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Abstract

Understanding expression levels of proteins and their interactions is a key factor to diagnose

and explain the Down syndrome which can be considered as the most prevalent reason of

intellectual disability in human beings. In the previous studies, the expression levels of 77

proteins obtained from normal genotype control mice and from trisomic Ts65Dn mice have

been analyzed after training in contextual fear conditioning with and without injection of the

memantine drug using statistical methods and machine learning techniques. Recent studies

have also pointed out that there may be a linkage between the Down syndrome and the

immune system. Thus, the research presented in this paper aim at in silico identification of

proteins which are significant to the learning process and the immune system and to derive

the most accurate model for classification of mice. In this paper, the features are selected by

implementing forward feature selection method after preprocessing step of the dataset.

Later, deep neural network, gradient boosting tree, support vector machine and random for-

est classification methods are implemented to identify the accuracy. It is observed that the

selected feature subsets not only yield higher accuracy classification results but also are

composed of protein responses which are important for the learning and memory process

and the immune system.

Introduction

Down syndrome (DS) is a very common identifiable genetic cause of intellectual disability

(ID) and affects approximately one in 700 live births [1]. In addition to ID, people with DS are

at risk for certain types of blood diseases, like leukemia, autoimmune disorders and Alzhei-

mer’s disease (AD) [2, 3].

The characteristics of DS can be diagnosed by the observation of the extra copy of whole or

a portion of the long arm of human chromosome21 (Hsa21). Hsa21 is responsible for nearly

160 protein-coding genes and five microRNAs [4]. Over expression of these proteins which

include transcription factors, cell surface receptors, protein modifiers, adhesion molecules,

RNA splicing factors and components of many biochemical pathways can cause the learning

and memory (L/M) deficits. In addition for a person diagnosed with DS, the number of

PLOS ONE | https://doi.org/10.1371/journal.pone.0210954 January 28, 2019 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kulan H, Dag T (2019) In silico

identification of critical proteins associated with

learning process and immune system for Down

syndrome. PLoS ONE 14(1): e0210954. https://doi.

org/10.1371/journal.pone.0210954

Editor: Wajid Mumtaz, Zapadoceska univerzita,

CZECH REPUBLIC

Received: April 11, 2018

Accepted: January 6, 2019

Published: January 28, 2019

Copyright: © 2019 Kulan, Dag. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: HK holds a PhD Scholarship from Tubitak

2211 A National Scholarship Programme for PhD

Students. The funder had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0001-8166-1967
https://doi.org/10.1371/journal.pone.0210954
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210954&domain=pdf&date_stamp=2019-01-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210954&domain=pdf&date_stamp=2019-01-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210954&domain=pdf&date_stamp=2019-01-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210954&domain=pdf&date_stamp=2019-01-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210954&domain=pdf&date_stamp=2019-01-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210954&domain=pdf&date_stamp=2019-01-28
https://doi.org/10.1371/journal.pone.0210954
https://doi.org/10.1371/journal.pone.0210954
http://creativecommons.org/licenses/by/4.0/


neurons and cellular morphology are not normal in brain regions, such as the cortex, cerebel-

lum and hippocampus [5–7].

Scientists have been using mice to find a treatment for the DS. However, it is compelling to

model DS in mice since orthologs of the Hsa21 genes map to many mouse chromosomes,

chromosomes 10, 16 and 17. However, Ts65Dn trisomic mice consisting 88 orthologs of

Hsa21 protein coding genes and 5 microRNA genes can be used as a DS mouse model [8, 9].

For the treatment of the DS, many efforts are in progress in order to develop drugs. More than

20 drugs which have diverse properties, such as N-methyl-D-aspartate receptor (NMDAR)

antogonist, γ− aminobutyric acid A (GABAA) receptor antagonists, acetylcholinesterase

inhibitors and the green tea component have been shown to be effective for rescuing perfor-

mance in L/M tasks [10–18].

One of these drugs called memantine, is an NMDAR antagonist and it modulates excitatory

neurotransmission through antagonizing the activity by binding the N-methyl D-aspartate 2A

(NR2A) and N-methyl D-aspartate 2B (NR2B) subunits with high on and off rates [13, 19, 20].

The NMDARs gated by glutamate plays an essential role in excitatory transmission and L/M

process. When excessive amounts of glutamate binds to NMDARs, they generate free radicals

and cause the synaptic dysfunction [21]. However, when memantine binds to NMDARs, it

prevents glutamate binding and thus prevents cognitive and memory deficits [22]. By inspect-

ing the protein profiles of normal and trisomic mice with and without memantine treatment,

the impact of memantine on learning capability can be evaluated. In order to understand

which protein expressions in control mice are important for successful learning, which abnor-

malities for Ts65Dn trisomic mice cause failed learning, and which changes by memantine

give rise to rescued learning for Ts65Dn trisomic mice, protein expression data has been evalu-

ated by computational learning methods [23, 24].

In this study, we applied supervised learning methods to protein expression data for 77 pro-

teins (thus a 77dimensional space) taken from the cortex of control and Ts65Dn trisomic

mice, with and without memantine treatment and with and without contextual fear condition-

ing (CFC). We compared our results with previous studies where Self Organizing Map (SOM)

was used to pinpoint functional or regulatory similarities among proteins with similar expres-

sion profiles.

In previous works, it was shown that discriminating proteins were enriched in processes,

such as mTOR signaling pathway, AD, MAPK signaling pathway and apoptosis [25]. In

addition, it was also stated that DS could be related to the immune system and considered

the DS as an immune disorder [26]. It was shown that interferon response which happened

in response to the presence of several pathogens, such as parasites, viruses, bacteria and

also tumor cells were consistently activated in cells obtained from individuals with the

DS and could cause autoimmune disorders and leukemia, and perhaps AD. Because of

this reason, we have inspected the feature subsets to understand their role in the immune

system.

