
Plant Communications
Correspondence

llll
iCREPCP: A deep learning-based web server
for identifying base-resolution cis-regulatory
elements within plant core promoters
Published by the Plant Communications Shanghai Editorial Office in

association with Cell Press, an imprint of Elsevier Inc., on behalf of CSPB and

CEMPS, CAS.
Dear Editor,

A central question of plant biology is how to specify the temporal

and spatial patterns as well as the quantitative levels of gene

expression, which are significantly associated with important

agronomic traits. There has been a growing consensus in the

past decade that the two key factors determining gene expres-

sion level are cis-regulatory modules (CRMs) and trans-acting

factors (TAFs) (Schmitz et al., 2022). Common CRMs include

gene-proximal promoters and distal enhancers, which are both

considered to be complex assemblies of cis-regulatory elements

(CREs). It is the binding or interaction between CREs and TAFs

(often transcription factors [TFs]) in a ubiquitous or cell-specific

manner that determines in which cell, at what time, and at what

level a gene is expressed. Therefore, the identification of plant

CRMs or critical CREs will not only help us understand transcrip-

tional regulatory mechanisms in plants but also serve as an

essential prerequisite for plant breeding 4.0—breeding by

genome editing (Gao, 2021).

However, by comparison with rich data resources on CREs in

mammalian genomes (Fornes et al., 2020), related work in

plants has lagged far behind (Schmitz et al., 2022). This

bottleneck has two main aspects: (1) the lack of a large project

like ENCODE in plants makes epigenomic features absent or

fragmented, leading to only a handful of putative plant CREs

from genome-wide identification; (2) too few transient transfec-

tion systems (only two, in protoplasts and tobacco leaves;

Jores et al., 2021), together with difficult validation assays,

such as self-transcribing active regulatory region sequencing in

plants, has resulted in fewer experimentally validated CREs.

The plant core promoter (PCP), with aminimal sequence region of

50–100 bp around the transcription start site (TSS), is a large

group of CRMs that are rich in CREs and can drive the basal level

of target gene transcription (Schmitz et al., 2022). The promoter

strength of the PCP is defined as its ability to drive the

expression of a barcoded green fluorescent protein reporter

gene via transient transfection systems. To the best of our

knowledge, there is no existing computational tool for

identifying CREs within PCPs. Here, we developed a deep

learning-based web server (http://www.hzau-hulab.com/

icrepcp/) to identify the CREs contained in a given

PCP (iCREPCP), with a focus on the base-resolution position of

each CRE and its contribution to promoter strength.

We first downloaded a large-scale PCP dataset of 18 329 Arabi-

dopsis, 34 415 maize, and 27 094 sorghum core promoters,

whose strengths were measured by self-transcribing active reg-

ulatory region sequencing assays in six transient transfection
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systems (tobacco leaves with enhancer in the dark, tobacco

leaves without enhancer in the dark, tobacco leaves with

enhancer in the light, tobacco leaves without enhancer in the

light, maize protoplasts with enhancer in the dark, andmaize pro-

toplasts without enhancer in the dark) (Jores et al., 2021).We took

‘‘sequence’’ as input and ‘‘enrichment’’ as output from a total of

�76 000 samples of all three species for training and testing

deep learning models.

We next trained a deep learning architecture of ‘‘DenseNet’’

(Huang et al., 2017) to fit promoter strengths with their DNA

sequences. DenseNet won the best paper award at CVPR-

2017 and can alleviate the vanishing-gradient problem (Figure 1A

supplemental information). As expected, iCREPCP accurately fit

the experimental results from all six transfection systems: the

mean training R2 ranged from 0.490 to 0.782, and all models had

low variances, implying their feasibility (Figure 1B). We next

investigated its generalizability using an independent testing

dataset (supplemental information). iCREPCP achieved good

testing R2 values from 0.420 to 0.752 and clearly improved

on previous work that used a simple convolutional neural

network (Jores et al., 2021) (Figure 1B), implying its strong

generalizability. Moreover, the small differences between training

R2 and testing R2 (ranging from 0.03 to 0.07) demonstrated that

iCREPCP has few problems with overfitting, further suggesting

that it has potential transfer abilities for other plant species.

To investigate the biological interpretability and practicality of

iCREPCP, we are more concerned here with the contribution of

each base during promoter strength prediction of the PCP rather

than on prediction accuracy. Several successive bases thatmake

high contributions are potential critical CREs and are therefore

ideal targets for genome-editing engineering (Gao, 2021). To

identify such bases, we employed a powerful interpretability

tool, DeepLIFT (Shrikumar et al., 2017), to assign a DeepLIFT

contribution score to each base of a given PCP. We employed

two known PCP examples, the maize YIGE1 gene and the rice

IPA1 gene, to demonstrate the detection power of iCREPCP

together with DeepLIFT (DeepLIFT contribution scores are visual-

ized as tall characters with colors to help readers easily identify

the critical bases). YIGE1 is a newly reported maize gene that

contributes to ear length and grain yield; a single-nucleotide

polymorphism located in its regulatory region has a large effect

on its promoter strength (Luo et al., 2022). Using the trained

model from tobacco leaves without enhancer in the light,

iCREPCP successfully located a regulatory region with a
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Figure 1. The workflow of iCREPCP.
(A) The deep learning architecture of DenseNet.

