inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Trilithium thioarsenate octahydrate

Kurt Mereiter

Institute of Chemical Technology and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria Correspondence e-mail: kurt.mereiter@tuwien.ac.at

Received 19 April 2013; accepted 22 April 2013

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (As–S) = 0.001 Å; R factor = 0.028; wR factor = 0.057; data-to-parameter ratio = 22.1.

The title compound, Li₃AsS₄·8H₂O, is built up from infinite cationic $[Li_3(H_2O)_8]^{3+}$ chains which extend along [001] and are cross-linked by isolated tetrahedral AsS₄³⁻ anions via O-H...S hydrogen bonds. Two Li and two As atoms lie on special positions with site symmetries $\overline{1}$ (1 × Li) and 2 (1 × Li and 2 × As). The $[Li_3(H_2O)_8]^{3+}$ chain contains four independent Li atoms of which two are in octahedral and two in tetrahedral coordination by water O atoms. An outstanding feature of this chain is a linear group of three edge-sharing LiO₆ octahedra to both ends of which two LiO₄ tetrahedra are attached by facesharing. Such groups of composition Li₅O₁₆ are linked into branched chains by means of a further LiO₄ tetrahedron sharing vertices with four adjacent LiO₆ octahedra. The Li-O bonds range from 1.876 (5) to 2.054 (6) Å for the LiO_4 tetrahedra and from 2.026 (5) to 2.319 (5) Å for the LiO_6 octahedra. The two independent AsS_4^{3-} anions have As-Sbond lengths ranging from 2.1482 (6) to 2.1677 (6) Å [<As-S > = 2.161 (10) Å. The eight independent water molecules of the structure donate 16 relatively straight O-H···S hydrogen bonds to all S atoms of the AsS₄ tetrahedra $[<O \cdots S> =$ 3.295 (92) Å]. Seven water molecules are in distorted tetrahedral coordination by two Li and two S; one water molecule has a flat pyramidal coordination by one Li and two S. At variance with related compounds like Schlippe's salt, Na₃SbS₄·9H₂O, there are neither alkali-sulfur bonds nor $O-H \cdots O$ hydrogen bonds in the structure.

Related literature

For crystal structures of related chalcogenosalt hydrates based on isolated tetrahedral XY_4 anions, see: Mereiter *et al.* (1979, 1982, 1983); Krebs *et al.* (1990); Krebs & Jacobsen (1976); Krebs & Huerter (1980); Schiwy *et al.* (1973); Melullis & Dehnen (2007), Ruzin *et al.* (2006, 2008). For the prototype compound Schlippe's Salt, Na₃SbS₄·9H₂O, see: Schlippe (1821). For the synthesis of the title compound and early crystallographic data, see: Rémy & Bachet (1968). For the synthesis and crystal structure of Ba₃(AsS₄)₂·7H₂O as a precursor of the title compound, see: Mereiter & Preisinger (1992). For the crystal structure of $Na_2S \cdot 9H_2O$, see: Preisinger *et al.* (1982). For a review on $O-H \cdots S$ hydrogen bonds in salt hydrates, see: Mikenda *et al.* (1989).

V = 1375.5 (5) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.27 \times 0.25 \text{ mm}$

4001 independent reflections

2913 reflections with $I > 2\sigma(I)$

3 standard reflections every 60 min intensity decay: 2.0%

 $\mu = 3.09 \text{ mm}^-$

T = 297 K

 $R_{\rm int}=0.026$

Z = 4

Experimental

Crystal data Li₃AsS₄·8H₂O $M_r = 368.11$ Monoclinic, P2/c a = 10.036 (2) Å b = 10.064 (2) Å c = 14.264 (3) Å $\beta = 107.30$ (1)° Data collection Philips PW1100 four-circle

diffractometer
Absorption correction: for a sphere
$\mu \mathbf{R} = 0.45$
$T_{\min} = 0.51, \ T_{\max} = 0.54$
5729 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ 181 parameters $wR(F^2) = 0.057$ H-atom parameters constrainedS = 1.05 $\Delta \rho_{max} = 0.61 \text{ e } \text{\AA}^{-3}$ 4001 reflections $\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$

Table 1 Selected bond lengths (Å).

