to detect dysfunc-
tional dystrophin expression when genetic testing results
are negative.

Genotype- Phenotype correlation

Age of onset, CK values, age at wheel chair bound and
IQ score was evaluated in this study to define genotype
and clinical phenotype correlation. Patients who lost
ambulation at an average age of 9.5 years were seen to
have deletions in the exon 45-55 region of the DMD
gene (n=30). A lower IQ score was noted largely in
patients who had distal gene deletions. This was keeping
with expectation as the full length isoform Dp427 is
minimally expressed in the brain [35]. The dystrophin
isoforms Dp140 & Dp71 which are highly expressed in
the brain lack the proximal exons. The role of dys-
trophin in the brain remains unclear, however mutations
at the 3’ end of the gene have been associated with com-
promised brain function. Ricotti et al [36] observed that
mutations disrupting the isoform Dpl140 & Dp70 are
more frequently associated with lower IQ scores. There
was no correlation noted in CK values with gene muta-
tion as this was a cross sectional study [37].

The PROVEAN analysis predicts effect of mutation
based on the changed aminoacid sequence of mutated
dystrophin protein. Mutations in exon 45-54 (Out of
frame) and exon 46-54 (In-frame) region in the central
rod domain of dystrophin showed more negative scores
compared to other domains in the present study. Previ-
ous reports demonstrated that the phosphorylation sites
of dystrophin present within the central rod domain
including T2621 which is encoded by exon 53 might affect
the structure of this N terminal domain. Dystrophin upon
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Ci CA { repeat is and the

not be maintained

structure may

H %,

Domains From N (yellow ball) to C term:blue: repeat 16 ; violet: repeat 17 ; cyan
repeat 18 : green: linker R18-R19 ; yellow: repeat 19 ;

Fig. 6 3D- structure model of the mutation site of exon 45-47 deletion obtained from (http://edystrophin.genouest.org)
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phosphorylation is believed to undergo a conformational
change in the N-terminal actin binding domain, thereby
enhancing its affinity for myofibrillar actin [38, 39]. Actin
also binds the central rod domain encoded by exon 31-45
which is located between spectrin type repeats 11-17 [40].
This reconfirms the role of rod domain in dystrophin
function [41].

Dystrophin protein interacts with integral membrane
proteins to form the dystrophin- glycoprotein complex
(DGC). The role of DGC is to stabilize the sarcolemma
and protect the muscle fibers from long term damage.
The hydrophobic region of dystrophin plays an import-
ant role in maintaining the stability and interaction with
other proteins. There are four hydrophobic regions in
dystrophin coded by exons 3—6 (region I), 42 (region II),
51 (region III), and 65—-68 (region IV) which are found
on the calponin homology CH2 domain on the actin-
binding domain (ABD), spectrin-type repeat 16, hinge III
and the EF Hand domain respectively. Liang et al [16]
observed that mutational disruption in the hydrophobic
region I, II, IV directly impairs the DGC function which
leads to severe DMD phenotype, whereas, region III
disruption leads to a less severe BMD phenotype.
Carsana et al [42] demonstrated that an in-frame dele-
tion of the hinge region in the distal rod domain shows
a milder phenotype compared with deletions that do not
include hinge III region. Further analysis by PROVEAN
programme showed the deletion of hinge III region has
more negative score compared to deletions which do
not include the hinge III region. This suggests that clin-
ical severity of the BMD maybe determined by the pres-
ence or absence of hinge III region in the dystrophin
protein. However, all patients (n = 12) with exon 51 dele-
tion /duplication corresponding to region III with age of
onset ranging from 1-8 years had a severe DMD pheno-
type as predicted by reading frame rule.

Dystrophin is a large cytoskeletal protein comprised of
four domains. The larger central rod domain has 24
repeating units similar to spectrin-like repeats. The
repeat is a triple coiled coil structure made up of three
helices with heptad pattern of amino acids [43, 44]. This
filamentous protein acts as a scaffold for several inter-
acting partners and also provides resistance to the stress
of muscle contraction. Any mutation altering this
structure of dystrophin might be expected to affect its
function along with that of its binding partners. The
eDystrophin programme provides a computational
model for each in-frame mutation and shows whether
an approximate 3D filamentous structure is reconsti-
tuted (hybrid repeat) or a more deleterious structure
(fractional) repeat is formed. Nicholas et.al [44] reported
the differences in the structure of mutant dystrophin pro-
tein may be responsible for clinical heterogeneity in BMD
patients. They observed earlier wheel chair dependency
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and early development of cardiomyopathy in patients with
exon 45—47 (Fractional repeat) deletion compared to exon
45-48 (Hybrid repeat) deletion. Fractional repeat has
slower refolding dynamics and higher molecular surface
hydrophobicity compared to hybrid repeat. In this study,
the most prevalent in-frame deletion observed was
exon 45-47 deletion which was associated with age of
onset 4-20 years and exon 45-48 deletion which was
associated with age of onset 5-20 years. Analysis of
hinge III deletion in e-dystrophin programme also results
in retention of typical filamentous structure of dystrophin
(hybrid repeat). The hybrid repeat reconstitution depends
on exon phasing and though the presence of hybrid repeat
does not restore the dystrophin function completely, it
results in a more functional protein compared to frac-
tional repeat [15]. Exon phasing if considered along with
restoration of reading frame for exon-skipping therapy
might result in improved clinical outcome.

To assess the effect of mutation on clinical severity,
we did correlations between pathogenicity score and the
age of onset of the clinical symptoms primarily, observed
muscle weakness. Both DMD & BMD patients showed
no definite correlation between sequence variation as
assessed by PROVEAN score and clinical symptoms. In
this cohort, we observed ‘neutral effect’ both in patients
having exon 51 deletion/duplication which would pro-
duce truncated protein and duplications in exon 2-11
region, where the entire amino acid sequence is dis-
turbed. We hypothesize that this mild phenotype seen as
milder disease progression despite a large predicted ‘out
of frame’ mutation in the proximal part of the protein
could be due to compensatory changes in the down-
stream region. Further, the possibility of false positive
deletion calls due to variations at the site of primer
binding cannot be ruled out. These mutations which
cannot be detected by MLPA should be further evalu-
ated by sequencing.

Conclusion

In this study, the mutational spectrum of patients at this
centre were compared with global populations. Our data
reiterates that muscle biopsy followed by immunohisto-
chemistry should be considered only when genetic tests
results are negative. The phenotype— genotype correl-
ation revealed that the clinical severity of BMD depends
on the site and type of deletion to some extent. It also
indicates that the presence of central rod domain plays an
important role in dystrophin function and disease progres-
sion of DMD/BMD. Identification and characterization of
dystrophin domains and their binding partners is very
important for understanding the pathways that are
involved, which in turn might help in devising treatments
for this devastating disorder. An accurate genetic diagnosis
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is essential for genetic counselling and patient’s treatment
because therapies are mutation-specific. It may be advisable
to carry out targeted sequencing to detect point mutations
or any additional variants that may affect disease severity.

Additional file

[ Additional file 1: Listing of mutations found in our samples. (XLSX 16 kb) ]
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