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Abstract
Invasion of the surrounding tissue is one of the recognised hallmarks of cancer
(Hanahan and Weinberg in Cell 100: 57–70, 2000. https://doi.org/10.1016/S0092-
8674(00)81683-9), which is accomplished through a complex heterotypic multiscale
dynamics involving tissue-scale random and directed movement of the population
of both cancer cells and other accompanying cells (including here, the family of
tumour-associated macrophages) as well as the emerging cell-scale activity of both
the matrix-degrading enzymes and the rearrangement of the cell-scale constituents of
the extracellular matrix (ECM) fibres. The involved processes include not only the
presence of cell proliferation and cell adhesion (to other cells and to the extracellu-
lar matrix), but also the secretion of matrix-degrading enzymes. This is as a result
of cancer cells as well as macrophages, which are one of the most abundant types
of immune cells in the tumour micro-environment. In large tumours, these tumour-
associated macrophages (TAMs) have a tumour-promoting phenotype, contributing
to tumour proliferation and spread. In this paper, we extend a previous multiscale
moving-boundary mathematical model for cancer invasion, by considering also the
multiscale effects of TAMs, with special focus on the influence that their directional
movement exerts on the overall tumour progression. Numerical investigation of this
new model shows the importance of the interactions between pro-tumour TAMs and
the fibrous ECM, highlighting the impact of the fibres on the spatial structure of solid
tumour.
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1 Introduction

One of the key factors that distinguish cancer cells from normal cells is the ability of
cancer cells to alter their local and non-local interactions to neighbouring cells (that
are either cancerous or of different types) and to the extracellular matrix (ECM), which
leads eventually to invasion and metastasis (Hanahan andWeinberg 2000, 2011). The
ECM consists of a network of macromolecules (i.e. fibrous proteins, water, minerals,
proteoglycans), which is present in all tissues and regulates cell behaviour and tissue
homeostasis (Filipe et al. 2018). While the structure of the matrix undergoes constant
remodelling (via synthesis and degradation), the ECM loses its integrity during cancer
progression. There are many enzymes inside the solid tumours that can degrade the
ECM, such as matrix metalloproteinases (MMPs) or urokinase plasminogen activator
system (uPA), but the complete details of the cell types within the tumour micro-
environment that are dominant in secreting these enzymes are still to be clarified
(Madsen and Bugge 2015). Cancer cells do express various types of matrix-degrading
enzymes (Hanahan andWeinberg 2011;Weinberg 2006), but there are also other types
of stromal cells that can express them, as well (Madsen and Bugge 2015).

One of the most abundant stromal cells is represented by the macrophage popula-
tion, which can form up to 50% of tumour mass (Kelly et al. 1988; Vinogradov et al.
2014). Macrophages have been investigated in the past for their ability to degrade the
various components of the ECM via the matrix metalloproteases (MMPs) that they
can express (Werb et al. 1980; Vérollet et al. 2011; Madsen et al. 2017), as well as
for their plasticity and anti-tumour/pro-tumour roles. In particular, macrophages are a
very heterogeneous population, with the two extreme phenotypes represented by the
classically activated anti-tumour M1 cells and the alternatively activated pro-tumour
M2 cells (Mantovani et al. 2017; Sica et al. 2008). The tumour environment (i.e. the
cytokines and chemokines in the environment) induces a transition from an initial
M1-like macrophage phenotype to an M2-like macrophage phenotype, such that the
advanced (detectable) tumours containmostly cells with anM2-like phenotype.More-
over, a recent experimental study on the macrophages’ phenotype in response to ECM
bioscaffolds suggested that such macrophages have an M2-like phenotype (Huleihel
et al. 2017). In addition, an earlier study (Madsen et al. 2013) showed that the M2-like
macrophages are responsible for the degradation of collagen, which is an important
fibrous component of the ECM. Therefore, given the crucial role played by the ECM
fibres such as collagen not only within the overall ECM architecture but also within
individual and collective cell migration (Wolf and Friedl 2011; Wolf et al. 2013),
understanding the role of macrophages and their interactive migratory dynamics with
both the cancer cell population and the underlying ECM fibres distribution during
ECM degradation and remodelling will bring important knowledge about the wider
cancer invasion process. However, since in vitro and in vivo studies on macrophages–
ECM–cancer interactions are still in their infancy, mathematical and computational
approaches can help by generating new hypotheses about these interactions.

Over the last decades, various mathematical models have been used to investigate
cell migration in cancer invasion and related processes, see Anderson et al. (2000,
2009), Anderson (2005), Chaplain and Lolas (2005, 2006), Deakin and Chaplain
(2013), Dallon et al. (1999), Deisboeck et al. (2011), Domschke et al. (2014), Knúts-
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dóttir et al. (2014), Mahlbacher et al. (2018), McDougall et al. (2006), Shuttleworth
and Trucu (2019), Szymańska et al. (2009), Trucu et al. (2013) and references therein.
The majority of these models focus on the interactions between the cancer cells and
the ECM during the invasion process, with some models considering also the role of
macrophages during cancer invasion (Knútsdóttir et al. 2014; Mahlbacher et al. 2018;
Owen et al. 2004; Owen and Sherratt 1997, 1998; Webb et al. 2007). The earlier
models focused mainly on the anti-tumour role of macrophages (Owen and Sherratt
1997, 1998; Webb et al. 2007), while the later models focused on the pro-tumour role
of M2 macrophages (Knútsdóttir et al. 2014) and the anti-tumour/pro-tumour roles
of M1/M2 macrophages (Mahlbacher et al. 2018) Moreover, while initially the math-
ematical models focused mainly on processes taking place at one spatial/temporal
scale (Szymańska et al. 2009; Anderson et al. 2000; Chaplain and Lolas 2005, 2006),
later the models started to acknowledge the multiscale dynamics of cancer progres-
sion. Indeed, the focus of recent modelling has shifted towards capturing the interplay
between various processes that occur at different temporal and spatial scales (Deis-
boeck et al. 2011; Trucu et al. 2013; Shuttleworth and Trucu 2019), but despite the
progress made in this regard, these models did not address also the contribution of the
macrophages to the invasion process.