Li1-O2	2.130 (2)	Li3-O1	2.009 (4)
Li1-O1	2.203 (2)	Li4-O8	1.876 (5)
Li1-O3	2.274 (2)	Li4-O5	1.957 (5)
Li2-O3	2.026 (4)	Li4-O6	1.990 (6)
Li2-O2	2.127 (5)	Li4-O7	2.054 (6)
Li2-O5	2.202 (4)	As1-S2	2.1482 (6)
Li2-O4	2.225 (5)	As1-S1	2.1711 (6)
Li2-O6	2.271 (5)	As2-S4	2.1574 (6)
Li2-O7	2.319 (5)	As2-S3	2.1677 (6)
Li3-O4	1.991 (3)		

Table 2Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{O1-H1A\cdots S1^{i}}$	0.80	2.49	3.262 (2)	163
$O1-H1B\cdots S4^{ii}$	0.80	2.51	3.287 (2)	163
$O2-H2A\cdots S1^{iii}$	0.80	2.76	3.531 (2)	162
$O2-H2B\cdots S2$	0.80	2.37	3.167 (2)	173
$O3-H3A\cdots S3^{iv}$	0.80	2.61	3.400 (2)	168
O3−H3B···S4	0.80	2.39	3.190 (2)	173
$O4-H4A\cdots S1^{iii}$	0.80	2.51	3.240 (2)	153
$O4-H4B\cdots S3^{v}$	0.80	2.42	3.207 (2)	170
$O5-H5A\cdots$ S1	0.80	2.45	3.247 (2)	172
$O5-H5B\cdots S2^{iii}$	0.80	2.50	3.303 (2)	177
$O6-H6A\cdots$ S3	0.80	2.57	3.354 (2)	168
$O6-H6B\cdots S4^{iv}$	0.80	2.54	3.307 (2)	162
$O7-H7A\cdots S1^{vi}$	0.80	2.49	3.244 (2)	157
$O7 - H7B \cdot \cdot \cdot S3$	0.80	2.58	3.333 (2)	157
$O8-H8A\cdots S2^{vii}$	0.80	2.50	3.253 (2)	157
$O8-H8B\cdots S3^{vi}$	0.80	2.61	3.394 (2)	166

inorganic compounds

Data collection: *Philips PW1100 software* (Hornstra & Vossers, 1973); cell refinement: *LLSQ* (Mereiter, 1992); data reduction: *PWD* (Mereiter, 1992); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2006) and *DIAMOND* (Brandenburg, 2012); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PJ2002).

References

- Brandenburg, K. (2012). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Hornstra, J. & Vossers, H. (1973). *Philips Tech. Rev.* **33**, 61–73.
- Krebs, B. & Huerter, H. U. (1980). Z. Anorg. Allg. Chem. 462, 143-151.
- Krebs, B., Huerter, H. U., Enax, J. & Froehlich, R. (1990). Z. Anorg. Allg. Chem. 581, 141–152.
- Krebs, B. & Jacobsen, H. J. (1976). Z. Anorg. Allg. Chem. 421, 97-104.

- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Melullis, M. & Dehnen, S. (2007). Z. Anorg. Allg. Chem. 633, 2159-2167.
- Mereiter (1992). LLSQ and PWD. Vienna University of Technology, Austria.
- Mereiter, K. & Preisinger, A. (1992). Acta Cryst. C48, 984–987.
- Mereiter, K., Preisinger, A., Baumgartner, O., Heger, G., Mikenda, W. & Steidl, H. (1982). Acta Cryst. B38, 401-408.
- Mereiter, K., Preisinger, A. & Guth, H. (1979). Acta Cryst. B35, 19-25.
- Mereiter, K., Preisinger, A. & Zellner, A. (1983). Inorg. Chim. Acta, 72, 67–73.
 Mikenda, W., Mereiter, K. & Preisinger, A. (1989). Inorg. Chim. Acta, 161, 21–28.
- Preisinger, A., Mereiter, K., Baumgartner, O., Heger, G., Mikenda, W. & Steidl, H. (1982). *Inorg. Chim. Acta*, 57, 237–246.
- Rémy, F. & Bachet, B. (1968). Bull. Soc. Chim. Fr. pp. 3568-3569.
- Ruzin, E., Jakobi, S. & Dehnen, S. (2008). Z. Anorg. Allg. Chem. 634, 995– 1001.
- Ruzin, E., Kracke, A. & Dehnen, S. (2006). Z. Anorg. Allg. Chem. 632, 1018– 1026.
- Schiwy, W., Pohl, S. & Krebs, B. (1973). Z. Anorg. Allg. Chem. 402, 77-86.
- Schlippe, K. (1821). Versuche ueber das Schwefelspiessglanznatron und den Goldschwefel. In Schweiggers Journal f
 ür Chemie und Physik. XXXIII, 1821, S. 320–323.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2013). E69, i30-i31 [doi:10.1107/S1600536813010921]