(B) The prediction performances via R2 on training sets and independent testing sets from six transient expression systems (The error bar represents the

R2 fluctuation among 10 times training with random division of the training set and the validation set).

(legend continued on next page)
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large contribution flanking the important single-nucleotide

polymorphism (also repeatedly detected by two additional

interpretability tools, in silico tilling deletion and in silico

mutagenesis, Figure 1C), demonstrating its detection power.

For the trans-species circumstance, IPA1 is a key rice gene

that is a master regulator of rice plant architecture. Its function

is known to increase grains per panicle but reduce tillers;

however, a recent breakthrough showed that a 54-base pair

cis-regulatory deletion can increase both grains per panicle and

tiller number (Song et al., 2022). Surprisingly, iCREPCP

successfully detected a 12-bp region (–128 to approximately

–117) with large contributions that exactly covered the An-1 bind-

ing site within the deletion (Figure 1D and Supplemental Figure 1),

implying that iCREPCP has great potential for trans-species

identification of critical CREs with base-level resolution.

To obtain a rough estimate of the precision and recall of

iCREPCP, we constructed a benchmark of Arabidopsis

CREs that was used for evaluation: precision and recall were

0.447 and 0.344, respectively (Supplemental Figure 3 and

supplemental information).

To investigate the biological implications of several successive

bases with high DeepLIFT contribution scores, we next

askedwhether they were TFmotifs and then used a newmotif dis-

covery algorithm, TF-MoDISco (Shrikumar et al., 2018), which

was specifically developed for deep learning, to identify high-

quality, non-redundant TF motifs within PCPs (supplemental

information). For the model trained on tobacco leaves without

enhancer in the light, TF-MoDISco identified 21 clustered seqlets,

14 of which have perfect matches in the JASPAR database

(Figure 1E and Supplemental Figure 2; Supplemental Table 1).

To further quantify the population-level effect size of the 14 en-

riched TF motifs, we performed a global importance analysis

(Koo et al., 2021) and found that 8 (including the TATATA motif,

TCP8, and AP1) had positive global importance, whereas 6

(including ERF3 and ABI3) had negative effects (Figure 1F).

Finally, we scanned all 75 375 PCPs using the 14 PWMs of the

enriched TF motifs and obtained comprehensive statistics for

their occurrence numbers in each PCP sample (Figure 1G;

Supplemental Table 2). Notably, the TATATAmotif had the highest

occurrence numbers in PCPs with large promoter strengths in all

three species, whereas the ERF3 motif had more occurrences in

PCPs with low promoter strengths in sorghum and maize, consis-

tent with their results in the global importance analysis.

In summary, iCREPCP (Figure 1H) provides a user-friendly plat-

form for the identification of critical CREs that make an important

contribution to the promoter strength of any given PCPwith base-
(C) Themaize YIGE1 gene is used as an example to demonstrate the detection

region: chr1_51127917-51128086; the second panel shows the FIMO scann

fourth and fifth panels show the results of in silico tilling deletion, in which the d

of 5-bp deletion across the whole sequence; the bottom panel is a heatmap

(D) A trans-species example of the rice IPA1 gene, using the same layout as

(E) Fourteen seqlets identified by TF-MoDISco using the model of tobacco le

(F) Motif occurrence frequencies and global importance values of 14 enriched

(G) Heatmap demonstrating the occurrence numbers of 14 enriched TF moti

represents a specific TF motif. The row order (from top to bottom) is based on

order (from left to right) is based on the total occurrence numbers of TF motif

(H) The iCREPCP homepage.
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level resolution. These resources, including the six trained predic-

tionmodels and a powerful visualization tool, will help plant scien-

tists to: (1) easily obtain an accurate promoter strength prediction

based on only the 170-bp DNA sequence around the TSS; and (2)

precisely detect the position of each CRE with base-level resolu-

tion and its contribution to promoter strength. The latter function

will provide important candidate targets for genome editing and

will be of general interest to the plant community. The main limi-

tation of iCREPCP is that it was trained with promoter strength

measured in vitro via tobacco leaves or maize protoplasts,

implying that iCREPCP may not work well on some genes that

exhibit distinct expression patterns in vivo. Another limitation

is that prediction accuracy is sensitive to the boundary

(Supplemental Figure 4), implying that our models can only be

used on the region (–165, +5) of the TSS. Further improvements

in iCREPCP will focus on the accurate identification of distal

CREs: (1) taking longer genomic sequences as inputs in order

to cover more distal CREs (such as enhancers) that influence

gene expression; and (2) developing more sophisticated

models for capturing long-range dependency information.
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power of iCREPCP. The top panel shows a snapshot of the core promoter

ing results; the third panel shows the DeepLIFT contribution scores; the

ifference in predicted promoter strength is measured with a sliding window

demonstrating the in silico mutagenesis results.

(C).

aves without enhancer in the light and their similar TF motifs in JASPAR.

TF motifs in the model of tobacco leaves without enhancer in the light.

fs within all 75 375 PCPs. Each row represents a PCP, and each column

promoter strength (from high to low) within each species, and the column

s across the three species (from more to fewer).
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