In this study, we build upon the multiscale moving-boundary modelling framework
first introduced in Trucu et al. (2013) and later expanded in Shuttleworth and Trucu
(2019) to account for the fibre and non-fibre components of the ECM. To that end, we
consider the effects of both randomand directionalmovement ofM2-likemacrophages
not only on the remodelling of the ECM but also on the collective dynamics of the
cancer cells, ultimately exploring their contribution on the overall tumour progression.
The model introduced in Shuttleworth and Trucu (2019) and Trucu et al. (2013) is
extended here as follows.

First, atmacro-scale, we expand itsmacro-dynamics to capture also the contribution
that the M2-like macrophages bring to the overall coupled dynamics. This will be
carried out both by deriving another equation describing the spatio-temporal evolution
of the density of the M2-like macrophages and by amending the cell dynamics to
account for the interactions (including the formation of cell-adhesion bonds) with
the macrophages. This will not only highlight the impact that the directionality of
the macrophages dynamics has over the cancer cell invasion at macro-scale, but also
explore its additional contribution towards the rearrangements of the ECM fibres at
micro-scale (Shuttleworth andTrucu 2019). Indeed, themacrophages spatial dynamics
and their interactions with the ECM fibres not only will affect their spatial bias (that
naturally emerges to withstand incoming cell fluxes, as derived in Shuttleworth and
Trucu (2019)) with direct impact on ECM remodelling, but in additionwill also impact
the growth and motility of tumour cells. Furthermore, the modelling approach that we
propose here will also explore the dependence of both M2 macrophages and cancer
on the stiffness of the ECM.

Second, at micro-scale, we will advance further the modelling proposed in Shuttle-
worth and Trucu (2019), by accounting both the contribution of the macrophages to
the emergence of the leading edge cell-scale proteolytic dynamics occurring along the
invasive edge of the tumour and their impact on the micro-scale spatial rearrangement
of the ECM fibres microconstituents.
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Finally, we use this new modelling approach that we propose in this paper to shed
light on the importance of the directionality of macrophages dynamics within the
multiscale nature cancer invasion in a fibrous tissue environment, ultimately bringing
new understanding of this complex process.

The structure of the paper is as follows. We describe the new mathematical model
in Sects. 2.1 (macro-scale dynamics) and 2.2 (micro-scale dynamics). In Sect. 3.1, we
summarise the numerical scheme used to discretise this multiscale moving-boundary
model. In the remainder of Sect. 3, we present a variety of simulations of cancer
invasion within fibrous tissue environment, focusing on several biologically relevant
settings for directional macrophages motility. Finally, we conclude with a summary
and discussion of the results in Sect. 4.

2 Multiscale Modelling of Tumour and Dynamics within Fibrous ECM

Building on the multiscale moving-boundary modelling approaches proposed for can-
cer invasion in Shuttleworth and Trucu (2019), Trucu et al. (2013), in this work we
extend and advance thismodelling platformby exploring further themacro- andmicro-
scale dynamics of the tumour invasion process. Specifically, in contrast to the situation
addressed in Shuttleworth and Trucu (2019) and Trucu et al. (2013), we expand now
the biological context by exploring the multiscale process of cancer cells invasion
in the presence of tumour-associated macrophages with M2-like phenotype, shortly
addressed here asM2 TAMs. This will extend the modelling presented in Shuttleworth
and Trucu (2019) by incorporating here the dynamics of M2 TAMs population and
the impact of its directional motility on overall tumour progression.

2.1 Macro-Scale Dynamics

As this work builds on the multiscale modelling developed in Shuttleworth and Trucu
(2019), Trucu et al. (2013), we start this section by revisiting some critical features
of the framework. Hence, at macro-scale, we explore the cancer invasion process
occurring within a maximal tissue cube Y ∈ R

d for d = 2, 3, where the expanding
tumour region denoted byΩ(t) progresses over the time interval [0, T ] (i.e.Ω(t) ⊂ Y ,
∀ t ∈ [0, T ]).We adopt the same simplified context as in Trucu et al. (2013), Peng et al.
(2017) and Shuttleworth and Trucu (2019, 2020a, b) where aside from the tumour cells
population c(x, t), the rest of the tumour micro-environment and surrounding tissue
is represented here simply by a generic ECM. To that end, while we acknowledge
that, besides the tumour cells, some of the tumour micro-environment components
are not ECM constituents and are rather only supported by the usual ECM, in this
framework we still regard all those constituents (such as VEGF, FGF, TGF-beta and
ions such as Ca2+) as being part of and represented by this extended concept of
ECM. Furthermore, due to the biologically established importance played within cell
migration by the major ECM fibres, namely collagen and fibronectin, as considered
also in Shuttleworth and Trucu (2019, 2020a, b), we regard this ECM as two-phase
matter, consisting of an ECMfibre phase and an ECM non-fibre phase.Specifically, on
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Fig. 1 Illustration of the outer
boundary ∂Ωo(t) that is
highlighted with the dashed red
line (Color figure online)