Trilithium thioarsenate octahydrate

Kurt Mereiter

Comment

The title compound, Li₃AsS₄.8H₂O, belongs to a group of alkali chalcogenosalt hydrates with tetrahedral XY₄ anions, *X* = P(V), As(V), Sb(V), Ge(IV), Sn(IV) and Y = S²⁻, Se²⁻, Te²⁻, of which Schlippe's salt, Na₃SbS₄.9H₂O (Schlippe, 1821; Mereiter *et al.*, 1979) can be considered as the prototype. Other representatives with known crystal structures are Na₃PS₄.8H₂O (Mereiter *et al.*, 1983), Na₃AsS₄.8H₂O (Mereiter *et al.*, 1982), Na₃AsSe₄.9H₂O (Krebs *et al.*, 1990), Na₄SnS₄.14H₂O (Schiwy *et al.*, 1973), Na₄GeSe₄.14H₂O (Krebs & Jacobsen, 1976), Na₄SnSe₄.16H₂O (Krebs & Huerter, 1980), K₄GeSe₄.4H₂O (Melullis & Dehnen, 2007), Rb₄SnTe₄.2H₂O (Ruzin *et al.*, 2006), K₄SnS₄.4H₂O (Ruzin *et al.*, 2008), to mention only some examples.

In context with previous work (Mereiter & Preisinger, 1992) the title compound $Li_3AsS_4.8H_2O$ was prepared and its crystal structure was determined. An early report on the synthesis and crystal data of this compound was given by Rémy & Bachet (1968).

Li₃AsS₄.8H₂O crystallizes in the infrequent centrosymmetric monoclinic space group P2/c (No. 13). The crystal structure contains four independent Li atoms, two independent AsS4 tetrahedra and eight independent water molecules in the asymmetric unit. Li1 lies on a centre of inversion while Li3, As1, and As2 are located on twofold axes. All other constituents comprising Li2 and Li4, four S, and eight H₂O are in general position. A view of a characteristic part of the crystal structure containing all constituents is shown in Fig. 1. All lithium atoms are exclusively coordinated by the oxygen atoms of the water molecules but not by any sulfur atom. Li1 and Li2 form Li(H₂O)₆ octahedra while Li3 and Li4 form $Li(H_2O)_4$ tetrahedra. The $Li1(H_2O)_6$ octahedron shares edges with two adjacent $Li2(H_2O)_6$ octahedra, and they in turn share faces with two Li4(H_2O)₄ tetrahedra. This gives rise to characteristic polyhedral pentamers Li₅(H_2O)₁₆ which are linked by the $Li3(H_2O)_4$ tetrahedra via vertex sharing with four adjacent $Li(H_2O)_6$ octahedra to form infinite branched chains of the composition $Li_6(H_2O)_{16}$ or $Li_3(H_2O)_8$ (Figs. 2 and 3). The chains extend along [001] and have the $Li_5(H_2O)_{16}$ fragments oriented in a criss-cross fashion (Figs. 3 and 4). Embedded between the chains are the tetrahedral AsS_4^{3-} anions, which are are anchored exclusively by O—H···S type hydrogen bonds donated by the water molecules. The sulfur atoms receive either three (S2, S4) or five (S1, S3) hydrogen bonds so that each AsS_4^{3-} anion receives 16 hydrogen bonds of which 8 are symmetry redundant. The eight different water molecules of the structure have mainly distorted tetrahedral coordination environments by two Li cations and two S atoms as hydrogen bond acceptors. Only the water molecule H₂O8 differs from this behaviour by being bonded to only one Li and two S atoms within a distorted trigonal pyramidal coordination.

The Li—O bonds range from 2.026 (5) to 2.319 (5) Å for the LiO₆ octahedra and from 1.876 (5) to 2.054 (6) Å for the LiO₄ tetrahedra (Table 1). The mean Li—O bond lengths are 2.202 (65), 2.195 (105), 2.000 (10) and 1.969 (74) Å for Li1 through Li4. The coordination figures of Li1 and Li3 are relatively regular (O—Li—O bond angles for Li1O₆ 81.84 (6)–98.16 (6)° and 180°, for Li3O₄ 101.7 (2)–114.3 (3)°) while those of Li2 and Li4 are notably distorted due to the face-sharing link between them (O—Li—O bond angles for Li2O₆ 72.7 (2)–100.6 (2)° and 167.3 (2)–174.8 (3)°, for Li4O₄

