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ABSTRACT

Nucleolytic resection of DNA double-strand breaks
(DSBs) is essential for both checkpoint activation
and homology-mediated repair; however, the pre-
cise mechanism of resection, especially the initiation
step, remains incompletely understood. Resection of
blocked ends with protein or chemical adducts is be-
lieved to be initiated by the MRN complex in con-
junction with CtIP through internal cleavage of the
5’ strand DNA. However, it is not clear whether re-
section of clean DSBs with free ends is also initiated
by the same mechanism. Using the Xenopus nuclear
extract system, here we show that the Dna2 nucle-
ase directly initiates the resection of clean DSBs by
cleaving the 5’ strand DNA ~10-20 nucleotides away
from the ends. In the absence of Dna2, MRN together
with CtIP mediate an alternative resection initiation
pathway where the nuclease activity of MRN appar-
ently directly cleaves the 5’ strand DNA at more distal
sites. MRN also facilitates resection initiation by pro-
moting the recruitment of Dna2 and CtIP to the DNA
substrate. The ssDNA-binding protein RPA promotes
both Dna2- and CtIP-MRN-dependent resection ini-
tiation, but a RPA mutant can distinguish between
these pathways. Our results strongly suggest that
resection of blocked and clean DSBs is initiated via
distinct mechanisms.

INTRODUCTION

DNA double-strand breaks (DSBs) are arguably the most
hazardous forms of DNA damage in cells, which can
be caused by ionizing radiation, reactive oxygen species,
chemotherapeutic drugs and collapse of replication forks,
or induced during genome engineering with CRISPR, ZFN
and TALEN technologies (1-3). DSBs also occur as pro-
grammed recombination events during meiosis and V(D)J
recombination in lymphocyte development (4,5). Regard-

less of their origin, DSBs pose a serious threat and can
lead to genomic instability or cell death if not properly
repaired. To cope with this problem, cells have evolved a
highly sophisticated mechanism called DNA damage re-
sponse (DDR) to detect, signal and repair these breaks
(6-8). DSBs are repaired mainly by two largely competing
pathways: non-homologous end joining (NHEJ) and ho-
mologous recombination (HR) (9-11). While NHEJ can
occur throughout the cell cycle, HR is mainly limited to
S and G2 phases when a homologous copy of the dam-
aged region is available (11-14). The choice between these
repair pathways is dictated by end resection, a DNA pro-
cessing mechanism that selectively degrades the 5" strand
DNA from the ends to generate long 3’ ssDNA overhangs
required for HR in S and G2 phases of the cell cycle. By con-
verting dSDNA ends into ssDNA structures, resection pro-
motes HR and averts NHEJ (11,15-18). DSB resection also
controls the checkpoint responses that coordinate DNA re-
pair with other cellular processes such as cell cycle progres-
sion and gene expression (19-22). Checkpoint responses are
controlled by ATM and ATR protein kinases, both of which
are activated by DSBs (23-25). Whereas ATM activation
occurs on double-strand DNA structure adjacent to the
DNA break ends, ATR 1is activated on the sSSDNA structure
generated by resection (26-28). Consequently, DSB resec-
tion promotes the ATR checkpoint pathway and attenuates
the ATM checkpoint pathway (29-31). Thus, resection gov-
erns both DNA repair and checkpoint signaling in the DSB
damage response.

DSB resection involves multiple enzymatic activities in-
cluding nucleases and helicases and is tightly regulated to
ensure genomic stability (17,32). Studies in multiple organ-
isms such as yeasts, C. elegans, Xenopus laevis, mice and hu-
mans have led to the proposal of a two-step, bi-directional
model in which resection is initiated by cleavage of the 5
strand DNA away from the DSB ends by MRN/MRX
(Mrell, Rad50 and NBS1/XRS2) together with CtIP/Sae2
(functional ortholog of CtIP in budding yeast) (31,33-40).
In this step, the endonuclease activity of the Mrel 1 subunit
in MRN/MRX is believed to be responsible for the cleav-
age, although CtIP/Sae2 has also been suggested to con-
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tain endonuclease activity (33,34,41-45). In the subsequent
stage of resection, the 3’ end at the cleavage site generated
by initiation is then processed by MRN and Exd2 in the
3/-5" direction (35,46,47), whereas the 5" end is further re-
sected by Exol (together with PCNA or the 9-1-1 complex)
and Dna?2 (together with BLM/WRN, RPA and Cdc24) in
the 5'-3' direction (33,34,48-64). The resulting long ssDNA
overhangs then promote the activation of HR and the ATR
checkpoint (10,11,28,29). The initial endocleavage step me-
diated by CtIP-MRN is essential for the resection of DSBs
with protein or chemical adducts at the 5’ ends because the
exonuclease or flap endonuclease activities in Exol, Dna2,
Exd2 and MRN cannot directly process these ends (65—
72). Consistent with this notion, it has been shown that
MRN/MRX and CtIP/Sae?2 are absolutely required for the
resection of Spoll-linked DSBs in meiosis and Topoiso-
merase II-linked DSBs in somatic cells and Xenopus extracts
(43,66-74).