one hand the ECM fibres phase accounts exclusively for all major fibres components
such as collagen and fibronectin (notably characterised by their insolubility properties
(Hynes andNaba 2012)), and its amount distributed at (x, t) is denoted here by F(x, t).
On the other hand, besides the major fibres components, the ECM contains also an
entire host of other soluble constituents, such as calcium ions Ca2+ (Bhagavathula
et al. 2007; Hofer et al. 2000), as well as other small proteins and soluble peptides that
beyond a certain concentration threshold lead to the formation of insoluble amyloid
fibrils (Rambaran and Serpell 2008), which notably have been found to support support
cell adhesion (Ghosh et al. 2017; Gras 2009; Gras et al. 2008; Jacob et al. 2016). Thus,
here all these ECM constituents that are not major fibres (i.e. these are neither collagen
nor fibronectin) are bundled into a second ECM phase, and to immediately distinguish
these from the ECM fibres, we simply refer to this phase as the non-fibre ECM phase.
The spatio-temporal distribution of the non-fibre ECM phase at (x, t) is denoted by
l(x, t). Furthermore, we also consider the presence of a population of M2-like TAMs,
denoted here byM(x, t), which infiltrate the tumour as an immune response though the
outer boundary that we denote by ∂Ωo(t) ⊂ ∂Ω(t), which is mathematically defined
in “Appendix B” and is illustrated schematically in Fig. 1. Finally, for a compact
notation, we denote by u the global four-dimensional tumour vector given by

u(x, t) := (c(x, t), F(x, t), l(x, t), M(x, t))T , (1)

and ρ(u) represents the total space occupied at position x , i.e.,

ρ(u) = c(x, t) + F(x, t) + l(x, t) + M(x, t), (2)

for all t ∈ [0, T ] and all x ∈ Ω(t).

2.1.1 Tumour Cells Population Dynamics

Recent biological evidence shows thatM2TAMsmacrophages enhance the cancer cell
proliferation process (Goswami et al. 2017). Hence, assuming logistic-type growth for
the cancer cell population [see Laird (1964, 1965), Tjorve and Tjorve (2017)], this
enhancement brought in by the macrophages leads to an augmented proliferation for
the cancer cells, which can be captured mathematically as:

Pc(u) := μcc[1 + μcMM][1 − ρ(u)]+. (3)
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Further, in the presence of proliferation (3), the tumour population c(x, t) exercises not
only randommovement (captured here through diffusion), but their spatial transport of
the cell population is further amended and biased by a directional movement induced
by the cell-adhesion processes (Huda et al. 2018; Petrie et al. 2009; Weiger et al.
2013; Wu et al. 2014). In this context, the spatio-temporal dynamics of the cancer cell
population can therefore be expressed mathematically as:

∂c

∂t
= ∇ ·

[
Dc∇c − cAc(x, t,u, θ f )

]
+ Pc(u), (4)

where Dc > 0 is a constant diffusion coefficient, andAc(x, t,u, θ f ) describes the cell-
adhesion processes that bias the cancer cell population movement in accordance with
the spatial heterogeneous distribution of the surrounding cancer cells, macrophages,
and ECM components including the oriented ECM fibres. Specifically, in addition to
the situation considered in Shuttleworth and Trucu (2019, 2020a, b) (exploring the
adhesive interactions of the cells distributed at x ∈ Ω(t) with the other cancer cells
as well as with the distribution of non-fibres ECM phase (Ghosh et al. 2017; Gras
2009; Gras et al. 2008; Jacob et al. 2016) and the oriented ECM fibres phase (Wolf
et al. 2009; Wolf and Friedl 2011) within a sensing region B(x, R) of radius R > 0),
here the flux term A(x, t,u, θ f ) explores the key biological evidence underlining
the contribution of the macrophages to the directional movement of the tumour cells.
Indeed, this not only explores the fact that cancer cells bind themselves to TAMs (Chen
et al. 2011), but also accounts for the experimental evidence detailed in Condeelis
and Pollard (2006), Green et al. (2009), Wei et al. (2019), Yamaguchi et al. (2006)
that underscores the existence of a cross talk between tumour cells and macrophages
which is mediated through various chemokines. Further, while we do not model here
explicitly the involved chemokine activities, mathematically we account for this cross
talk through the following non-local flux term:

Ac(x, t,u, θ f ) := 1

R

∫

B(0,R)

K(y)
[
n(y)

(
Sccc(x+y, t)

+ ScMM(x+y, t) + Scll(x+y, t)
)

+ n̂(y, θ f (x+y, t))ScFF(x+y, t)
][
1 − ρ(u)

]+
,

(5)

with the involved terms being detailed as follows. First, existing biological evidence
(Gu et al. 2014; Hofer et al. 2000) (revealing the positive correlation between the
availability of the extracellular Ca+2 ions within the ECM and the strength of the
adhesion bonds that the cancer cells are able to establish between themselves) enables
us to assume that the cell–cell adhesion strength Scc depends on the non-fibre ECM
density. Hence, proceeding here as in Shuttleworth and Trucu (2019, 2020a, b), we
take Scc to be of the form

Scc(x, t) := Smin + (Smax − Smin) exp

[
1 − 1

1 − (1 − l(x, t))2

]
,
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which smoothly explores a full range of cell–cell cancer self-adhesion strengths, from
its maximum level Smax > 0 that corresponds to the Ca+2-saturation level to its
minimum values Smin > 0 that corresponds to the minimum level of Ca+2. Further,
as on the sensing region the cell–cell cancer self-adhesion is complemented by an
adhesion relationship between the cancer cells and macrophages, ScM > 0 represents
the combined strength of the cancer cell–macrophages adhesion. Finally, the cell–
matrix adhesion manifests itself in this context through both adhesion between the
cell and the ECM fibres (Wolf et al. 2009; Wolf and Friedl 2011) and adhesion
between the cells and non-ECM fibre phase (which includes, for instance, densities of
amyloid fibrils that have been proved experimentally to support cell adhesion (Ghosh
et al. 2017; Gras 2009; Gras et al. 2008; Jacob et al. 2016)). The adhesion strength
between cancer cells and non-fibre ECM and the adhesion strength between cancer
cells and fibre ECM, denoted here by Scl and ScF, respectively, are considered to be
positive constants. Furthermore, n(·) represents here the unit radial vector given by

n(y) :=
⎧⎨
⎩

y

‖ y ‖ if y ∈ B(0, R) \ {0},
0 if y = 0,

and n̂(·, ·) is the unit vector that is biased by the fibre orientations, i.e.