Per our findings, the selected protein subsets that we found can result in more accurate clas-

sification models of mice than those selected protein subsets chosen in previous studies. We

have achieved better results by using different preprocessing steps and feature selection meth-

odology when compared to previous studies. To select the best parameters for different classifi-

cation methods to differentiate control and Ts65Dn trisomic mice, we applied the grid search

method. To build a robust and reliable classification model, cross validation is used. Thus, our

results are not only more accurate, but also composed of protein expressions that are impor-

tant in the L/M process and the immune response. We made these conclusions after inspecting

the literature to understand the importance of proteins in selected feature subsets. As a conse-

quence, we believe that the protein subsets selected by applying the method described in this
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paper can be utilized to understand the effects of proteins on L/M task and can be used to

develop effective drugs.

Related work

Protein abnormalities in DS were studied by using different techniques to select proteins in

the literature as stated in Table 1. Firstly, Ahmed et al [27, 28] studied a three level mixed

effects (3LME) statistical analysis model of the Ts65Dn trisomic and normal mice protein pro-

files with and without exposure to CFC. Later, Higuera et al [25] examined the profiles using

unsupervised learning, SOM to find important proteins for three cases; successful learning,

rescued learning with memantine and failed learning. However, Eicher et al [29] believed that

the problem was more suitable as a classification problem instead of a clustering problem and

applied the linear SVM to find out proteins are discriminatory between two classes or groups

of classes. A. Block et al [12] applied 3LME and used another drug RO4938581 for rescuing

protein anomalies. B. Feng et al [30] used adaptive boosting (AdaBoost) method for feature

selection and applied random forest, SVM and decision tree classification techniques for dif-

ferentiating normal and trisomic mice.

Ahmed et al [27, 28] measured 84 protein expression levels in the hippocampus and the

cortex of normal mice to evaluate learning capability. Context shock (CS) and shock context

(SC) classes were partitioned into memantine or saline injected subclasses yielding four differ-

ent classes and these four classes were analyzed. Memantine usage improved L/M capability in

patients with AD [22]. Thus, the effects of memantine were assessed for comparison with DS.

They showed that more than half of the protein levels changed significantly in the hippocam-

pus. The number of proteins showing important changes in the cortex was smaller [27]. Fur-

thermore, they applied this study to Ts65Dn trisomic mice to understand their protein

dynamics for learning capabilities. They showed that there were indicative differences between

the normal and Ts65Dn trisomic mice profiles [28].

Higuera et al [25] claimed that the statistical analysis performed by Ahmed et al [27, 28]

was not satisfactory to determine all changes in protein profiles. They proposed that machine

learning methods might fulfill these needs. They applied SOM to cluster protein profiles by

using 77 proteins rather than 84. They described a set of class-specific clusters which were con-

stituted from a set of adjacent nodes containing only samples from a single class or a node

with at least 80% of its samples obtained from one mouse. Then, they applied the Wilcoxon

rank-sum test and detected that protein levels were significantly different between each pair of

clusters and specified those proteins as discriminatory between two classes.

A. Block et al [12] used GABAAα5− selective modulator, RO4938581, for rescuing protein

anomalies of trisomic Ts65Dn mice. In their work, 91 protein levels relevant to brain functions

were measured by applying the 3LME. 44 of the 52 anomalies in trisomic Ts65Dn mice were

corrected by RO4938581.

Eicher et al [29] believed that the problem was naturally related to classification problem

rather than clustering problem since the determination of proteins that can separate two

Table 1. Studied techniques in the literature.

Techniques

Ahmed et al [27] 3LME statistical model

Higuera et al [25] Unsupervised Learning(SOM)+Wilcoxon rank-sum test

Eicher et al [29] Supervised Learning(Linear SVM)+Wilcoxon rank-sum test

A. Block et al [12] 3LME statistical model

B. Feng et al [30] Supervised Learning(AdaBoost)

https://doi.org/10.1371/journal.pone.0210954.t001
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classes or groups of classes was required. In addition, they stated that classification methods

could give higher accuracy than clustering methods as re-labeling clusters might lower the result

accuracy and also accuracy could be measured more efficiently by using quantitative methods

like cross validation, training and testing prediction rather than a visual basis. Therefore, they

applied linear SVM for differentiating proteins. The classification performance of the linear

SVM algorithm was better than the methods used in previous studies. However, for determin-

ing important proteins for more than two classes as an input to Higuera et al [25], Eicher et al

[29] aggregated classes to constitute new positive and negative classes. These aggregated class

results are not compared with the Higuera’s work efficiently. Since linear SVM was not efficient

for multi-class classification of proteins, multiclass classification methods were needed.

B. Feng et al [30] reduced feature subset from 77 to 30 features by applying AdaBoost

method and applied Random Forest, Decision Tree and SVM classification methods to distin-

guish normal and trisomic Ts65Dn mice. They showed that selected protein datasets gave

higher classification results. However, they did not consider control and Ts65Dn mice, with

and without memantine treatment and with and without CFC stimulation subgroups. They

were able to only differentiate control group from the trisomic group. Thus, their work did not

show systematic analysis which was carried out with Higuera’s work by inspecting the sub-

groups. Also, AdaBoost has been a very efficient method for solution of the two-class classifica-

tion problem. However, in going from two-class to multiclass classification, naive AdaBoost

algorithm has restricted to the reduction of the multiclass classification problem to multiple

two-class problems. Thus, multiclass classification algorithms are needed to determine which

proteins are discriminatory when there are more than two classes. For this reason, using naive

Bayes learner which is one of the machine learning algorithms for multiclass classification [31,

32], we applied forward feature selection technique in our previous work [33] for the determi-

nation of important proteins for the DS. After selecting features, DNN, random forest and SVM

classification methods are used to differentiate control and trisomic Ts65Dn mice. The accuracy

result of our work turned out to be higher than B. Feng’s work for all classification methods.