How resection of clean DSBs with free ends—which can
be generated at collapsed replication forks or by endonucle-
ases or cancer drugs—is initiated remains an outstanding
question. Because Sae2-MRX in yeast can carry out lim-
ited resection of a clean DSB generated by HO endonucle-
ase in the absence of the Exol and Dna2 pathways, it was
suggested that resection of clean DSBs is also initiated by
Sae2-MRX (CtIP-MRN) (33,34). However, this observa-
tion does not address which nuclease initiates resection of
clean DSBs when all resection activities are present in cells.
Unlike blocked DSBs, clean DSBs can be directly resected
by Dna2 and Exol (together with other factors) in vitro
(48,50-52,57,58,75), raising the possibility that these nucle-
ases could initiate resection at these breaks. Consistent with
this idea, it has been shown that Sae2 and MRX are not
essential for resection and downstream HR at clean DSBs
in yeast (76-79). In the Xenopus cytosolic extract the nu-
clease activity of MRN is dispensable for the overall resec-
tion of clean DSBs, which is in sharp contrast to 5’ blocked
ends where the nuclease activity of MRN is absolutely es-
sential (80). Likewise, the catalytic function of CtIP has also
been shown to be dispensable for resection of clean DSBs in
human cells (43). Furthermore, in reconstituted reactions
with purified proteins, Sae2-MRX or CtIP-MRN, prefer
blocked ends over free ends for 5’ strand cleavage (41,42).
Together, these observations suggest the possibility that re-
section of clean DSBs is initiated by a different mechanism.

To dissect how resection is initiated at clean DSBs in
the presence of all resection activities, we used the Xeno-
pus nucleoplasmic extract (NPE) isolated from synthetic
nuclei—a cell-free system that faithfully recapitulates the
proper DNA damage response in S and G2 phases of the cell
cycle (52,59,63,81-86). Our results indicate that like blocked
DSBs, resection initiation of clean DSBs also occurs via en-
docleavage of the 5" strand DNA; however, Dna2, but not
CtIP-MRN, is the primary nuclease for this process. In the
absence of Dna2 function, MRN together with CtIP initiate
resection of clean DSBs via an alternative pathway where
MRN cleaves the 5’ strand DNA at more distal sites. These
two pathways of resection initiation can be distinguished by
mutants of MRN and RPA.

Nucleic Acids Research, 2017, Vol. 45, No. 20 11767

MATERIALS AND METHODS

Xenopus nuclear extract, antibodies, immunodepletion, im-
munoblotting and co-immunoprecipitation

Xenopus nucleoplamic extract (NPE) was prepared from
synthetic nuclei assembled in the crude egg extract as pre-
viously described (81). Dna2 antibody was raised in rab-
bits against a bacterially expressed His-tagged fusion pro-
tein containing the N-terminal 712 amino acids of Xenopus
Dna?2 protein. Antibodies against Xenopus Exol, PCNA,
RPA, CtIP, Mrell, WRN, NBS1 and Chk2 have been de-
scribed before (26,31,52,63,87,88). For immunodepletion,
10 pl protein A agarose beads coupled with 50 pl of
the protein antiserum or 50 wl each of two antisera for
double-depletion were incubated with 50 wl NPE for 45
min at 4°C. Beads were then removed from the extract by
low-speed centrifugation (5000 rpm) in a desktop micro-
centrifuge. The extract supernatant was then subjected to
two additional rounds of depletion under the same con-
ditions. To inhibit Mrell nuclease activity, Mirin (Sigma-
Aldrich) was added to the final concentration of 250 uM
to untreated or depleted extract. Immunoblotting was per-
formed using DyLight 800- and DyLight 680-conjugated
secondary antibodies (Pierce) and an Odyssey Infrared
Imaging System (LI-COR Biosciences), as described previ-
ously (52,85,86). To examine the interaction between RPA
and Flag-Dna2 proteins shown in Figure 5E, Protein A
agarose beads bound by RPA antibodies were incubated in
NPE supplemented with recombinant Flag-Dna2(WT) or
Flag-Dna2(27-1053) protein at 4°C for 1 h. The beads were
then washed with 250 pl egg lysis buffer (ELB) containing
0.5% NP-40 for five times followed by elution of proteins
with sample buffer and analyzed by western blotting.

Expression and purification of recombinant proteins

Baculoviruses expressing wild type, Flag-tagged Xeno-
pus Dna2 (Flag-Dna2(WT)) were described previously
(60). Flag-Dna2(D278A), Flag-Dna2(K655E) and Flag-
Dna2(27-1053) expression constructs were generated by
PCR and cloned into the pFastBacl vector using a Gib-
son Assembly method. Flag-tagged Xenopus CtIP (Flag-
CtIP) in the FastBacl vector was kindly provided by Dr
Jean Gautier (Columbia University) (69,89,90). All clones
were verified by sequencing. Bacmids expressing CtIP and
Dna? proteins were generated in DH10Bac bacterial cells,
and proteins were expressed in Sf9 cells using a Bac-to-
Bac baculovirus expression system (Invitrogen), according
to the manufacturer’s protocol. The Dna2 and CtIP recom-
binant proteins were affinity-purified using anti-Flag M2
beads (Sigma) following the standard protocol (91). Puri-
fied proteins were aliquoted to 3 wl, frozen in liquid ni-
trogen and stored at —80°C. Expression and purification of
wild-type (WT) MRN complex and a nuclease dead-mutant
complex containing Mrel1(H130N) were described previ-
ously (80,88). Expression and purification of WT RPA com-
plex and the RPA (1INA) mutant complex were described
previously (61). The RPA1 subunit in RPA (INA) lacks 121
amino acids at the N-terminus (61).
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DNA substrates and resection assays