n̂(y, θ f (x + y, t)) :=
⎧⎨
⎩

y + θ f (x + y, t)

‖ y + θ f (x + y, t) ‖ if y ∈ B(0, R) \ {0},
0 if y = 0,

(6)

where θ f (x, t) is the orientation of the fibres at macro-scale that was derived and intro-
duced for the first time in Shuttleworth and Trucu (2019), being derived by exploring
the structural micro-scale mass distribution of their constituent micro-fibres and char-
acterising the spatial bias of the ECM fibres distributed at the macro-scale location
x ∈ Y , see for details Sect. 2.2. Figure 2 showsoneof the biasedvectors y+θ f (x+y, t),
with y ∈ B(0, R), that are involved in (6), illustrating the way in which the orientation
of the ECM fibres bias the direction of vector y, crucially influencing the cell–fibre
adhesion process.

To account in (5) also for the gradual weakening of the adhesion between cancer
cells and macrophages as well as of the adhesive bonds between the cancer cells at
x ∈ Ω(t0) and the cells and ECM fibre and non-fibre phases as we move away from
the location x within B(x, R), we use a radially symmetric K(·) that is given here by

K(y) = ψ
( y

R

)
, ∀y ∈ B(0, R), (7)

where ψ(·) is the standard mollifier defined in Appendix C. Finally in (5), (1 −
ρ(u))+ = max(0, 1− ρ(u)) ensures that overcrowded tumour sites do not contribute
to themigration of the cancer cells. To conclude, Fig. 3 illustrates the way the adhesion
fluxAc(x, t,u, θ f ) emerges, as this can be regarded as a sumof four different adhesion
contributors, namely:Acc for cell–cell cancer self-adhesion,AcM for cell-macrophage
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Fig. 2 Schematics of the cell–fibre adhesion that is biased by the orientation of the fibres

adhesion, Acl for cell-non-fibre adhesion and AcF for cell–fibre adhesion, which are
given by:

Acc(x, t,u, θ f ) := 1

R

∫

B(0,R)

K(y)n(y)
(
Sccc(x + y, t)

)[
1 − ρ(u)

]+
,

AcM(x, t,u, θ f ) := 1

R

∫

B(0,R)

K(y)n(y)
(
ScMM(x + y, t)

)[
1 − ρ(u)

]+
,

Acl(x, t,u, θ f ) := 1

R

∫

B(0,R)

K(y)n(y)
(
Scll(x + y, t)

)[
1 − ρ(u)

]+
,

AcF(x, t,u, θ f ) := 1

R

∫

B(0,R)

K(y)̂n(y)
(
ScFF(x + y, t)

)[
1 − ρ(u)

]+
.

2.1.2 Macro-Scale Dynamics of the Fibres and Non-fibre ECM Phases

Based on biological evidence that the components of non-fibre ECM phase (e.g. the
amyloid fibrils) are degraded by several classes of matrix metalloproteinases (Stix
et al. 2001; Liao and Van Nostrand 2010), we extend here the context considered in
Shuttleworth and Trucu (2019, 2020a, b), where this degradation was considered to
be caused only by the MMPs secreted by the cancer cells. So now we consider not
only the contribution of cancer cells but also that of the macrophages to the secretion
of the various classes of matrix metalloproteinases (Aristorena et al. 2019; Huang
et al. 2012). Hence, the degradation of the non-fibre ECM phase is caused indirectly
(through the secretion of MMPs) not only by the tumour cells, at rate λlc > 0, but
also by the M2 TAMs, at rate λlM > 0. Furthermore, while depending on the free
space available, the remodelling of the ECM is also enhanced by the presence of the
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Fig. 3 Schematics of adhesion process inside the sensing region B(x, R). In order to illustrate this process,
the adhesion termAc(·, ·, ·, ·)given in (5) is appropriately given as the sumof fourmain constituents, namely
Acc,Acl,AcF andAcM that correspond to cell–cell, cell-non ECM fibres, cell-ECM fibres adhesions and
cell-macrophage adhesion contributions, respectively. Here, we envisaged four regions inside the sensing
region B(x, R) where one of the tumour components (i.e. either cancer cells, or ECM fibres or ECM non-
fibres or M2 TAMs) is predominant and forms a local majority in terms of their spatial distribution versus
the other three. In this context, the vector Acl is pointing from the centre of the sensing region towards
the non-fibre group because the non-local bonds are the strongest towards that direction. We see a similar
behaviour for Acc, AcF and AcM. However, the fibre adhesion is biased by the orientation of the fibres,
and so the vector points towards a biased direction; see Fig. 2. On the other hand, since Scc depends on the
density of non-fibre ECM, we observe that Acc is aided by the position of the region where we have the
grouping of the non-fibre component. Finally, AcM points from the centre point x towards the groupings
of M2 TAMs due to adhesion. Adding these elements together yields Ac(x, t,u, θ f ) that is given by (5),
and so we expect the mass of tumour cells distributed at position x to move towards this direction

macrophages (Afik et al. 2016; Goswami et al. 2017; Springer and Fischbach 2016).
Hence, the dynamics of the non-fibre component l(x, t) is described by

∂l

∂t
= −l(λlcc + λlMM) + (α1 + α2M)(1 − ρ(u)), (8)

whereα1 is the remodelling rate in the absence ofM , andα2 represents the remodelling
enhancement rate enabled by the presence of M .