84.6 (2)–129.8 (2)°; Li2…Li4 = 2.698 (7) Å). The two independent AsS₄³⁻ anions have As—S bond distances from 2.1482 (6) to 2.1677 (6) Å, <As—S> = 2.161 (10) Å. The two shorter As—S bonds in each tetrahedron are to sulfur atoms receiving three hydrogen bonds (S2, S4) while the longer As—S bonds are to sulfur atoms receiving five hydrogen bonds (S1, S3). The As—S bond lengths and the S—As—S bond angles (106.72 (3)–111.42 (2) and 106.15 (2)–112.69 (2)° for As1 and As2, respectively) show that the two tetrahedra are relatively regular. They agree in their dimensions with related thioarsenates (Mereiter *et al.*, 1982; Mereiter & Preisinger, 1992). The eight independent water molecules of the structure donate 16 relatively straight O—H…S hydrogen bonds to all S atoms of the AsS₄ tetrahedra, O…S = 3.167 (2) – 3.531 (2) Å, <O…S> = 3.295 (92) Å and O—H…S = 153–177° (Table 2; Figs. 2 and 3). These dimensions fit well into the pattern of O—H…S hydrogen bonds in sulfosalt hydrates reported by Mikenda *et al.* (1989).

The structure of title compound $Li_3AsS_4.8H_2O$ adds a new facet to the very diverse structural chemistry of the chalcogenosalt hydrates with tetrahedral XY₄ anions defined above. The two isochemical relatives of the title compound, Na₃PS₄.8H₂O (Mereiter *et al.*, 1983) and Na₃AsS₄.8H₂O (Mereiter *et al.*, 1982), represent an isostructural pair built up from $NaS_2(H_2O)_4$, $NaS(H_2O)_5$ and $Na(H_2O)_6$ octahedra which form together with the PS_4/AsS_4 tetrahedra undulating layers. The PS_4/AsS_4 tetrahedron is linked with three S atoms to the Na cations. The water molecules are mostly bonded to two Na and donate pairs of O-H···S hydrogen bonds. One water molecule is bonded to only one Na and accepts in compensation an O—H…O hydrogen bond. Schlippe's salt, Na₃SbS₄.9H₂O (Mereiter *et al.*, 1979) and the isostructural selenoarsenate (Krebs et al., 1990) contain per formula unit one water more than the title compound. They are built up from tripledeckers of facesharing octahedra - namely a $Na(H_2O)_6$ octahedron which shares two opposite faces with a $Na(H_2O)_6$ and a $NaS_3(H_2O)_3$ octahedron. The tetrahedral SbS_4 anion is bonded with three S atoms to three tripledeckers and links them into a complicated framework of cubic symmetry. Here again only one S atom is not cation-bonded and the structure contains independent five O-H···S and one O-H···O bonds. The compounds Na₄SnS₄.14H₂O (Schiwy et al., 1973), Na₄GeSe₄.14H₂O (Krebs & Jacobsen, 1976), and Na₄SnSe₄.16H₂O (Krebs & Huerter, 1980) can be seen as variants of the Na-water triple deckers in Schlippe's salt and only in Na₄SnSe₄.16H₂O these triple deckers form Na-H₂O polymers without any Na-chalcogen bonds. Alkali sulfosalts with cations larger than $Na - e.g. K_4GeSe_4.4H_2O$ (Melullis & Dehnen, 2007), Rb₄SnTe₄.2H₂O (Ruzin et al., 2006), or K₄SnS₄.4H₂O (Ruzin et al., 2008) - contain less water per cation and adopt alkali-water structures with higher coordination numbers than 6 for the cation sites and they involve therefore increasingly alkali-chalcogen bonds. Although not a sulfo-salt, Na₂S.9H₂O may be mentioned here for comparison with Li₃AsS₄.8H₂O because it is built up from octahedral chains Na(H₂O)₅ (corner-sharing spiral chains) and Na(H₂O)₄ (edgesharing spiral chains) held together by isolated sulfide ions via many O-H···S bonds and by some O-H···O bonds (Preisinger et al., 1982).

Experimental

The title compound was prepared by mixing dilute aqueous solutions of $Ba_3(AsS_4)_2$.7H₂O (Mereiter & Preisinger, 1992) and Li₂SO₄.H₂O in stoichiometric amounts. After removing $BaSO_4$ by filtration, the solution was preconcentrated in a rotavapor under reduced pressure and then filtered. Crystallization by room temperature evaporation in an exsiccator over conc. H₂SO₄ as desiccant gave the desired Li₃AsS₄.8H₂O in the form of colourless prisms. For structure analysis, a fragment was rounded to an oval by turning it on wet filter paper. Another preparation method for Li₃AsS₄.8H₂O was reported by Rémy & Bachet (1968).