In this study, naive Bayes learner in forward feature selection method is used for learning

process and features are selected based on their effects of the improvement in our model. After

selecting features, DNN, gradient boosted tree, random forest and SVM classification methods

are used to differentiate control and trisomic Ts65Dn mice. The control and Ts65Dn mice

with and without memantine treatment and with and without CFC stimulation subgroups are

analyzed and the accuracy results of different classification methods are compared with the

accuracy results of feature subsets selected in Higuera’s work in which systematic analysis was

carried out by implementing SOM for three cases, successful learning, rescued learning and

failed learning.

Materials and methods

Datasets

The dataset that we used in this paper are obtained from University of California Irvine

Machine Learning Repository [34]. The same data was also used in Higuera’s work [25] with

which we will compare our results. The data contains of the expression levels of 77 proteins

obtained from the nuclear fraction of cortex. In the dataset, there are 38 control mice and 34

trisomic Ts65Dn mice. 15 samples (three replicates of a five-point dilution series) are extracted

from each mouse, resulting in 1080 samples.

The dataset is divided into eight classes of mice based on the protein profiles of 77 proteins

after training in CFC with and without injection of memantine. These 77 proteins have roles

for brain function, structure or development. Table 2 describes format of dataset in which
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rows show the individual mice and columns show the expression levels of the 77 proteins and

the class of each mice.

Table 3 shows eight classes of mice in the dataset based on their types, their exposure to CS

or SC, applied drugs, number of mice in each class and their learning outcomes.

In CFC protocols [35], CS group are placed in a cage, waiting several minutes to explore the

context. Later, an electric shock is applied. It is expected from wild type mice to link the con-

text with an electric shock and would freeze after re-exposure to the same cage. The SC group

is placed in a cage for controlling the effect of the shock alone. After placement in the cage, the

electric shock is given immediately. It is expected that wild type mice do not learn to link the

cage with shock and do not freeze after re-exposure the same cage. However, the trisomic

Ts65Dn CS group of mice can not to learn and they do not freeze. However, if the Ts65Dn CS

group of mice is injected with memantine, learning can be rescued [13].

After determining the groups, protein expression levels of each mice are measured with

reverse phase protein arrays (RPPA) [36] which provides a quantitative analysis of the differ-

ential expression of proteins.

Data preprocessing

For some of the mice in the dataset, one or more protein level measurements have missing val-

ues. The missing values are replaced by the average expression levels of the corresponding

sample of the mice in the same class. For example, if a mouse is missing the first sample expres-

sion level information, the missing value is replaced by the average value of the first sample

protein expression of other mice in the same class.

The replacement method that we use is different from previous studies. In the previous

studies, missing values were replaced with the average value of all protein expression levels in

same class mice. 15 tissue samples that are three replicates of a five-point dilution series were

obtained per mouse. We considered the effect of dilution ratio and applied different calcula-

tions to handle missing values. In addition to replacing the missing parts, all measurements are

normalized with Z-score normalization to prevent proteins with higher values influence on the

classification result erroneously. In order Z-score normalization to preserve range (maximum

and minimum), we applied Z-score normalization rather than max-min normalization which

was applied in Higuera’s work [25]. With Z-score normalization as shown in Eq (1), mean of

the scores is subtracted from each score and then divided into the standard deviation [37].

Z ¼
x � m
s

; ð1Þ

Feature selection

Before building a classification model, dimensionality reduction is very crucial for the under-

standing the information about the class. Dimensionality reduction is the process of

Table 2. Description of protein expression data.

Mice P1 P2 ‥ ‥ ‥ P77 Class

mouse 1 0.504 0.747 1.676 c-cs-m

mouse 2 0.515 0.689 1.744 c-cs-m

mouse 3 0.509 0.730 1.926 c-cs-m

‥
mouse n

https://doi.org/10.1371/journal.pone.0210954.t002
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decreasing the number of features for identification of the most relevant and important vari-

ables. It has the effect of decreasing the computational cost. For dimensionality reduction, fea-

ture selection and feature extraction methods can be used. Feature selection choses a subset of

features, while feature extraction generates a new feature set of original features.

The feature selection method, named as forward feature selection, is used in our work. It is

the heuristic method which tries to find the optimal feature subset by iteratively selecting fea-

tures based on the classifier performance. It begins with an empty feature subset and adds one

feature at a time for each round. This one feature is taken from the pool of all features that are

not in the feature subset and when added it results in best classifier performance. The above

process is repeated until the required number of features are added. It does not examine all

possible subsets and does not give a guarantee to find the optimal subset. However, it reduces

the search time when compared to exhaustive feature selection [38].

In this study, forward feature selection is applied [39] using the Knostanz Information

Miner (KNIME). The logic of program is a search loop. Inside the loop, the dataset is divided

into a learning set (70%) and a validation set (30%). Learning set is used for the construction

of the model in the current selection of the variables and validation set computes an unbiased

error rate estimation. For the learning process, naive Bayes learner which was applied to multi

classification problem is used. In spite of the underlying simplifying assumption of conditional

independence, naive Bayes performs well with more than two classes problem. [33, 40]. In pre-

vious studies, the applied algorithms suffered from an efficient multiclass classification tech-

nique. In our studies, we eliminated this deficiency with naive Bayes algorithm in forward

feature selection method.

Classification methods

After selecting features, classification methods are applied for differentiating mice in different

subgroups. We carried out four classification methods, DNN, gradient boosted tree, random

forest and SVM. These classification methods are implemented by using Python and Scikit

Learn package [41]. In order to select the most appropriate parameters of classification meth-

ods, grid search method [42] is applied. Also, for building robust and reliable classification

model, 5 fold cross validation is applied. Thanks to cross validation, a learner can generalize to

an unknown data set. In K Fold cross validation [43], the data is partitioned into k subsets.

Only one of these subsets is used as the test set and the others are constituted to a training set

at each time. This procedure is repeated k times. The error estimation is averaged over all k tri-

als to get total effectiveness. This way significantly decreases bias since we are using most of

the data for fitting. It also significantly reduces variance as most of the data is also being used

Table 3. Classes in the dataset.