A one-end biotinylated 2 kb DNA fragment with a clean
DSB was generated by PCR with a 5 biotinylated primer
and pBluescript SK(-) as the template. The free 5’ end was
32P_labeled with T4 polynucleotide kinase (PNK) in the
presence of 3*P-y-ATP. Another DNA substrate (2.1 kb)
used in Supplementary Figure SIC and S1E was generated
in the same way, but contains the DNA sequence that en-
codes the first 700 amino acids of human Exol. To gener-
ate DNA substrates with a 5 or 3’ overhang at both ends
used in Supplementary Figure S2, a 2 kb PCR fragment
derived from pBluescript SK(-) containing either Kpnl or
Xhol site on both ends was digested with Kpnl or Xhol.
The substrates were then treated with Alkaline Phosphatase
(New England BioLabs) to dephosphorylate the ends fol-
lowed by 5" 3?P-labeling with PNK in the presence of *P-y-
ATP. Oligonucleotide marker was prepared by mixing 10—
24, 30, 35, 40, 45 mer oligonucleotides derived from the se-
quence at the free 5" end of the one-end biotinylated 2 kb
DNA substrate used throughout the study. The marker mix
was also 5 3>P-labeled using PNK. The 3’ **P-labeled, 6 kb
dsDNA substrate used in the resection assay in Supplemen-
tary Figure S5B and D was prepared by digestion of the
pRS315 plasmid with Xhol and labeled by end filling using
exonuclease-deficient Klenow Fragment in the presence of
32P-q-dCTP, dGTP, dTTP and ddATP, as described previ-
ously (52,85,86). The 5 biotinylated, internally radiolabeled
DNA substrate used in Supplementary Figure S3E and S3G
was generated by PCR using 5’ biotinylated primers, and the
template pBluescript SK(-) in the presence of 3>P-a-dCTP.
The biotinylated substrate was then coupled to streptavidin
magnetic beads (New England BioLabs) before being added
to NPE for resection analysis.

A typical resection assay involved 10 wl NPE (treated or
untreated) supplemented with an ATP regenerating system
(2 mM ATP, 20 mM Phosphocreatine and 5 ng/pl Crea-
tine Phosphokinase) and 1 wl (5 ng/pl) of a radiolabeled
DNA substrate. After incubation at room temperature, 2
wl reactions were withdrawn and mixed with 10 ul stop
buffer (§ mM EDTA, 0.13% phosphoric acid, 10% Ficoll,
0.2% bromophenol blue, 0.5% SDS, 80 mM Tris-HCI, pH
8.0) supplemented with 2 mg/ml Proteinase K. The sam-
ples were incubated at 37°C for 2 h, and then mixed with
an equal volume of formamide, heated for 3 min at 95°C,
chilled on ice and run on a pre-run 16% polyacrylamide—
urea (8 M) gel. After running, the gel was incubated with
a protein destaining buffer (40% methanol and 10% acetic
acid) overnight with gentle shaking for fixation and removal
of urea. The gel was then placed on top of DE-81 filter pa-
per (to retain small DNA resection products) and Whatman
filter paper and dried before autoradiography. The resection
samples of 3’ ¥*P-labeled, 6 kb dsDNA substrate were run
on a 0.8% agarose gel followed by drying and autoradio-
graphy, as previously described (52,85,86). In order to de-
termine whether resection of a clean DSB in the extract is
initiated through clipping of the first nucleotide, a 5’ 3*P-
labeled 2 kb DNA substrate was incubated with Lambda
Exonuclease (New England BioLabs) to generate the radi-
olabeled mononucleotide, which was then used as a stan-
dard for comparison with the resection initiation products

generated in the extract from the same substrate on a 20%
polyacrylamide—urea gel.

To assay the flap endonuclease activity of recombinant
Dna2 proteins, a flap DNA substrate was generated by an-
nealing three ssDNA oligos (5-CCA GTG AAT TCG AGC
TCG GTA CCC GCT AGC GGG GAT CCT CTA-3; 5-
Z2P.ATT GGT TAT TTA CCG AGC TCG AAT TCA CTG
G-3; 5-TAG AGG ATC CCC GCT AGC GGG-3') as de-
scribed previously (92). The 5’ end of the flap ssDNA was
labeled with **P using PNK. 5" 3?P-labeled oligos of 10—
13 nucleotides in length derived from the same sequence of
the ssDNA flap were used as markers. The flap substrate
was incubated in reaction buffer (40 mM Tris, pH 7.4, 50
mM NaCl, 5 mM MgCl,, 4 mM ATP, 2.5 mM DTT and
5% glycerol) along with recombinant Flag-Dna2 proteins at
room temperature. The reaction samples were then treated
the same way as resection reactions with 5’ 3?P-labeled ds-
DNA substrate except that a 20% polyacrylamide—urea gel
was used.

DNA binding assay

For DNA binding assay in the extract, the one-end biotiny-
lated 2 kb DNA fragment derived from pBluescript SK(—
) was immobilized on streptavidin magnetic beads (New
England BioLabs). 2.5 pl of beads coupled with 50 ng of
biotinylated DNA fragment were incubated with 10 wl of
NPE at room temperature for the indicated times. After in-
cubation, beads were isolated by centrifugation and washed
twice with 250 wl of egg lysis buffer. The beads were then
treated with Lambda protein phosphatase (New England
BioLabs) for 30 min at 30°C to dephosphorylate DNA-
bound proteins (to avoid gel mobility changes that could
affect accurate detection of the proteins on western blots).
The DNA-associated proteins were then detected by west-
ern blotting.