Refinement

All water molecules were idealized to have O—H = 0.80 Å and H—O—H = 105.0° and were then refined as rigid groups using AFIX 6 of *SHELXL97* (Sheldrick, 2008). A common U_{iso} for the two H-atoms of each water molecule was used and

refined.

Computing details

Data collection: *Philips PW1100 software* (Hornstra & Vossers, 1973); cell refinement: *LLSQ* (Mereiter, 1992); data reduction: *PWD* (Mereiter, 1992); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: Mercury (Macrae *et al.*, 2006) and *DIAMOND* (Brandenburg, 2012); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008) and *publCIF* (Westrip, 2010).

Figure 1

A respresentative part of the structure of $Li_3AsS_4.8H_2O$ with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. Symmetry codes are given on the lower right. Hydrogen bonds in this assembly are shown as dashed lines.

Figure 2

A packing diagram of $Li_3AsS_4.8H_2O$ viewed along the *b*-axis showing also the hydrogen bonds. Only the label numbers are given for As, S, and O atoms.

Figure 3

A packing diagram of $Li_3AsS_4.8H_2O$ viewed approximately along to $[1\overline{1}0]$ showing also the hydrogen bonds. Only the label numbers are given for As, S, and O atoms.

Figure 4

View of the structure of Li₃AsS₄.8H₂O along [001]. H-atoms omitted for clarity. Li₃, As₁ and As₂ lie on twofold axes parallel [010], and Li₁ on $\overline{1}$ at *x*,*y*,*z* = 1/2,1/2,1/2.

Trilithium thioarsenate octahydrate

Crystal data	
Li ₃ AsS ₄ ·8H ₂ O	F(000) = 744
$M_r = 368.11$	$D_{\rm x} = 1.778 { m Mg} { m m}^{-3}$
Monoclinic, $P2/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yc	Cell parameters from 34 reflections
a = 10.036 (2) Å	$\theta = 9.1 - 26.2^{\circ}$
b = 10.064 (2) Å	$\mu = 3.09 \text{ mm}^{-1}$
c = 14.264 (3) Å	T = 297 K
$\beta = 107.30 \ (1)^{\circ}$	Oval, colourless
$V = 1375.5 (5) Å^3$	$0.30 \times 0.27 \times 0.25 \text{ mm}$
Z = 4	
Data collection	
Philips PW1100 four-circle	Absorption correction: for a sphere
diffractometer	$\mu R = 0.45$
Radiation source: fine-focus sealed tube	$T_{\min} = 0.51, \ T_{\max} = 0.54$
Graphite monochromator	5729 measured reflections
ω –2 θ scans	4001 independent reflections
	2913 reflections with $I > 2\sigma(I)$

 $R_{int} = 0.026$ $\theta_{max} = 30.0^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -14 \rightarrow 13$ $k = -14 \rightarrow 14$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.057$ S = 1.054001 reflections 181 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map $l = 0 \rightarrow 20$ 3 standard reflections every 60 min intensity decay: 2.0%