Class Type of Mice Type of Experiment Treatment Number of Mice Learning Outcome

c−SC−s Control Shock Context Saline 9 No Learning

c−SC−m Control Shock Context Memantine 10 No Learning

c−CS−s Control Context Shock Saline 9 Normal Learning

c−CS−m Control Context Shock Memantine 10 Normal Learning

t−SC−s Trisomic Shock Context Saline 9 No Learning

t−SC−m Trisomic Shock Context Memantine 9 No Learning

t−CS−s Trisomic Context Shock Saline 7 Failed Learning

t−CS−m Trisomic Context Shock Memantine 9 Rescued Learning

https://doi.org/10.1371/journal.pone.0210954.t003
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in validation set. In the rest of this section, a brief discussion on the four types of classification

methods that we have used in our study is described.

Deep Neural Network

DNN is type of a neural network with multiple layers between the input and output layers.

Neural networks are inspired from human brain as they acquire knowledge through learning

and composed of connected units called artificial neurons which is analogous to biological

neurons in a brain. Each connection between neurons can transmit a signal to another neuron

and may also have a weight that can increase or decrease the strength of the signal. Neurons

are generally organized in layers and signals travel between layers. In order turn the input into

the output, DNN tries to find the relationship whether linear or not. The network moves

through the layers calculating the probability of each output [44].

Gradient boosted tree

Boosting is a sequential ensemble method that converts weak learners to a strong learner by

promoting previously mislabeled data with higher weight. Thus, the subsamples of data have

an different probability of appearing in subsequent models and the ones with the highest prob-

ability of error appear most [45]. Gradient boosting builds the model in a sequential way. At

each step the decision tree hm(x) that is base learner is selected to minimize a loss function L

given the current model Fm−1(x) as shown in Eq (2).

F0ðxÞ ¼ argmin
Xn

i¼1

ðLðyiÞ; gÞ;

FmðxÞ ¼ Fm� 1ðxÞ þ ghmðxÞ

ð2Þ

In above equation, m is the number of iterations, Fm(x) is the model and γ is the learning rate.

Support vector machines

SVM is a supervised machine learning classification method which uses a data set d-dimen-

sional Euclidean space. The number of d represents the number of features in the data set.

Later, SVM finds an optimal (d-1)dimensional hyperplane as given in Eq (3) to separate the

data by class. In this equation, w represents a weight vector of length d and b represents a bias

term. The distance between the hyperplane and the nearest data point from either part of the

hyperplane is known as the margin. In order to classify new data correctly, the distance

between between the hyperplane and any point within the training set must be higher [46].

w:x þ b ¼ 0 ð3Þ

Random forest

Random forest is composed of many decision trees which are selected from a random subset

of training set. It constructs random forest by combining a large number of decision trees and

outputs the class that is the mode of the classes or mean prediction of the individual trees [47].

Random forest classification methodology is described in Fig 1.

Model is tuned with two parameters ntree and ntry to get optimized forest architecture.

The parameter ntree specifies how many trees are to be built to populate the random forest
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where as ntry specifies the number of variables that will be considered at any time in deciding

how to partition the dataset.

Results

Using the KNIME tool [39], forward feature selection technique is used to obtain the feature

subsets for identifying the critical proteins in successful learning, rescued learning and failed

learning cases. Afterwards, in order to validate importance of selected proteins, principal com-

ponent analysis (PCA) is carried out. After determination and validation crucial proteins,

DNN, gradient boosted tree, random forest and SVM classification methods are executed.

PCA and application of classification methods are carried out with Python and Scikit learn

package [41]. Also, grid search which is the parameter optimization technique [42] and 5 fold

cross validation are done for obtaining robust and reliable classification results. The below

subsections successively show the results of feature selection method, PCA and classification

methods for successful learning, rescued learning and failed learning.

Feature selection results

Forward feature selection method is applied with KNIME tool [39] and then results of selected

feature subsets are compared with Higuera’s work [25]. In that work, three feature subsets

were highlighted for normal learning, rescued learning and failed learning. Higuera et al [25]

analyzed control mice and trisomic mice separately and together in order to understand the

changes in protein levels. To understand which of the protein expression level changes are

required for successful learning, all groups of normal mice were inspected in the first case. To

determine important proteins in rescued learning, trisomic mice exposed to CFC with and

without memantine were analyzed in the second case. The third case found out important pro-

tein abnormalities in failed learning by comparing normal and trisomic mice protein expres-

sion levels.

Fig 1. Random forest classification algorithm.

https://doi.org/10.1371/journal.pone.0210954.g001
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In our work, similar to Higuera’s work, we also selected three feature subsets to understand

critical proteins in normal learning, rescued learning and failed learning. The number of fea-

tures in feature subsets are selected based on the number stated in Higuera’s work [25] for

comparison purposes. The difference in preprocessing and feature selection methods affect

results in a positive manner and important proteins that were not highlighted in the previous

work are found in normal learning, rescued learning and failed learning cases.

1. Feature subset of data from control mice. Table 4 shows the selected features and

their accuracy with normal learning when selected feature is added to the subset. Under the

first case, feature subset is selected from control group mice data. By comparing control group

mice with and without memantine treatment and with and without CFC stimulation, critical

proteins in successful learning can be understood. When compared with Higuera’s work [25],

there are 4 common proteins (SOD1, pGSK3B, S6, CaNA) out of 11 proteins which are shown

in bold. After literature review, it can be deduced that the selected proteins in successful learn-

ing are related to the L/M pathway and the immune responses [48–62].

2. Feature subset of data from trisomic Ts65Dn mice. In the second case, to understand

the important proteins in rescued learning, features are selected from data consisting of triso-

mic mice which are exposed to CFC with and without memantine. When exposed to CFC, the

trisomic mice fail to learn if they are not treated with memantine which rescues the learning

performance. Table 5 shows the selected features and their accuracy results obtained when the

corresponding feature is added to feature subset in rescued learning case. There are 2 common

proteins (BRAF, CDK5) when compared with previous work. Literature search shows us that

selected proteins in rescued learning are related to L/M process and immune response [63–69].