Finally, the macroscopic ECM fibres F(x, t) are degraded both by the cancer cells
and by the macrophages (with collagen-endocytosing TAMs being one of the main
contributors towards the degradation of collagen in tumours, according to Madsen
et al. (2017)). Thus, their dynamics can be mathematically formalised as

∂F

∂t
= −F(γFcc + γFMM), (9)

where γFc and γFM are the ECM fibres degradation rates associated with cancer cells
and macrophages, respectively.
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2.1.3 M2Macrophage

The last macro-scale tumour constituent that we consider in this work is the family
of M2 TAMs macrophages M(x, t). To describe the macrophages dynamics, we note
that the experimental study in Redente et al. (2007) showed that: (i) the number of
peritumoral macrophages increased during oncogeny, (ii) the macrophages entering
the circulation from the bone marrow (to reach the tumour site) already had a M2-
phenotype, likely due to tumour-derived biochemical signals (Redente et al. 2007).
Moreover, the experimental study in Green et al. (2009) showed that TAMs localise
at the invasive area of the tumour, where they secrete cytokines and proteases that
contribute to tumour invasion. Therefore, in this study we assume that the M2-like
macrophages enter the tumour through blood vessels at the tumour boundary, at a
constant influx density M0. Denoting the tumour boundary by Ωo(t), we define the
M2 influx term as follows:

MI (x, t) := M0(χ∂Ωo(t) ∗ ψρ)(x). (10)

Here, χ
∂Ωo(t) represents the characteristic function of the outer boundary ∂Ωo(t)

(defined in Appendix B), and ψρ(·) denotes the standard mollifier given by ψρ(x) :=
1
ρd ψ(x) with a small cell-scale mollification range ρ > 0.

Regarding macrophages proliferation, on the one hand biological evidence (Cas-
setta et al. 2019; Chitu et al. 2011; Jenkins et al. 2011) shows that cancer cells trigger
this proliferative process through the production of survival and proliferation factors.
On the other hand, the ECM stiffness was also shown to enhance macrophages prolif-
eration (Adlerz et al. 2016). Furthermore, based on the biological evidence presented
in Provenzano et al. (2009), where it was demonstrated experimentally that increased
collagen matrix density increases matrix stiffness (a fact that was further confirmed
in Mierke (2011), Wullkopf et al. (2018)), there exists a direct correlation between
the ECM stiffness and the ECM fibre phase density. Hence, this direct correlation
enables us to assume here not only that the ECM stiffness is directly proportional
to the ECM fibre phase density, but in fact that the ECM stiffness is actually given
directly by F(x, t) (i.e., the proportionality constant is considered here to be 1). Thus,
the proliferation law of the macrophages can therefore be mathematically formulated
as

PM (u) := μMMc(1 + μMFF)(1 − ρ(u))+, (11)

where μM > 0 is the baseline proliferation rate, μMF > 0 is the enhancement rate of
the fibres and (1 − ρ(u))+ ensures that there is no overcrowding.

Similar to the cancer cells, macrophages exercise not only random movement but
also directedmigration.Hence,we account for the randommovement part via diffusion
with a coefficient DM > 0 (which for the timebeing is considered constant),while their
directed movement is captured through an adhesion term that is similar to the one that
we used for the cancer cell population in (5). Specifically, we consider here a cell–cell
M2 TAMs self-adhesion with constant strength SMM > 0 and a macrophage–cancer
cells adhesion with strength SMc > 0 (we have already mentioned in Sect. 2.1.1 that
cancer cells can bind themselves to TAMs, in addition to attracting TAMs, as shown
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in Condeelis and Pollard (2006), Dutta et al. (2018), Xuan et al. (2014)). Finally,
since we aim to explore the various factors that may affect macrophage movement,
we also consider macrophage–fibre ECM adhesion with strength SMF > 0. Hence,
the macrophage adhesion term AM (x, t,u, ·) is given by

AM (x, t,u, θ f ) := 1

R

∫

B(0,R)

K(y)
[
n(y)

(
SMMM(x+y, t) + SMcc(x+y, t)

)

+ n̂(y, θ f (x+y, t))SMFF(x+y, t)
][
1 − ρ(u)

]+
.

(12)

Here, R is the radius of the sensing regionB(x, t),K(·) is the diffusion kernel defined in
(7) to model the weakening effect, [1 − ρ(u)

]+ guarantees that overcrowded regions
do not have any adhesion contribution towards the overall macrophages dynamics,
and θ f (x + y, t) is the orientation of the fibres on the macro-scale (see details in
Sect. 2.2). Due to the similarities between the structure of the two adhesion fluxes,
i.e.,AM (x, t,u, θ f ) given in (5) andAc(x, t,u, θ f ) given in (12), we refer the reader
to Figs. 2 and 3 for illustration of the macrophage adhesion term (12).

Therefore, the dynamics of the M2-like macrophages M(x, t) is given by

∂M

∂t
= ∇ · [DM∇M − MAM (x, t,u, θ f )] − dMM + MI + PM (u), (13)

where dM > 0 represents the natural macrophages death rate.

Remark 1 Since various experimental studies discuss the distribution of M2 TAMs
macrophages inside tumour tissue and its prognostic value (Liu et al. 2017; Sumi-
moto et al. 2019), here we focus exclusively on the tumour–macrophage interactions
on the tumour domain, rather than considering these mixed within the ECM further
afield outside the tumour. This is another reason for which our modelling assumptions
assume a macrophage influx through tumour boundary (see Eq. (10)).