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0179P)^2 + 0.5909P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.61$ e Å⁻³ $\Delta\rho_{min} = -0.36$ e Å⁻³ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0081 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Lil	0.5000	0.5000	0.5000	0.0393 (13)	
Li2	0.2821 (4)	0.7213 (4)	0.5102 (4)	0.0443 (10)	
Li3	0.5000	0.5984 (5)	0.7500	0.0311 (11)	
Li4	0.0724 (5)	0.8832 (5)	0.4126 (5)	0.0610 (14)	
As1	0.0000	0.40273 (3)	0.2500	0.01865 (8)	
As2	0.5000	0.91402 (2)	0.2500	0.01887 (8)	
S1	-0.12581 (5)	0.53147 (5)	0.31185 (4)	0.02508 (11)	
S2	0.13565 (5)	0.27910 (5)	0.36066 (4)	0.02849 (12)	
S3	0.37068 (5)	1.03848 (5)	0.31147 (4)	0.02615 (12)	
S4	0.64151 (6)	0.79087 (5)	0.35891 (4)	0.02873 (12)	
01	0.55849 (15)	0.47247 (15)	0.66032 (12)	0.0297 (3)	
H1A	0.6400	0.4629	0.6874	0.054 (6)*	
H1B	0.5239	0.4023	0.6655	0.054 (6)*	
O2	0.28906 (17)	0.51048 (16)	0.50233 (12)	0.0330 (3)	
H2A	0.2693	0.4923	0.5512	0.068 (8)*	
H2B	0.2494	0.4564	0.4627	0.068 (8)*	
O3	0.48739 (17)	0.72351 (17)	0.51911 (12)	0.0359 (4)	
H3A	0.5233	0.7696	0.5654	0.077 (8)*	
H3B	0.5211	0.7466	0.4775	0.077 (8)*	
O4	0.33730 (16)	0.70514 (14)	0.67279 (12)	0.0303 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H4A	0.2703	0.6689	0.6804	0.051 (6)*
H4B	0.3423	0.7745	0.7010	0.051 (6)*
05	0.05507 (17)	0.72354 (16)	0.48637 (12)	0.0344 (4)
H5A	0.0167	0.6700	0.4459	0.059 (7)*
H5B	0.0110	0.7247	0.5248	0.059 (7)*
O6	0.2558 (2)	0.9454 (2)	0.49965 (14)	0.0486 (5)
H6A	0.2939	0.9720	0.4614	0.107 (11)*
H6B	0.2680	1.0022	0.5406	0.107 (11)*
07	0.1906 (2)	0.7739 (2)	0.34519 (16)	0.0535 (5)
H7A	0.1517	0.7256	0.3009	0.112 (12)*
H7B	0.2329	0.8251	0.3220	0.112 (12)*
O8	-0.05671 (19)	1.0198 (2)	0.36351 (18)	0.0573 (6)
H8A	-0.0190	1.0806	0.3455	0.102 (11)*
H8B	-0.1288	1.0100	0.3210	0.102 (11)*

Atomic displacement parameters $(Å^2)$

	<i>U</i> ¹¹	U ²²	U ³³	U ¹²	<i>U</i> ¹³	U^{23}
Lil	0.035 (3)	0.041 (3)	0.041 (3)	0.003 (3)	0.010 (2)	0.012 (3)
Li2	0.035 (2)	0.038 (2)	0.059 (3)	0.0012 (18)	0.013 (2)	0.001 (2)
Li3	0.029 (3)	0.030 (3)	0.032 (3)	0.000	0.006 (2)	0.000
Li4	0.049 (3)	0.046 (2)	0.086 (4)	0.005 (2)	0.017 (3)	0.018 (3)
As1	0.01756 (13)	0.01845 (13)	0.01937 (15)	0.000	0.00463 (11)	0.000
As2	0.02138 (14)	0.01735 (13)	0.01920 (15)	0.000	0.00807 (11)	0.000
S 1	0.0240 (2)	0.0256 (2)	0.0277 (3)	0.00128 (18)	0.0108 (2)	-0.0028 (2)
S2	0.0273 (3)	0.0254 (2)	0.0287 (3)	0.0044 (2)	0.0022 (2)	0.0044 (2)
S3	0.0294 (3)	0.0243 (2)	0.0287 (3)	0.00180 (19)	0.0148 (2)	-0.0032 (2)
S4	0.0294 (3)	0.0266 (2)	0.0286 (3)	0.0047 (2)	0.0063 (2)	0.0071 (2)
O1	0.0293 (8)	0.0294 (7)	0.0276 (8)	0.0006 (6)	0.0042 (6)	0.0006 (6)
O2	0.0358 (8)	0.0319 (8)	0.0293 (8)	-0.0075 (7)	0.0066 (7)	-0.0028 (7)
O3	0.0358 (9)	0.0438 (9)	0.0290 (9)	-0.0110 (7)	0.0110 (7)	-0.0023 (8)
O4	0.0314 (8)	0.0250 (7)	0.0365 (9)	-0.0023 (6)	0.0130 (7)	-0.0017 (6)
O5	0.0385 (9)	0.0360 (8)	0.0311 (9)	-0.0074 (7)	0.0140 (7)	-0.0056 (7)
06	0.0590 (12)	0.0413 (9)	0.0406 (11)	-0.0078 (9)	0.0076 (10)	-0.0058 (9)
O7	0.0693 (14)	0.0463 (11)	0.0568 (13)	-0.0217 (10)	0.0367 (11)	-0.0157 (10)
08	0.0377 (10)	0.0424 (11)	0.0836 (16)	0.0008 (9)	0.0052 (10)	0.0137 (11)