3. Feature subset of data from control and trisomic Ts65Dn mice. Under the third case,

for identifying proteins that are critical in failed learning with trisomic mice, features are

selected from protein expression levels of trisomic mice exposed to CFC without memantine

and protein expression levels of control mice which are exposed to CFC with and without

memantine. Table 6 shows the selected features and accuracy results of feature subset in failed

learning. There are 2 common proteins (P38, GluR3) out of 10 proteins when compared with

former work. Selected proteins in failed learning play important roles in signaling pathway

[70, 71].

Validation of selected proteins subsets

In this section, we conducted PCA for both selected protein subsets and original protein sets

for three cases; successful learning, rescued learning and failed learning. We projected these

Table 4. Feature subset of normal learning.

Feature No Accuracy of Feature Feature Subset Feature Subset of Previous Work [25]

1 0.656 SOD1 DYRK1A

2 0.751 Ubiquitin ITSN1

3 0.852 pGSK3B pERK

4 0.873 S6 BRAF

5 0.905 CaNA SOD1

6 0.921 IL1B pNUMB

7 0.937 BAX pGSK3B

8 0.942 pNR2A CDK5

9 0.942 BDNF S6

10 0.942 pJNK GFAP

11 0.942 pCFOS CaNA

https://doi.org/10.1371/journal.pone.0210954.t004
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feature sets into 3D spaces in order to validate the selected protein subsets specified in Feature

Selection Results. As shown in Figs 2, 3 and 4, the PCA of selected protein subsets can better

discriminate the class of mice instances when compared with the PCA of the original protein

sets for three cases.

Fig 2 shows the PCA of successful learning. In this case, there are four classes which are nor-

mal genotype of control mice with and without memantine and with and without CFC stimu-

lation. As seen in Fig 2, classes are better discriminated with selected proteins.

Fig 3 shows the result of PCA for rescued learning case. In this case, there are two classes

which are trisomic mice exposed to CFC with and without memantine. It can be seen that bet-

ter discrimination of classes can be done with selected proteins.

Fig 4 shows the result of PCA for failed learning. In this case, there are three classes which

are trisomic mice exposed to CFC without memantine and normal mice with CFC simulation

with and without memantine. Fig 4 also shows better discrimination of classes with selected

proteins.

Classification results

After determination of the different feature subsets for the three cases, classification is per-

formed for differentiating mice in different classes. DNN, gradient boosted tree, random forest

and SVM classification methods are executed by using Python and Scikit learn package [41].

Parameters of classifiers are determined based on the grid search hyper-parameter optimiza-

tion technique which is useful in computational biology problems. With the grid search

Table 5. Feature subset of rescued learning.

Feature No Accuracy of Feature Feature Subset Feature Subset of Previous Work [25]

1 0.762 BRAF DYRK1A

2 0.838 S6 pERK

3 0.85 CDK5 BRAF

4 0.887 BDNF CDK5

5 0.887 pCREB RRP1

6 0.9 PKCA GFAP

7 0.912 SOD1 GluR3

8 0.925 PSD95 P3525

9 0.925 pNR2A Ubiquitin

https://doi.org/10.1371/journal.pone.0210954.t005

Table 6. Feature subset of failed learning.

Feature No Accuracy of Feature Feature Subset Feature Subset of Previous Work [25]

1 0.636 P38 pNR1

2 0.713 pPKCAB APP

3 0.775 CAMKII MTOR

4 0.814 pCAMKII P38

5 0.868 GluR3 NR2B

6 0.891 DSCR1 RAPTOR

7 0.907 nNOS S6

8 0.915 BAX Tau

9 0.93 pCFOS GluR3

10 0.93 ERK EGR1

https://doi.org/10.1371/journal.pone.0210954.t006
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method, the most suitable parameters for different classification methods are found. In addi-

tion, five fold cross validation is applied for preventing overfitting. Together with grid search

method, cross validation affects classification accuracy in a positive manner.

The accuracy results of feature subsets shown in the previous Feature Selection Results part

are compared with the Higuera’s presented accuracy results.

Table 7 shows the classification accuracies of feature subsets selected in our work and

Higuera’s work [25] for successful learning. It can be seen that our feature subset gives higher

accuracy results for all classification techniques. For example, while the accuracy of Random

Forest was 0.902, it is increased to 0.963. Also, it is observed that the highest accuracy is

obtained with SVM with a value of 0.981.

Table 8 shows the comparison of rescued learning classification results. The accuracy

results of our feature subset are higher than previous work for all classification methods. For

example, the accuracy of Random Forest is increased by % 6.3 from 0.883 to 0.946. For rescued

learning, the highest accuracy is achieved with DNN and SVM with a value of 0.971.

Table 9 shows the comparison of classifications for failed learning. Similar to previous case,

DNN and SVM give highest accuracy results with a value of 0.926. In addition, classification

results of our feature subsets are again higher than previous work for all classification methods

implemented.

Discussion

Pharmacotherapies of ID are largely unknown as the abnormalities at the complex molecular

level which causes ID are difficult to understand. DS which is the prevalent reason of ID and

Fig 2. PCA of all proteins set and selected proteins subset for successful learning.

https://doi.org/10.1371/journal.pone.0210954.g002

Fig 3. PCA of all proteins set and selected proteins subset for rescued learning.

https://doi.org/10.1371/journal.pone.0210954.g003
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caused by an extra copy of the Hsa21 has been investigated on protein levels. Due to the

increase in trisomic genes, protein expression levels of corresponding genes are elevated. Fur-

thermore, in addition to expression of genes on 21 chromosome, protein coding genes on

other chromosomes play important roles in DS. Thus, understanding the abnormalities in the

protein expressions are very important for developing drugs to rescue learning. For this rea-

son, critical roles of proteins have been analyzed by comparing protein expression levels of

normal mice and trisomic mice which are exposed to CFC with or without memantine treat-

ment. In order to find critical proteins in DS, statistical analysis and machine learning methods

are used.