RESULTS

Resection of clean DSBs is initiated through 5’ endocleavage,
generating oligonucleotides

To determine how the resection is initiated at a clean DSB
with a free 5’ end, we generated a one-end blocked 2 kb
dsDNA fragment by PCR using a 5 biotinylated primer.
The other free 5 end of the DNA fragment was labeled
with *2P using PNK followed by gel purification (Supple-
mentary Figure S1A). Using this model substrate, we per-
formed resection assays in Xenopus NPE, which has been
used extensively for the study of the DNA end resection pro-
cess (52,59,63,85,86). After incubating the DNA substrate
in NPE, reactions were terminated at various time points,
and resection initiation at the radiolabeled 5 end was ana-
lyzed by resolving the resection products on 16% denatur-
ing polyacrylamide gels. We found that initiation of resec-
tion at a clean DSB with blunt ends did not occur through
clipping of the first nucleotide of the 5 end (Supplemen-
tary Figure S1B). Rather, it took place by cleaving the &
strand DNA ~10-20 nucleotides (nts) away from the end,
generating oligonucleotides (Figure 1A) (due to its relatively
large size, a portion of the original substrate was ‘trapped’
in the loading wells of the polyacrylamide gel). The kinetics
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Figure 1. Dna?2 initiates the resection of clean DSB ends via cleavage of 5’ strand DNA. (A) A one-end 5’ 3>P-labeled 2 kb DNA fragment (red star, 32P;
purple circle, biotin) was incubated in NPE at room temperature. Reactions were terminated at the indicated times and resection products were resolved
on a 16% polyacrylamide-urea gel. The top band represents the original DNA substrate that was ‘trapped’ in the loading wells of the gel. (B) Effects
of Dna2 depletion on the resection of the radiolabeled DNA substrate depicted in (A) in the extract. (C) Purified recombinant Flag-Dna2(WT), Flag-
Dna2(D278A) and Flag-Dna2(K655E) expressed in insect cells. (D) Comparison of the flap endonuclease activity of Flag-Dna2(WT), Flag-Dna2(K655E)
and Flag-Dna2(D278A) towards a dsDNA substrate with a 5’ ssDNA flap in vitro. (E) Rescue of short 5’ endocleavage products in the Dna2-depleted extract
by recombinant Flag-Dna2(WT) protein. (F) Comparison of the ability of recombinant Flag-Dna2(WT), Flag-Dna2(K655E) and Flag-Dna2(D278A) in
restoring resection initiation in the Dna2-depleted extract.
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of the generation of these resection products suggests that
multiple cleavage events occurred on the 5" strand DNA at
different locations. Incubation of another DNA substrate
of similar length but with a different sequence also gener-
ated ssDNA oligos in a similar size range from the free 5’
end (Supplementary Figure S1C). Likewise, short oligonu-
cleotides of ~10-20 nts in length were also released from the
5" ends of DNA substrates with 5" or 3’ ssDNA overhangs
in NPE (Supplementary Figure S2A), although the cleavage
patterns differed significantly (Figure 1A, Supplementary
Figures S1C and S2A). Together, these results suggest that
resection of clean DSBs is mediated by internal cleavage of
the 5’ strand DNA and that the cleavage sites are influenced
by the end sequence and structure. To further dissect the
mechanism of resection initiation at clean DSBs, we used
primarily the one-end, 5’ P-labeled 2 kb DNA fragment
with blunt ends for subsequent studies.

Cleavage of free 5’ DNA ends at clean DSBs is mediated by
Dna2

We next determined which nuclease(s) are responsible for
the generation of the oligonucleotides from 5’ ends at clean
DSBs. Although Sae2-MRX in yeast can initiate resec-
tion from clean DSBs in the absence of Dna2 and Exol,
it is not clear whether they also initiate resection at these
breaks in the presence of the other resection activities in
cells (33,34,41,42,76-78). 1t is possible that other resection
nucleases such as Dna2 and Exol can directly initiate resec-
tion of these free DNA ends. To test this idea, we immun-
odepleted Dna2 or Exol from the NPE and examined the
effects of depletion on the initiation of resection of the 2 kb
DNA substrate with a blunt end described above. Depletion
of Dna2 completely abrogated the generation of the 10-20
nts oligonucleotides from the radiolabeled 5 end (Figure
1B, Supplementary Figure S6A). Depletion of Dna2 did not
affect the proteins levels of MRN or CtIP (and vice versa)
(Supplementary Figure S6E and H). To more rigorously
demonstrate the role of Dna2 in resection initiation, we gen-
erated recombinant Flag-Dna2 in insect cells using the bac-
ulovirus expression system (Figure 1C). Addition of puri-
fied Flag-Dna2 to the Dna2-depleted extract rescued resec-
tion initiation (Figure 1E, Supplementary Figure S6B). In-
terestingly, we also observed longer oligonucleotides (>45
nts) released from the 5’ end of the DNA substrate in the
Dna2-depleted extract, which disappeared after addition of
Flag-Dna2 (Figure 1B and E), suggesting that there exists
an alternative mechanism for resection initiation in the ab-
sence of Dna2 (see below). Similar results were observed for
other DNA substrates with blunt or recessed ends (Supple-
mentary Figures S1D, S1E, S2B, S2C). In contrast to Dna2,
depletion of Exol did not affect the production of the 5" en-
docleavage products at a clean DSB, suggesting that Exol
does not play a major role in resection initiation at clean
DSBs (Supplementary Figure S3A and B).