2.1.4 Summary of the Macro-Dynamics

In summary, using (4), (8), (9) and (13), the coupled PDEs system that describes our
macro-scale cancer invasion dynamics is given by

∂c

∂t
= ∇ ·

[
Dc∇c − cA(x, t,u, θ f )

]
+ Pc(u), (14a)

∂F

∂t
= −F(γFcc + γFMM), (14b)

∂l

∂t
= −l(λlcc + λlMM) + (α1 + α2M)(1 − ρ(u)), (14c)

∂M

∂t
= ∇ · [DM∇M − MAM (x, t,u, θ f )] − dMM + MI + PM (u), (14d)

with zero-flux boundary conditions. Finally, in Table 1, we summarise the adhesion
effects between the different constituents that were considered throughout this section.
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Table 1 Summary of all adhesion processes that we consider in our macro-scale dynamics (14)

Cancer cells M2 TAMs Non-fibre ECM Fibre ECM

Cancer cells Scc ScM Scl ScF
M2 TAMs SMc SMM 0 SMF

Non-fibre ECM 0 0 0 0

Fibre ECM 0 0 0 0

2.2 Processes on theMicro-Scales and Their Links to Macro-Scale

The macro-scale cancer invasion process is accompanied by several closely linked
micro-dynamic processes (Weinberg 2006). Particularly important are those micro-
processes concerning the cell-scale spatial redistribution of the ECM fibres micro-
constituents caused by the interactionwith the cancer cell population, and the cell-scale
proteolytic processes occurring at the leading edge of the tumour. While different
in nature, both of these micro-processes are intrinsically linked to the same macro-
process, and in the following will explore the details of these micro-dynamics together
with the associated double feedback links that connects them to the invasive tumour
macro-dynamics.

2.2.1 Fibres: Their Micro-Scale Structure andMacro-Scale Representation

As discussed in detail in Shuttleworth and Trucu (2019), it is important to observe that
the macroscopic ECM fibres are not only represented through their amount F(x, t)
distributed at (x, t) ∈ Ω(t)×[0, T ], but also through their naturally emerging spatial
bias to withstand incoming cell fluxes and forces. This spatial bias is induced by
their micro-scale distribution of micro-fibres f (z, t) on a cell-scale micro-domain
δY (x) := x + δY of appropriate micro-scale size δ > 0. Indeed, as derived and
formalised in Shuttleworth and Trucu (2019), these two important characteristics of
the ECM fibres (i.e. the amount of distributed ECM fibres and their associated spatial
bias at (x, t)) can be captured simultaneously through a vector field representation of
the ECM fibres, θ f (x, t), that is mathematically expressed as

θ f (x, t) := 1

λ(δY (x))

∫

δY (x)

f (z, t) dz · θ f ,δY (x)(x, t)

‖ θ f ,δY (x)(x, t) ‖2 . (15)

Here, λ is the Lebesgue measure in Rd and θ f ,δY (x)(x, t) is the revolving barycentral
orientationwith respect to themeasure f (z, t)λ(·) that is induced and uniquely defined
by the mass distribution of micro-fibres on the cell-scale micro-domain δY (x). This
is given by the Bochner mean value (Yosida 1980) of the barycentral vector-valued
function δY (x) � z 	→ z − x ∈ R

d , namely
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θ f ,δY (x)(x, t) :=

∫
δY (x)

f (z, t)(z − x) dz

∫
δY (x)

f (z, t) dz
. (16)

Finally, the magnitude of the ECM fibres is given by the Euclidean norm of θ f (x, t),
i.e.

F(x, t) :=‖ θ f (x, t) ‖2,

and represents the mean value of micro-fibres distributed on δY (x) at time t ∈ [0, T ].

2.2.2 Fibre Rearrangement

Under the incidence of the macro-scale spatial flux generated by the tumour macro-
dynamics, the rearrangement of the ECM fibres takes place on each micro-domain
δY (x) through the spatial re-distribution of its micro-fibres constituents. This process
is instigated not only by the emerging macro-scale cancer cell flux Fc (as considered
in Shuttleworth and Trucu (2019)), but also by the spatial flux of migrating M2 TAMs
macrophages FM , these being defined by:

Fc(x, t):= Dc∇c(x, t) − c(x, t)Ac(x, t,u, θ f ),

FM (x, t):= DM∇M(x, t) − M(x, t)AM (x, t,u, θ f ).
(17)

Therefore, at any spatio-temporal node (x, t), the combined spatial flux Fc(x, t)+
FM (x, t) that acts uniformly upon the fibres distributed on the micro-domain δY (x)
results in the emergence of a micro-fibres rearrangement vector r(δY (x), t) given by

r(δY (x), t) := ωc(x, t)Fc(x, t) + ωM (x, t)FM (x, t) + ωF (x, t)θ f (x, t). (18)

This rearrangement vector acts upon themass distribution of themicro-fibres f (z, t)on
δY (x), causing these to be spatially redistributed both on δY (x) and on the neighbour-
ing micro-domains. The weights considered in (18), ωc(x, t), ωM (x, t) and ωF (x, t),
are appropriately given by the associated mass fractions of cancer cells, macrophages,
and ECM fibres distributed at at (x, t), namely:

ωc(x, t) := c(x,t)
c(x,t)+F(x,t)+M(x,t) , ωM (x, t) := M(x,t)

c(x,t)+F(x,t)+M(x,t) ,

ωF (x, t) := F(x,t)
c(x,t)+F(x,t)+M(x,t) .

Finally, for any micro-scale position z ∈ δY (x), we calculate the new position z∗ by
using the relocation vector νδY (z)(z, t):

z∗ := z + νδY (z)(z, t).

In Fig. 4, we consider a typical example of these vectors to illustrate the process. For
further details, we refer the reader to Appendix E or Shuttleworth and Trucu (2019).
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Fig. 4 Sketch of the micro-fibre reallocation to the neighbouring fibres micro-domain and the vectors
required for the process

2.2.3 Boundary Micro-Scale

The second type of micro-dynamics that we consider here is that exercised by the
proteolytic molecular processes occurring along the invasive edge of the tumour.
Biological evidence suggest that besides cancer cells, TAMs also produce matrix-
degrading enzymes (MDEs), such as matrix metalloproteinases (MMP) of both type 2
(MMP-2) and type 9 (MMP-9) molecules (Goswami et al. 2017), which are essential
for tumour progression. Secreted by the cancer cells andmacrophages within the outer
proliferating rim of the tumour, these molecules exercise a cross-interface transport
within a cell-scale neighbourhood of the tumour interface, leading to degradation of
the ECM in the peritumoural region, ultimately resulting in changes of the tumour
boundary morphology and subsequent further tumour progression.