In our work, we implemented forward feature selection technique for selecting protein sub-

sets and applied DNN, gradient boosted tree, SVM and random forest classifiers to classify

mice more accurately. The classification accuracy results of selected proteins are compared

with Higuera et al work [25] in which SOM was applied for clustering of protein based on the

similarities in their expression levels and Wilcoxon rank test was done for identifying signifi-

cantly different protein levels between clusters.

Higuera et al [25] implemented SOM for three cases, successful learning, rescued learning

and failed learning, respectively. In the first case, four classes of control mice protein profiles

were analyzed for understanding critical proteins in successful learning. In the second case, tri-

somic mice which are exposed to CFC with or without applying drug memantine were investi-

gated to understand rescue performance of memantine on trisomic mice learning capability.

In the last case, using control and trisomic mice, protein profile patterns were analyzed for

understanding important factors in learning impairment. They reduced feature subsets from

77 proteins to 11 proteins, 9 proteins and 10 proteins for the three cases, respectively. In this

work, we applied naive Bayes classification technique in forward feature selection method

rather than SOM which is the clustering technique to group protein levels. We constituted our

feature subsets with the same number of proteins selected in Higuera’s work [25] in order to

compare the results effectively.

Fig 4. PCA of all proteins set and selected proteins subset for failed learning.

https://doi.org/10.1371/journal.pone.0210954.g004

Table 7. Accuracy result comparison of normal learning.

Accuracy Result of Our Work Previous Work Accuracy Result [25]

Deep Neural Network 0.972 0.967

Gradient Boosted Tree 0.935 0.902

Random Forest 0.963 0.902

SVM 0.981 0.961

https://doi.org/10.1371/journal.pone.0210954.t007
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Before selecting feature subsets, the preprocessing step consisted of filling missing part and

then normalization is carried out. Missing values are replaced by the average protein expres-

sion level of corresponding sample in the same class. This replacement is different from previ-

ous works where missing values were handled by the mean value of protein expression levels

in same class mice. 15 tissue samples that are three replicates of a five-point dilution series

were obtained per mouse. This dilution ratio affects expression level of proteins. Thus, we con-

sidered this effect and applied a different technique described in data processing part to handle

missing values. For normalization, Z score normalization rather than max-min normalization

which is used in Higuera’s work [25] is applied to prevent higher influence of proteins with

higher values on the classification outcome.

After preprocessing steps, the forward feature selection algorithm is used to select feature

subsets for three cases and these feature subsets are compared with Higuera et al work [25].

For learning process, naive Bayes learner which has been applied to multiclass classification

problem is used. In spite of the underlying simplifying assumption of conditional indepen-

dence, naive Bayes performs well with more than two classes problem. These distinct prepro-

cessing and feature selection methods affected results in a good way and important proteins

that were not highlighted in the previous works are found.

Critical proteins in DS have been found to be related with different pathways and processes,

such as MAPK and MTOR pathways, immediate early genes (IEGs), AD, neurotrophin signal-

ing pathway and apoptosis. In our work, in addition to these pathways and processes, we eval-

uated proteins according to their relations with immune system. It was hypothesized that DS

causes an increase in interferon signaling which triggers the protective defenses of the immune

system [26]. Thus, we searched proteins for finding a connection between L/M and immune

response.

Eleven proteins were found to be significantly different in successful learning case: SOD1,

ubiquitin, pGSK3B, S6, CaNA, IL1B, BAX, pNR2A, BDNF, pJNK and pCFOS. These proteins

play important roles in L/M, immune response, MAPK pathyway, mTOR pathway and AD.

When compared with Higuera’s work [25], 4 proteins (SOD1, pGSK3B, S6 and CaNA) are

found to be common. Three of the proteins (SOD1, pGSK3B and CaNA) are related to

immune system.

SOD1 found on chromosome 21 causes immune abnormalities in Amyotrophic lateral scle-

rosis (ALS) disease [48] and increases reactive oxygen in DS [49]. Ribosomal Protein S6 and

Table 8. Accuracy result comparison of rescued learning.

Accuracy Result of Our Work Previous Work Accuracy Result [25]

Deep Neural Network 0.971 0.954

Gradient Boosted Tree 0.933 0.892

Random Forest 0.946 0.883

SVM 0.971 0.921

https://doi.org/10.1371/journal.pone.0210954.t008

Table 9. Accuracy result comparison of failed learning.

Accuracy Result of Our Work Previous Work Accuracy Result [25]

Deep Neural Network 0.926 0.921

Gradient Boosted Tree 0.879 0.844

Random Forest 0.892 0.859

SVM 0.926 0.910

https://doi.org/10.1371/journal.pone.0210954.t009
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pGSK3B are components of mTOR pathway which takes action in learning [50]. Also, in the

literature it is noted that GSK3 inhibitors provide to prevent excessive inflammation and ame-

liorate the autoimmune disease [51]. CaNA and IL1B are known to be pathogenesis of AD [52,

53]. In addition, it is known that IL1B is natural suppressor of innate inflammatory [54]. BAX

and ubiquitin play critical roles in apoptosis and immune response [55, 56]. BDNF takes action

in L/M [57] and bridges inflammation and neuroplasticity [58, 59]. pNR2A has well estab-

lished roles in learning [60]. pJNK is component of MAPK pathway which is associated with

L/M [61]. pCFOS is an IEG and is important in long term memory and neurological function

seen in AD [62]. In the first case, by analyzing protein expression levels of control group mice,

it can be deduced that proteins which are related to the L/M pathway and the immune

responses are critical in successful learning.