Dna?2 has both nuclease activity and helicase activity (93—
100). To determine whether Dna2 directly initiates resec-
tion of clean DSBs, we tested the requirement of the nu-
clease activity of Dna2 for the endocleavage of 5 ends.
In contrast to WT Flag-Dna2, a nuclease-inactive mutant
Flag-Dna2(D278A) failed to restore resection initiation in

the Dna2-depleted extract (Figure 1C, F, Supplementary
Figure S6C). This result strongly suggests that Dna2 di-
rectly initiates resection of clean DSBs through its 5 flap
endonuclease activity. In contrast to the nuclease-inactive
mutant, the helicase-inactive mutant Flag-Dna2(K655E)
was able to generate oligonucleotides from the free 5’ ends
in the Dna2-depleted extract (Figure 1C, F, Supplemen-
tary Figure S6C). However, at an equal amount, Flag-
Dna2(K655E) was much less efficient in initiating resection
in the Dna2-depleted extract, compared to WT Flag-Dna2,
although these proteins exhibited a similar level of 5 flap
endonuclease activity in reconstituted reactions (Figure 1D
and F) (96,98,99). In addition, the 5" oligonucleotides gen-
erated by Flag-Dna2(K655E) were significantly smaller in
size, compared to that generated by WT Flag-Dna2 (Figure
1F). These results suggest that although the helicase activ-
ity of Dna?2 is not essential for resection initiation at clean
DSBs, it promotes Dna2 nuclease function and influences
the cleavage sites on the 5" strand DNA.

In the absence of Dna2, CtIP promotes resection initiation
through endocleavage at more distal sites

In the Dna2-depleted extract we observed the release of
resection products of 45 nts or longer from the radiola-
beled 5 end of the DNA substrate (Figure 1B, Supple-
mentary Figures SIE and S2C). The appearance of these
oligonucleotides was much delayed compared with the
short oligonucleotides generated by Dna2 (Figure 1B, Sup-
plementary Figure S1E). The long cleavage products were
also observed in the extract containing Flag-Dna2(D278A)
(Figure 1F). These observations suggest that there exists a
backup mechanism to initiate the resection of clean DSBs
ends in the absence of Dna2 or its nuclease activity. Deple-
tion of Exol from the Dna2-depleted extract did not affect
the production of these long 5" oligonucleotides, indicat-
ing that Exol is not the nuclease that generates these prod-
ucts (Supplementary Figure S3C and D). Given the abil-
ity of MRX-Sae2 to initiate resection from HO cleavage-
induced clean DSBs in yeast in the absence of Dna2 and
Exol pathways (33,34), we hypothesized that CtIP-MRN
is the alternative pathway that initiates resection of clean
DNA ends in the Dna2-depleted extract. In support of this
idea, we found that although depletion of CtIP alone had
a very mild effect on the generation of the short oligonu-
cleotide products by Dna2 (Figure 2A, Supplementary Fig-
ure S6D), co-depletion of CtIP from the Dna2-depleted
extract completely abrogated the generation of the long
oligonucleotides from the free 5’ end (Figure 2B, Supple-
mentary Figure S6E). Addition of recombinant Flag-CtIP
to the double-depleted extract restored the generation of
long cleavage products (Figure 2C, D, Supplementary Fig-
ure S6F). We conclude that while Dna2 normally initiates
resection from the free 5’ ends of DSBs, CtIP can mediate
resection initiation at these ends when Dna2 is absent. This
CtIP-mediated ‘backup’ mechanism also occurs through
endocleavage, but at more distal sites from the DNA ends
compared to the Dna2 cleavage sites.
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long endocleavage products in the Dna2-depleted extract. (C) Purified recombinant Flag-CtIP expressed in insect cells. (D) Rescue of long endocleavage
products in the extract depleted of both Dna2 and CtIP by recombinant Flag-CtIP.

The nuclease activity of MRN is important for the CtIP-
dependent pathway of resection initiation

We next asked whether MR N is the nuclease responsible for
the CtIP-dependent pathway of resection initiation. Deple-
tion of the Mrel1l subunit of MRN from the extract did not
affect Dna2 protein levels, but dramatically inhibited the
generation of the short cleavage products, suggesting that
MRN promotes Dna2-mediated resection initiation (Fig-
ure 3A, Supplementary Figure S6G). Mrel 1 depletion also

abolished the long cleavage products in the presence or in
the absence of Dna2, suggesting that MRN also promotes
the CtIP-dependent initiation pathway (Figure 3A, B, Sup-
plementary Figure S6G, S6H). To determine the potential
role of the nuclease activity of MRN in the Dna2- and CtIP-
dependent pathways, we first examined the effects of Mirin,
an inhibitor of Mrell nuclease activity, on resection initia-
tion (46,101). Addition of Mirin to the extract did not af-
fect the generation of short cleavage products (Figure 3C),
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suggesting that the nuclease activity of MRN is not re-
quired for the Dna2 pathway of resection initiation. How-
ever, Mirin dramatically inhibited the generation of long
cleavage products in the Dna2-depleted extract (Figure 3C,
Supplementary Figure S61), suggesting that the nuclease ac-
tivity of MRN is responsible for the CtIP-dependent resec-
tion initiation pathway. To further test this idea, we com-
pared the ability of WT or a nuclease-dead mutant of the
MRN complex (M(H130N)RN) to support resection initia-
tion. As shown in Figure 3D, WT MRN and M(H130N)RN
both partially rescued short cleavage products generated by
Dna?2 to a similar extent in the Mrel 1-depleted extract sug-

gesting that Mrell nuclease activity is not required (due to
the high concentration of MRN in NPE, we have not been
able to generate recombinant MRN with a sufficiently high
concentration/activity for full rescue, therefore at present
we cannot rule out the possibility that another unknown
factor that was co-depleted by the Mrell antibodies also
promotes Dna2-mediated cleavage.) (Figure 3D, Supple-
mentary Figure S6J). In contrast, in the extract depleted of
both Dna2 and Mrell, WT MRN, but not the nuclease-
dead mutant, rescued long cleavage products, albeit par-
tially (Figure 3E, Supplementary Figure S6K). This result is
also consistent with the effects observed for Mirin described



above and further supports the idea that MRN is the nucle-
ase that cleaves the 5’ strand DNA to initiate resection in
the absence of Dna2. The nuclease activity of MRN is ap-
parently dispensable for the Dna2 pathway, consistent with
the idea that Dna?2 itself is the responsible nuclease. Thus,
MRN apparently plays distinct roles in the Dna2- and CtIP-
dependent pathways of resection initiation.