Geometric parameters (Å, °)

Li1—O2	2.130 (2)	As1—S1 ⁱⁱⁱ	2.1711 (6)
Li1—O2 ⁱ	2.130 (2)	As1—S1	2.1711 (6)
Li1-01	2.203 (2)	As2—S4 ^{iv}	2.1574 (6)
Li1—O1 ⁱ	2.203 (2)	As2—S4	2.1574 (6)
Li1-03	2.274 (2)	As2—S3	2.1677 (6)
Li1—O3 ⁱ	2.274 (2)	As2—S3 ^{iv}	2.1677 (6)
Li2—03	2.026 (4)	O1—H1A	0.80
Li2—02	2.127 (5)	O1—H1B	0.80
Li2—05	2.202 (4)	O2—H2A	0.80
Li2—04	2.225 (5)	O2—H2B	0.80
Li2—06	2.271 (5)	O3—H3A	0.80

Li2—07	2.319 (5)	O3—H3B	0.80
Li3—O4 ⁱⁱ	1.991 (3)	O4—H4A	0.80
Li3—O4	1.991 (3)	O4—H4B	0.80
Li3—O1	2.009 (4)	O5—H5A	0.80
Li3—O1 ⁱⁱ	2.009 (4)	O5—H5B	0.80
Li4—08	1.876 (5)	O6—H6A	0.80
Li4—O5	1.957 (5)	O6—H6B	0.80
Li4—O6	1.990 (6)	O7—H7A	0.80
Li4—07	2.054 (6)	O7—H7B	0.80
As1—S2 ⁱⁱⁱ	2.1482 (6)	O8—H8A	0.80
As1—S2	2.1482 (6)	08—H8B	0.80
			0.00
$02 - Li1 - 02^{i}$	180.0	S4—As2—S3	112 69 (2)
$02 - 11 - 01^{i}$	92 91 (6)	$S4^{iv}$ As $2 - S3^{iv}$	112.69 (2)
02^{i} I i 1 01^{i}	87.09.(6)	S_{4} A_{s}^{2} S_{3}^{iv}	112.05(2)
02 Li 01	87.09 (6) 87.09 (6)	$S_{1} = AS_{2} = S_{3}$ $S_{3} = A_{3} = S_{3}$ $S_{3} = A_{3} = S_{3}$	100.13(2) 109.40(3)
$O_2 = L_1 = O_1$	07.09(0)	33 - A32 - 33	109.40(3)
02—LII—OI	92.91 (0)	Li3 - 01 - Li1	122.95 (10)
			102.7
$02-L11-03^{2}$	98.16 (6)	LII—OI—HIA	115.8
02^{i} L11 -03^{i}	81.84 (6)	L13—OI—HIB	106.3
$01^{1}-L11-03^{1}$	90.41 (6)	L11—O1—HIB	102.6
OI—LII—O3'	89.59 (6)	HIA—OI—HIB	105.0
O2—Li1—O3	81.84 (6)	Li2—O2—Li1	95.65 (13)
O2 ⁱ —Li1—O3	98.16 (6)	Li2—O2—H2A	99.3
01 ⁱ —Li1—O3	89.59 (6)	Li1—O2—H2A	120.5
01—Li1—O3	90.41 (6)	Li2—O2—H2B	134.3
O3 ⁱ —Li1—O3	180.0	Li1—O2—H2B	104.1
O3—Li2—O2	88.03 (18)	H2A—O2—H2B	105.0
O3—Li2—O5	174.8 (3)	Li2—O3—Li1	94.22 (14)
O2—Li2—O5	92.89 (17)	Li2—O3—H3A	105.0
O3—Li2—O4	90.12 (18)	Li1—O3—H3A	130.2
O2—Li2—O4	88.84 (18)	Li2—O3—H3B	127.1
O5—Li2—O4	94.98 (19)	Li1—O3—H3B	98.5
O3—Li2—O6	95.14 (18)	НЗА—ОЗ—НЗВ	105.0
O2—Li2—O6	172.9 (3)	Li3—O4—Li2	121.68 (14)
O5—Li2—O6	83.40 (16)	Li3—O4—H4A	105.3
04—Li2—06	97.45 (19)	Li2—O4—H4A	102.5
03—Li2—07	98.6 (2)	Li3—O4—H4B	105.9
02 - 12 - 07	100.6(2)	Li2 - 04 - H4B	114.8
05-1i2-07	76 20 (15)	H4A - O4 - H4B	105.0
04 - 1i2 - 07	167.3(2)	$I_{i4} = 05 = I_{i2}$	80.7.(2)
$06 \text{ Li}_{2} 07$	72.74(15)	$L_{14} = 0.5 = L_{12}$	105.4
O_{4ii} I_{3i} O_{4ii}	1147(3)	$Li = 0.5 H5 \Lambda$	105.4
04^{-1} L13 -04	114.7(3) 110.22(7)	Li2 - 03 - H5R	111.0
04 - Li3 - 01	110.23(7)		120.8
	109.38 (7)		130.7
$04^{$	109.58 (7)	$H_{2}A = 02 = H_{2}B$	105.0
$U4-L13-U1^{"}$	110.23 (/)	L14—O6—L12	/8.26 (19)
UI—LI3—UI"	101.7 (2)	L14—O6—H6A	102.8
08—Li4—O5	129.8 (3)	L12—O6—H6A	107.9