To explore this emerging proteolytic micro-dynamics, we adopt the approach ini-
tially developed and introduced in Trucu et al. (2013). Specifically, we denote by
m(·, ·) the spatio-temporal distribution of MDEs that are transported within a cell-
scale neighbourhood of ∂Ω(t). This neighbourhood is represented by the union of an
appropriately constructed covering bundle of overlappingmicro-domains {εY }εY∈P(t)
illustrated in Fig. 5, which enable us to decompose the overall boundary dynamics into
a union of proteolytic micro-dynamics taking place on each εY . Thus, for any macro-
scopic time t0 ∈ [0, T ] on any boundary micro-domain εY , at any spatio-temporal
location (y, τ ) ∈ (εY ∩ Ω(t0)) × [t0, t0 + �t], a source h(·, ·) of MDEs arises as a
collective contribution of both the cancer cells and the macrophages distributed within
the tumour’s outer proliferating rim within a distance γ > 0 from y. This source can
be mathematically formulated as:

h(y, τ ) =

∫
B(y,γ )∩Ω(t0)

αcc(x, t0 + τ) + αMM(x, t0 + τ)dx

λ(B(y, γ ) ∩ Ω(t0))
, y ∈ εY ∩ Ω(t0),

h(y, τ ) = 0, y /∈ εY \ (Ω(t0) + {z ∈ Y | ‖z‖2 < ρ}),
(19)
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Fig. 5 Schematics of the overlapping ε-cubes that covers the boundary ∂Ω(t0)

where αc and αM are the MDE secreting rate of the cancer and the M2 TAMs, respec-
tively. Further, B(y, τ ) := {z ∈ Y | ‖y − z‖∞ ≤ γ } denotes the ‖ · ‖∞ ball with
appropriately chosen radius γ > 0 where the source of MDEs is accumulated, and
0 < ρ < γ is a small mollification range that smooths out the source h(·, ·) along the
tumour interface.

Finally, the source h(·, ·) defined in (19) allows us to formulate the MDE micro-
dynamics

∂m

∂t
= Dm�m + h(y, τ ), (20)

which ultimately enables us to determine the movement of this interface. For further
details, see “Appendix F” or Trucu et al. (2013).

2.3 Summary of the Links Between the Scales

In summary, bothmicro-scales have their unique link to themacro-scale and vice versa.
First, we recall that the spatial fluxes defined in (17) result in a vector field induced
by the movement of both the cancer cells and M2 TAMs. This spatial flux interacts in
a weighted manner with the oriented fibres (represented here again as a vector field),
ultimately enabling the rearrangement of distribution of the micro-scale constituents
of the fibres (referred to as micro-fibres), resulting in a changed spatial orientation of
the ECM fibres. This establishes a fibres top-down link and it is illustrated in Fig. 6.
On the other hand, the freshly rearranged micro-fibre density translates into a change
in density as well as the orientation of the ECM fibres observed at the macro-scale,
as detailed in Sect. 2.2.1, which in turn has a major impact upon the macro-scale
dynamics (14). This establishes now a fibres bottom-up link that connects the fibre
micro-scale to the macro-dynamics.

Shifting our focus to the relation between the boundary micro-dynamics and the
macro-dynamics, the source of the MDEs (19) on the micro-scale is induced by the
macro-scale population of cancer cells and macrophages. Under the presence of this
source, themicro-dynamics (20) takes placewithin a cell-scale neighbourhood enabled
by a covering bundle of overlapping boundary micro-domains {εY }εY∈P(t), and their
solution on each of εY ultimately enables us to determine a direction and magnitude
for the movement of the tumour boundary captured by εY . The local expansion of
the tumour domain in the direction and by the magnitude determined from the pro-
teolytic boundary micro-dynamics is finally exercised provided that a significant but
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Fig. 6 Links between the scales, and how the scales affect each other, in particular, the link between
boundary micro- and macro-scales as well as fibre micro- and macro-scales

not complete level of ECM degradation within the peritumoural tissue neighbourhood
is realised. A quantification of this significant but not complete level of peritumoural
degradation (which translates in the most favourable tissue conditions for invasion)
is explored through a tissue parameter β ∈ (0, 1) that has been introduced and for-
malised in Trucu et al. (2013) and is briefly described in “Appendix F”, but for full
details, we refer the reader to this initial reference. Thus, this connection between
the boundary micro-dynamics and macro-dynamics is again connected through a top-
down–bottom-up double feedback loop that is illustrated in the bottom half of Fig. 6.

3 Numerical Approach and Computational Simulations

3.1 Brief Overview of the Numerical Approach

In this section, we briefly discuss the numerical methods used to solve the macro-scale
dynamics (14) and give an overview of the numerical approaches used for both fibres
and MDE micro-scale dynamics (detailed in Sects. 2.2.2 and 2.2.3, respectively).

Let us start the discussion by focusing on the macro-scale dynamics (14), where we
introduced the non-constant diffusion coefficients. Here, we use the method of lines
(MOL) approach to first discretise the system in space, and then, for the time-marching
we use the non-local predictor–corrector scheme introduced in Shuttleworth and Trucu
(2019) (a new two-step time-splittingmethod involving the Eulermethod as the predic-
tor and a non-local Trapezoidal-type rule as the corrector). In this context, the spatial
discretisation of (14) is carried out on a uniform grid, where we accurately approxi-
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mate the two distinct spatial operators, namely the diffusion and adhesion operators.
While for the former one, we use a convolution-based second-order central difference
scheme (as detailed in Appendix G.1.1), for the adhesion operators, we follow Dom-
schke et al. (2014), Gerisch and Chaplain (2006, 2008) to construct a second-order
finite-difference flux limiter scheme, (as described in “Appendix G.1.2”). Further-
more, to efficiently and accurately approximate the adhesion integrals introduced in
(5) and (12), we use a convolution-driven approach. Here, we partition the sensing
region B(0, R) into annulus sectors, which allows us to approximate the integrals in
(5) and (12), by using the integral of the step functions associated with each annulus
sector. For completeness, we present the details of this scheme in Appendix G.