MRN promotes the recruitment of Dna2 and CtIP to clean
DSB:s to initiate resection

To further characterize the role of MRN in the Dna2-
dependent pathway of resection initiation at clean DSBs,
we next determined whether MRN promotes the associ-
ation of Dna2 with the DNA substrate. To this end, we
disrupted MRN function in the extract by immunodeple-
tion of NBS1 or by addition of previously characterized in-
hibitory antibodies of NBS1 (which inhibit the damage as-
sociation of NBS1 in NPE as well as its phosphorylation
by ATM in response to DSBs (Supplementary Figures S6L
and S4A) (26,31,87). Consistent with the effects observed
for Mrel1l depletion, depletion or inhibition of NBS1 pre-
vented the release of both short and long cleavage prod-
ucts from the 5’ end of the substrate in the presence or in
the absence of Dna2 (Figure 4A-C, Supplementary Figure
S6M). To assay the association of Dna2 with DNA sub-
strate, we immobilized the 5’ biotinylated 2 kb DNA sub-
strate on streptavidin beads and then incubated the DNA-
bound beads with NPE. After incubation, the beads were
pulled down and the proteins bound to the DNA substrate
were detected by western blotting. As expected, Dna2 and
other resection factors CtIP, NBS1 and Exo1 rapidly bound
to the DNA substrate in NPE (Supplementary Figure S4B).
Addition of inhibitory antibodies of NBS1 to NPE dra-
matically reduced the binding of Dna2 to the DNA sub-
strate, suggesting that MRN promotes resection initiation
by Dna?2 by facilitating its damage recruitment (Figure 4D).
Although we cannot completely rule out the possibility that
the NBSI antibodies affected the function of another fac-
tor in the extract that is important for Dna2 damage asso-
ciation, our result is consistent with the similar finding in
yeast and in in vitro reconstituted reactions (51,57,102). In-
hibition of NBS1 in the extract also abrogated the binding
of CtIP in untreated extract or the Dna2-depleted extract
(Figure 4D, E, Supplementary Figure SON). NBS1 inhibi-
tion did not affect the initial binding of Exol or PCNA to
the DNA substrate, although a mild decrease in damage as-
sociation was observed at a later time point in the presence
of the NBS1 antibodies (Figure 4D, E). Consistent with the
multiple roles of MRN in DNA resection, disruption of
NBSI1 function inhibited the DNA-binding of RPA (Fig-
ure 4D and E). Depletion of Dna2 had no significant effects
on the damage-association of NBS1 and CtIP (Supplemen-
tary Figure S4E), or the damage induced phosphorylation
of NBS1 (Supplementary Figure S4C and D), further sup-
porting that Dna2 functions downstream of MRN. Taken
together, these results strongly suggest that in addition to its
enzymatic role in the CtIP-dependent pathway, MRN facil-
itates the loading of both Dna2 and CtIP onto clean DSBs
to promote resection initiation.

Nucleic Acids Research, 2017, Vol. 45, No. 20 11773

Interaction with RPA is important for Dna2-mediated resec-
tion initiation at clean DSBs

In addition to stabilizing the resulting 3’ ssDNA after resec-
tion, the ssDNA-binding protein RPA has also been shown
to promote overall resection (51,57,58,60,61,75,103,104).
However, its role in resection initiation is not understood.
In reconstituted reactions with purified proteins, RPA pro-
motes Dna2-mediated resection specifically on the 5’ strand
DNA at DSBs (51,57,58,105). RPA directly associates with
Dna2, which is mediated by the interaction between the N-
terminus of Dna2 and the N-terminus of RPA1, the largest
subunit of RPA (60,61,105). To determine whether RPA is
required for Dna2-mediated initiation of resection at a clean
DSB, we depleted RPA from NPE and then examined the
effects on resection initiation at the clean DSB of the 2 kb
DNA substrate used before. Depletion of RPA completely
abrogated short cleavage products generated by Dna2 (Fig-
ure SA, Supplementary Figure S60). Importantly, this ef-
fect could be rescued by the addition of purified WT RPA
complex (Figure 51, Supplementary Figure S6S), indicating
that RPA is required for Dna2-mediated pathway of resec-
tion initiation at clean DSBs.

To further investigate the role of RPA in resection ini-
tiation, we generated a Flag-Dna2(27-1053) mutant lack-
ing the N-terminal 26 amino acids (Figure 5C). Consistent
with the observation that the corresponding N-terminal re-
gion in mouse Dna2 interacts with RPA in vitro (105), Flag-
Dna2(27-1053) exhibited reduced association with RPA in
the extract compared to WT Flag-Dna2 (Figure SE). Com-
pared to WT Flag-Dna2, Flag-Dna2(27-1053)—which ex-
hibited the same level of flap endonuclease activity in
vitro—was significantly less efficient in cleaving free 5" ends
in the extract, suggesting that the interaction with RPA
promotes Dna2-mediated resection initiation (Figure 5D,
F, Supplementary Figure S6Q). In further support of this
idea, a Dna2 binding-deficient RPA(1NA) mutant complex
containing a N-terminally truncated RPA1 subunit could
not rescue Dna2-mediated resection initiation in the RPA-
depleted extract (Figure 51, Supplementary Figure S6S), al-
though this mutant retains DNA-binding activity (61). De-
pletion of RPA had only a very modest effect on the associ-
ation of Dna2 with the DNA substrate (Figure 5G), consis-
tent with the notion that RPA stimulates the nuclease activ-
ity of Dna2 towards 5’ ssDNA flaps after DNA unwinding
(51,57,58,105).