114.2 (3)	Li4—O6—H6B	126.3
97.9 (3)	Li2—O6—H6B	132.2
130.4 (3)	H6A—O6—H6B	105.0
88.2 (2)	Li4—O7—Li2	75.9 (2)
84.6 (2)	Li4—O7—H7A	118.8
109.21 (3)	Li2—O7—H7A	128.0
111.42 (2)	Li4—07—H7B	107.4
109.04 (2)	Li2—O7—H7B	117.9
109.04 (2)	H7A—O7—H7B	105.0
111.42 (2)	Li4—08—H8A	109.9
106.72 (3)	Li4—O8—H8B	124.1
109.87 (4)	H8A—O8—H8B	105.0
106.15 (2)		
	114.2 (3) 97.9 (3) 130.4 (3) 88.2 (2) 84.6 (2) 109.21 (3) 111.42 (2) 109.04 (2) 109.04 (2) 111.42 (2) 106.72 (3) 109.87 (4) 106.15 (2)	114.2 (3)Li4—O6—H6B $97.9 (3)$ Li2—O6—H6B $130.4 (3)$ H6A—O6—H6B $88.2 (2)$ Li4—O7—Li2 $84.6 (2)$ Li4—O7—H7A $109.21 (3)$ Li2—O7—H7A $111.42 (2)$ Li4—O7—H7B $109.04 (2)$ Li2—O7—H7B $109.04 (2)$ H7A—O7—H7B $111.42 (2)$ Li4—O8—H8A $106.72 (3)$ Li4—O8—H8B $109.87 (4)$ H8A—O8—H8B $106.15 (2)$ Li4—O8—H8B

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+1, *y*, -*z*+3/2; (iii) -*x*, *y*, -*z*+1/2; (iv) -*x*+1, *y*, -*z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
$O1$ — $H1A$ ···· $S1^{v}$	0.80	2.49	3.262 (2)	163
O1—H1 <i>B</i> ···S4 ⁱ	0.80	2.51	3.287 (2)	163
O2— $H2A$ ···S1 ^{vi}	0.80	2.76	3.531 (2)	162
O2—H2 <i>B</i> ···S2	0.80	2.37	3.167 (2)	173
O3—H3A····S3 ^{vii}	0.80	2.61	3.400 (2)	168
O3—H3 <i>B</i> ···S4	0.80	2.39	3.190 (2)	173
O4—H4 A ···S1 ^{vi}	0.80	2.51	3.240 (2)	153
O4—H4 B ···S3 ^{viii}	0.80	2.42	3.207 (2)	170
O5—H5A…S1	0.80	2.45	3.247 (2)	172
$O5$ — $H5B$ ···· $S2^{vi}$	0.80	2.50	3.303 (2)	177
O6—H6A···S3	0.80	2.57	3.354 (2)	168
O6—H6B····S4 ^{vii}	0.80	2.54	3.307 (2)	162
O7—H7A····S1 ⁱⁱⁱ	0.80	2.49	3.244 (2)	157
O7—H7 <i>B</i> ···S3	0.80	2.58	3.333 (2)	157
O8— $H8A$ ···S2 ^{ix}	0.80	2.50	3.253 (2)	157
O8—H8 <i>B</i> ···S3 ⁱⁱⁱ	0.80	2.61	3.394 (2)	166

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*, *y*, -*z*+1/2; (v) *x*+1, -*y*+1, *z*+1/2; (vi) -*x*, -*y*+1, -*z*+1; (vii) -*x*+1, -*y*+2, -*z*+1; (viii) *x*, -*y*+2, *z*+1/2; (ix) *x*, *y*+1, *z*.