Nine proteins are highlighted in the rescued learning case: BRAF, S6, CDK5, BDNF,

pCREB, PKCA, SOD1, PSD95 and pNR2A. Two out of nine proteins are common with

Higuera’s work [25]. Four of these proteins (S6, BDNF, SOD1 and pNR2A) are also found in

successful learning case and their importance is explained above. BRAF and PKCA are associ-

ated with MAPK pathway and important in learning [63, 64]. CDK5 is synaptic protein and

plays a critical role in long-term memory [65]. Also, it regulates the evasion of tumors from

the immune system [66]. PSD95 is a neuropathological marker of AD observed in later stage

of DS [67]. In addition, PSD95 colocalizes with major histocompatibility complex class I

(MHCI) which is the signature of its expressed proteins and is important for the immune sys-

tem to differentiate self from nonself [68]. CREB regulates crucial cell stages and participates

in neuronal plasticity [69]. Thus, it can be concluded from the second case that proteins which

are important in rescued learning are relevant to the L/M and the immune response.

In the case of failed learning, ten proteins are found to be significant: p38, pPKCAB, CAM-

KII, pCAMKII, GluR3, DSCR1, nNOS, BAX, pCFOS and ERK. Two of these proteins (BAX

and pCFOS) were also highlighted in successful learning and described above. The remaining

selected proteins are largely connected to MAPK signaling pathway, such as P38, pPKCAB,

CAMKII, pCAMKII and ERK. GluR3 is related to glutamate receptors which cause memory

deficit if excess amount of glutamate binds to receptor [70]. DSCR1 is known to be over

expressed in DS and affects signaling pathway [71]. Failed learning case also shows us the

importance of signaling pathway in the learning process.

PCA is also done for both selected protein subsets and original protein sets for the three

cases; successful learning, rescued learning and failed learning. It is shown that selected protein

subsets can better discriminate the class of mice instances when compared with the PCA of the

original protein sets for all the indicated cases.

After finding critical proteins for three cases, DNN, gradient boosted tree, random forest

and SVM classification methods are applied. The parameters of classifiers are optimized with

grid search. Also, 5 fold cross validation is done to prevent overfitting. The accuracy results of

our feature subsets are found to be higher than previous work for all classifiers. DNN and

SVM achieved the highest overall classification accuracy followed by random forest and then

gradient boosted tree.

Multiple layers in a deep learning model can learn features from a wide perspective with

higher flexibility. Thus, it is logical to obtain good results with DNN. SVM maps data to a fea-

ture space and then classify the data. It explicitly determines the decision boundary directly

from the training data. Parameter optimization step is required to build an efficient SVM

model. Using grid search method, parameters are selected and SVM with the selected parame-

ters gives higher accuracy results. Accuracy result of random forest is lower than SVM and

Deep Neural Network. The reason of lower accuracy can be the size of data as random forest

generally needs larger number of instances for performing its randomization concept in a
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good way. Also, decision trees used as base learners in the random forest cannot exactly learn

many of soft linear boundaries at the decision surface which can cause lower success than the

SVM non linear boundaries. Gradient boosted tree is prone to overfitting as it tries to find

optimal linear combination of trees in relation to given train data. This tuning stage may be

the reason of the lowest accuracy obtained by gradient boosted tree.

In conclusion, our work described in this paper provides better learning model and shows

that proteins which are found to be related to the L/M and the immune system are critical in

successful learning. Therefore, by extracting information from these protein subsets, the effec-

tive drugs can be developed for the treatment of DS.
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42. Bergstra J, Bardenet R, Bengio Y, Kégl B. Algorithms for hyper-parameter optimization. Advances in

Neural Information Processing Systems. 2011; 2546–2554.

43. Wong TT. Performance evaluation of classification algorithms by k-fold and leave-one-out cross valida-

tion. Pattern Recognition. 2015 48. https://doi.org/10.1016/j.patcog.2015.03.009

44. Hinton G, LeCun Y, Bengio Y. Deep learning. Nature. 2015; 521:436–444. https://doi.org/10.1038/

nature14539 PMID: 26017442

45. Natekin A, Knoll A. Gradient boosting machines, a tutorial. Frontiers in Neurorobotics. 2013; 7:21.

https://doi.org/10.3389/fnbot.2013.00021 PMID: 24409142

46. Ortes C, Vapnik V. Support vector network. Mach. Learn. 1995; 20,1–25.

47. Breiman L. Random forests. Machine Learning. 2001; 45(1):5–32. https://doi.org/10.1023/

A:1010933404324

48. McCombe PA, Henderson RD. The Role of Immune and Inflammatory Mechanisms in ALS. Current

Molecular Medicine. 2011; 11(3):246–254. https://doi.org/10.2174/156652411795243450 PMID:

21375489

49. Iannello RC, Crack PJ, deHaan JB, Kola I. Oxidative stress and neural dysfunction in Down syndrome.

J Neural Transm Suppl. 1999; 57:257–67. PMID: 10666681

50. Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends

Neurosci. 2010; 33(2):67–75. https://doi.org/10.1016/j.tins.2009.11.003 PMID: 19963289

51. Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases.

Pharmacology &amp; therapeutics. 2015; 0:114–131. https://doi.org/10.1016/j.pharmthera.2014.11.

016

52. Reese LC, Taglialatela G. A Role for Calcineurin in Alzheimer’s Disease. Current Neuropharmacology.

2011; 9(4):685–692. https://doi.org/10.2174/157015911798376316 PMID: 22654726

Critical proteins in Down syndrome

PLOS ONE | https://doi.org/10.1371/journal.pone.0210954 January 28, 2019 17 / 18

https://doi.org/10.1074/mcp.M113.035568
http://www.ncbi.nlm.nih.gov/pubmed/24469516
https://doi.org/10.4018/jdwm.2007070101
https://archive.ics.uci.edu/ml/datasets/Mice+Protein+Expression
https://archive.ics.uci.edu/ml/datasets/Mice+Protein+Expression
https://doi.org/10.3758/BF03205285
https://doi.org/10.1158/1535-7163.MCT-06-0334
http://www.ncbi.nlm.nih.gov/pubmed/17041095
http://dx.doi.org/10.1016/j.eswa.2008.06.054
https://doi.org/10.1016/j.patcog.2015.03.009
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.3389/fnbot.2013.00021
http://www.ncbi.nlm.nih.gov/pubmed/24409142
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.2174/156652411795243450
http://www.ncbi.nlm.nih.gov/pubmed/21375489
http://www.ncbi.nlm.nih.gov/pubmed/10666681
https://doi.org/10.1016/j.tins.2009.11.003
http://www.ncbi.nlm.nih.gov/pubmed/19963289
https://doi.org/10.1016/j.pharmthera.2014.11.016
https://doi.org/10.1016/j.pharmthera.2014.11.016
https://doi.org/10.2174/157015911798376316
http://www.ncbi.nlm.nih.gov/pubmed/22654726
https://doi.org/10.1371/journal.pone.0210954