RPA also promotes the CtIP-MRN-mediated resection initi-
ation in the absence of Dna2

Depletion of RPA from the extract also abolished long
endocleavage products (Figure 5A), raising the possibility
that RPA is required for the CtIP-MRN-mediated ‘backup’
pathway of resection initiation. As the CtIP-MRN path-
way initiates resection of clean DSBs in the absence of Dna2
function, we further examined the role of RPA in resection
initiation in the Dna2-depleted extract. In contrast to the
Dna2-depleted extract, no long cleavage products were gen-
erated in the extract depleted of both Dna2 and RPA (Fig-
ure 5B, Supplementary Figure S6P). This effect could be
rescued by the addition of purified WT RPA complex (Fig-
ure 5J, Supplementary Figure S6T). The absence of long
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resection initiation products in the double-depleted extract
was not simply caused by their degradation after endocleav-
age, because resection initiation was inhibited in the de-
pleted extract and because no small degradation products
were observed in the sample (Figure 5J). Together, these
data strongly suggest that RPA also plays a critical role in
the CtIP-MRN pathway of resection initiation. Interest-
ingly, addition of the RPA(INA) mutant complex to the
extract depleted of both Dna2 and RPA could still rescue
CtIP-dependent resection initiation (Figure 5J). This is in
sharp contrast to its inability to support the Dna2 pathway
(Figure 5I). These results suggest that RPA(1NA), similar
to M(H130N)RN, is a separation-of-function mutant that
can distinguish between these two resection initiation path-
ways. Depletion of RPA only modestly inhibited the bind-
ing of CtIP and NBS1 to the DNA substrate in the presence
or in the absence of Dna2 (Figure 5G, H, Supplementary
Figure S6R), indicating that RPA plays a minor role in the
damage recruitment of these proteins.

DISCUSSION

Using a Xenopus nuclear extract system, we have investi-
gated specifically the mechanism of resection initiation at
clean DSBs and identified Dna2 as the primary nuclease
for this step (Figure 1, Supplementary Figures S1 and S2).
The MRN complex is critical for the Dna2-mediated re-
section initiation, but it apparently plays a nonenzymatic
role by promoting the association of Dna2 with DNA sub-
strate (Figures 3 and 4). In the absence of Dna2, the CtIP-
MRN pathway operates as a backup pathway to initiate re-
section at clean DSBs, with MRN providing the nuclease
activity (Figures 2 and 3). MRN also promotes CtIP re-
cruitment to DNA substrate (Figure 4). Both the Dna2- and
CtIP-MRN-dependent pathways initiate resection through
endonucleolytic cleavage of 5" strand DNA; however, the
cleavage sites differ, with the CtIP-MRN pathway cleav-
ing at more distal positions from the end compared to the
Dna2 pathway (Figures 1 and 2). The ssDNA-binding pro-
tein RPA also promotes both resection initiation pathways,
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but it plays a minor role in facilitating the damage associa- tion does not address whether or not Sae2-MRX (CtIP-
tion of Dna2, CtIP and MRN (Figure 5). MRN) normally initiates resection of clean DSBs when the
The new model described above for resection initiation Dna2 and Exol resection activities are present. Our re-

at clean DSBs is distinct from that for blocked DSBs sults strongly suggest that the nuclease activity of Dna2,
with protein or chemical adducts (Figure 6). In budding but not that of MRN, directly initiates resection of clean
yeast, Sae2-MRX can initiate resection of a HO-induced DSBs. Dna2 does so by cleaving 5 strand DNA internally
clean DSB in the genetic background deficient of the Dna2 via its flap endonuclease activity (which requires free 5
and Exol resection pathways (33,34), indicating that Sae2— ends), generating short oligonucleotides (Figure 1). This is
MRX (CtIP-MRN) has the ability to initiate resection from in sharp contrast to blocked DSBs whereby Sae2-MRX
clean DSBs under this condition. However, this observa- (CtIP-MRN) is believed to be the primary mechanism for
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Dna2-mediated end cleavage requires the direct interaction between Dna2 and the N-terminus of RPA1 in the RPA complex, but this domain of RPA1 is

dispensable for the CtIP-MRN pathway of resection initiation.

resection initiation (35,65-72). Consistent with this notion,
we observed that resection of DSB ends blocked with biotin-
streptavidin was initiated by the CtIP-dependent pathway,
generating long cleavage products first (Supplementary Fig-
ure S3E-S3@G). This observation is also in agreement with
the finding that purified Sae2-MRX or CtIP-MRN prefers
blocked DNA ends over free ends to initiate the resec-
tion in reconstituted reactions (41,42). The existence of the
CtIP-MRN ‘backup’ pathway for resection initiation in
the Dna2-depleted Xenopus extract also explains the ob-
served limited resection by Sae2-MRX in the absence of the
Dna2 and Exol pathways in yeast (33,34). It is important
to point out that although not normally involved in resec-
tion initiation at clean DSBs, CtIP, like Dna2, contributes
to overall resection of these breaks, presumably due to its
role in resection extension (Supplementary Figure SSA-D)
(31,33,34,48,88,90).