53. Nicoll JAR, Mrak RE, Graham DI, Stewart J, Wilcock G, MacGowan S, et al. Association of Interleukin-1

Gene Polymorphisms with Alzheimer’s Disease. Annals of neurology. 2000; 47(3):365–368. https://doi.

org/10.1002/1531-8249(200003)47:3%3C365::AID-ANA13%3E3.0.CO;2-G PMID: 10716257

54. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 2011;

117(14):3720–3732. https://doi.org/10.1182/blood-2010-07-273417 PMID: 21304099

55. Tano T, Okamoto M, Kan S, Nakashiro K, Shimodaira S, Koido S, et al. Prognostic Impact of Expres-

sion of Bcl-2 and Bax Genes in Circulating Immune Cells Derived from Patients with Head and Neck

Carcinoma. Neoplasia (New York, NY). 2013; 15(3):305–314. https://doi.org/10.1593/neo.121528

56. Sujashvili R. Advantages of Extracellular Ubiquitin in Modulation of Immune Responses. Mediators of

Inflammation. 2016; 2016:4190390. https://doi.org/10.1155/2016/4190390 PMID: 27642236

57. Cunha C, Brambilla R, Thomas KL. A Simple Role for BDNF in Learning and Memory? Frontiers in

Molecular Neuroscience. 2010; 3:1. https://doi.org/10.3389/neuro.02.001.2010 PMID: 20162032

58. Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R. Brain-derived neurotrophic factor: a

bridge between inflammation and neuroplasticity. Frontiers in Cellular Neuroscience. 2014; 8:430.

https://doi.org/10.3389/fncel.2014.00430 PMID: 25565964

59. Yu X, Lu L, Liu Z, Yang T, Gong X, Ning Y, et al. Brain-derived neurotrophic factor modulates immune

reaction in mice with peripheral nerve xenotransplantation. Neuropsychiatric Disease and Treatment.

2016; 12:685–694. https://doi.org/10.2147/NDT.S98387 PMID: 27099498

60. Li F, Tsien JZ. Memory and the NMDA Receptors. The New England journal of medicine. 2009; 361

(3):302–303. https://doi.org/10.1056/NEJMcibr0902052 PMID: 19605837

61. Shen CP, Tsimberg Y, Salvadore C, Meller E. Activation of Erk and JNK MAPK pathways by acute

swim stress in rat brain regions. BMC Neuroscience. 2004; 5:36. https://doi.org/10.1186/1471-2202-5-

36 PMID: 15380027

62. Kidambi S, Yarmush J, Berdichevsky Y, Kamath S, Fong W, SchianodiCola J. Propofol induces MAPK/

ERK cascade dependant expression of cFos and Egr-1 in rat hippocampal slices. BMC Research

Notes. 2010; 3:201. https://doi.org/10.1186/1756-0500-3-201 PMID: 20637119

63. Lee YS, Ehninger D, Zhou M, Oh JY, Kang M, Kwak C, et al. Mechanism and treatment for the learning

and memory deficits associated with mouse models of Noonan syndrome. Nature neuroscience. 2014;

17(12):1736–1743. https://doi.org/10.1038/nn.3863 PMID: 25383899

64. Zhang G, Liu M, Cao H, Kong L, Wang X, O’Brien JA, et al. Improved spatial learning in aged rats by

genetic activation of protein kinase C in small groups of hippocampal neurons. Hippocampus. 2009; 19

(5):413–423. https://doi.org/10.1002/hipo.20506 PMID: 18942114

65. Pollonini G, Gao V, Rabe A, Palminiello S, Albertini G, Alberini CM. Abnormal Expression of Synaptic

Proteins and Neurotrophin-3 in the Down Syndrome Mouse Model Ts65Dn. Neuroscience. 2008; 156

(1):99–106. https://doi.org/10.1016/j.neuroscience.2008.07.025 PMID: 18703118

66. Shupp A, Casimiro MC, Pestell RG. Biological functions of CDK5 and potential CDK5 targeted clinical

treatments. Oncotarget. 2017; 8(10):17373–17382. https://doi.org/10.18632/oncotarget.14538 PMID:

28077789

67. Shao CY, Mirra SS, Sait HBR, Sacktor TC, Sigurdsson EM. Postsynaptic degeneration as revealed by

PSD−95 reduction occurs after advanced Aβ and tau pathology in transgenic mouse models of Alzhei-

mer’s disease. Acta neuropathologica. 2011; 122(3):285–292. https://doi.org/10.1007/s00401-011-

0843-x PMID: 21630115

68. Marin I, Kipnis J. Learning and memory . . . and the immune system. Learning &amp; Memory. 2013; 20

(10):601–606. https://doi.org/10.1101/lm.028357.112

69. Ortega-Martı́nez S. A new perspective on the role of the CREB family of transcription factors in memory

consolidation via adult hippocampal neurogenesis. Frontiers in Molecular Neuroscience. 2015; 8:46.

https://doi.org/10.3389/fnmol.2015.00046 PMID: 26379491

70. Ahmed AH, Wang Q, Sondermann H, Oswald RE. Structure of the S1S2 Glutamate Binding Domain of

GluR3. Proteins. 2009; 75(3):628–637. https://doi.org/10.1002/prot.22274 PMID: 19003990
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