The generation of oligonucleotides from 5" ends by both
Dna2 and CtIP-MRN and the requirement of the ssDNA-
binding protein RPA for both of these pathways suggest
that helicase activity is required for resection initiation at
clean DSBs. Indeed, we found that depletion of WRN he-
licase abrogated the short oligonucleotides generated by
Dna2 (Supplementary Figure SSE, S5F), consistent with
the previous finding that Dna2 acts in conjunction with
WRN (or BLM) in resection (55,63,98,1006). Interestingly,
depletion of WRN from the extract also dramatically in-
hibited the generation of long cleavage products in the pres-
ence or in the absence of Dna2 (Supplementary Figure SS5E
and F), suggesting that WRN is also involved in the CtIP-
MRN pathway of resection initiation. A recent study has

shown that the helicase activity of RECQLA4 is required for
CtIP-MRN-dependent resection in human cells (107). Fu-
ture studies are needed to further define the potential role of
WRN and RECQL4 in CtIP-MRN-mediated resection ini-
tiation at clean DSBs. Dna?2 itself also exhibits helicase ac-
tivity, although its function is less understood compared to
its nuclease activity (55,95,96,98,99,108,109). Interestingly,
we found that a mutation that inactivates the helicase activ-
ity of Dna2 partially reduced the efficiency of resection ini-
tiation and affected the pattern of 5’ endocleavage (Figure
1F). While this manuscript was in preparation, two stud-
ies by the Sung group and Cejka group reported similar
findings for yeast and human Dna2 whereby the helicase-
deficient mutants also produce smaller resection products
with a lower efficiency (110,111). These observations sup-
port the idea that although the helicase function of Dna2
is not essential for DSB resection, it promotes proper resec-
tion.

Our study has provided critical new insights into the func-
tion of the MRN complex in the resection of clean DSBs.
While the overall resection of clean DSBs is less efficient in
the absence of MRX in yeast, this complex is not absolutely
essential for resection of these ends or downstream HR re-
pair (76-78). This is in sharp contrast with 5’ blocked DSBs
with chemical or protein adducts where resection cannot oc-
cur without MRX/MRN, as the nuclease activity directly
initiates resection from these ends (35,65-72). Our results
indicate that although MRN promotes resection initiation
at clean DSBs, its role is to facilitate the damage recruitment
of Dna2 that provides the nuclease activity for resection
initiation, although we cannot rule out the possibility that
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MRN also stimulates the nuclease activity of Dna2 (Figures
3A and 4A, B, D). Consistent with its nonenzymatic role in
the Dna2 pathway, a low level of resection initiation was still
observed in the Mrel 1- or NBS1-depleted extracts (Figures
3 and 4). However, the nuclease activity of MRN is appar-
ently responsible for the CtIP-dependent backup pathway
of resection initiation, which normally does not operate in
the presence of Dna2 (Figure 3). Although CtIP has also
been shown to contain endonuclease activity (43-45), re-
cent studies by the Cejka group suggest that Mrell, but
not CtIP, confers the nuclease activity in the CtIP-MRN
functional unit for 5" end cleavage (41,42). The presence of
Dna2 prevents CtIP-mediated end cleavage; however, Dna2
apparently does not prevent the loading of CtIP onto the
DNA substrate (Supplementary Figure S4E). Because the
CtIP-MRN pathway is operational in the presence of a
nuclease-inactive Dna2 mutant (Figure 1F) and because the
CtIP-MRN-mediated resection initiation has a slower ki-
netics compared to the Dna2-pathway (Figure 1B), we sug-
gest that the fast engagement of Dna2 with the DNA sub-
strate followed by immediate resection initiation precludes
the action of the CtIP-MRN pathway. The physiological
significance for the existence of this CtIP-MRN back-up
pathway for initiating resection at clean DSBs remains to
be determined.

This study has also shed new light on the role of the
ssDNA-binding protein RPA in DSB resection. RPA is
known to promote both Dna2 and Exo1 resection pathways
(51,57,58,60,61,75,103—-105); however, its function in resec-
tion initiation was unclear. Our data indicate that RPA is
important for both the Dna2 and CtIP-MRN pathways of
resection initiation at clean DSBs (Figure 5). The require-
ment of RPA in CtIP-MRN-mediated resection initiation is
surprising, as Sae2-MRX or CtIP-MRN can directly clip
5’ strand DNA at blocked DSBs in the absence of RPA in re-
constituted reactions (41,42). However, a role of RPA in the
CtIP-MRN-mediated resection initiation is consistent with
the requirement of DNA helicases such as WRN (and po-
tentially RECQLA4) for the pathway (Supplementary Figure
S5F) (107). RPA may stimulate the activity of CtIP-MRN
or help to present ssDNA substrate after end unwinding for
CtIP-MRN-mediated cleavage. Using a heat-inducible de-
gron system to deplete RPA from budding yeast, Syming-
ton and colleagues previously observed limited resection by
Sae2-MRX at a clean DSB generated by the HO endonucle-
ase in the td-RFA1 strain (103). This Sae2-MR X-mediated
residual resection could result from incomplete depletion
of RPA before break generation by HO, as pointed out by
the authors (103). Alternatively, this discrepancy in RPA
requirement could reflect the mechanistic differences in re-
section initiation between yeast and metazoans. Although
RPA is required for resection initiation at clean DSBs, a
RPA(INA) mutant complex could support resection ini-
tiation by CtIP-MRN, but not by Dna2, suggesting that
RPA(INA), like M(HI30N)RN, can distinguish between
these pathways. The identification of these separation-of-
function mutants provides a unique opportunity for further
elucidation of the two resection initiation mechanisms at
clean DSBs in the future.
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