Focusing now on the MDE micro-scale (detailed in Sect. 2.2.3), we first need to
approximate the MDE source (19). For efficiency, we again use convolution to carry
out the approximation of this integral, which we then interpolate on eachMDEmicro-
domain εY , enabling us to use it in the MDE micro-dynamics (20). The numerical
scheme of this micro-dynamics again follows the MOL. So, we first discretise (20) in
space using the second-order central difference scheme, and then the resulting ODEs
are solved by the backwardEuler time integration technique. This allows us to solve the
MDE micro-dynamics on each εY which ultimately leads to a new expanded invasive
tumour domain Ω(t + �t) for the macro-dynamics (14). For further details on the
numerical technique used for the MDE micro-scale dynamics, we refer the reader to
Appendix G.3.

Finally, the redistribution of the micro-fibres constituents of the ECM (detailed
in Sect. 2.2.2) is performed on each fibre micro-domain δY (x). Hence, by using the
spatial fluxes (generated by the cancer cells and macrophages), on each δY (x) we
construct the emerging rearrangement vector which then induces a reallocation vector
for each micro-node in δY (x). Then, using these reallocation vectors, we calculate the
new positions of each micro-fibres, eventually leading to the new rearranged fibres
ECM. For completeness, we present the details of this process in “Appendix E”.

3.2 Initial Conditions

For the numerical simulations, we consider a spatial domain Y = [0, 4] × [0, 4]. We
start with the following initial conditions

c(x, 0) = 0.2 · χB((2,2),0.25) (x),

l(x, 0) = min

(
1

2
+ 1

4
sin(7πx1x2)3 · sin (7π x2

x1

)
, 1 − c(x, 0)

)
,

M(x, 0) = 1

2
· c(x, 0).

(21)

These macro-scale initial conditions can be seen in Fig. 7a. Here, the white curves
indicate the boundary of the tumour. In Fig. 7b, we show the initial condition for
one micro-scale fibre domain δY (x), which is repeated for all macro-scale points.
Note that the pattern of the fibres on the micro-scale is not visible on the macro-scale
because in order to get the density of the fibres at any macro-point x , we integrate the
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Fig. 7 a Initial conditions for the macro-scale densities, i.e. for cancer, non-fibre ECM and fibres ECM
defined in (21). b The initial condition of one micro-fibre domain which is repeated for every point on the
macro-scale

corresponding fibre-micro domain δY (x) seen in Fig. 7b. We note here that the ratio
between the fibres and non-fibres components of ECM is assumed to be 20%:80%.

In this section, we present all of our simulations at time 50�t , using the parameter
values from the set S described in Appendix A which we regard as baseline, and any
departure from these values will be stated accordingly.

We note here that any small differences in the model outcomes will be exclusively
the result of changes in the parameter values, and not of any model stochasticity, as
all equations and initial conditions are deterministic.

3.3 Simulation Results

In this section, we investigate numerically the dynamics of the macro-scale model
(14), where both cancer and macrophage diffusions are constants.

Baseline Dynamics
In Fig. 8, we show the distribution of macroscopic variables at time 50�t , when we

assume that all macrophage adhesion terms are zero: ScM = 0, SMM = 0, SMc = 0 and
SMF = 0 (while all other parameters are as inAppendixA).We observe that in this case
the M2 TAMs are located near the outer boundary of the tumour. This is the result of
the assumptions that macrophages infiltrate the tumour though the outer boundary (see
Eq. (10)) and that macrophages diffuse with constant coefficient. Further, we observe
that the initial homogeneous cancer cell density becomes heterogeneous due to the
many cancer cell adhesion processes, highly influenced by the rearranged and degraded
ECM (caused by both cancer cells and TAMs). On the other hand, in peritumoral
regions, the ECM degradation creates free space for the tumour to expand and spread
to the neighbouring tissues resulting in some tumour fingering, which gives an irregular
tumour domain (that mainly follows the ECM pattern). This effect is complemented
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Fig. 8 Baseline simulation at time 50�t where none of the newly introduced adhesions is present i.e. we
set ScM = 0, SMM = 0, SMc = 0 and SMF = 0

by the rearrangement of the micro-fibres that ultimately induces new a fibre structure.
For illustrative purposes, in Fig. 8, we coarsen fourfold the ECM fibre field.
The Impact of Macrophage Interactions on Tumour Dynamics

In Fig. 9, we investigate the effect of each individual adhesion interaction that we
introduced in this paper i.e., cancer–M2, M2–M2, M2–cancer and M2–fibres inter-
actions. For comparison purposes, Fig. 9a shows again the baseline cancer and TAM
dynamics (as copied from Fig. 8).

In Fig. 9b, we show the effect of cancer–M2 adhesion interaction (i.e. ScM = 0.125,
while SMM = SMc = SMF = 0). Interestingly, we do not see much difference com-
pared to Fig. 9a (baseline simulation). This may indicate that this particular interaction
is overwhelmed by the many other cancer cell–cell and cell–ECM adhesive interac-
tions, and thus the cancer–M2 adhesion alone is not powerful enough to lead to a
distinct tumour invasion pattern.

In Fig. 9c, we show the effect of M2 TAMs self-adhesion (i.e. SMM = 0.175 and
ScM = SMc = SMF = 0). Compared to the baseline simulations, here the density
of M2 TAMs becomes higher in the peripheral tumour region. As expected, when
macrophages infiltrate the tumour, they prefer not to migrate but to stay together (due
to SMM > 0).

In Fig. 9d, we consider the M2–cancer adhesion process (i.e. SMc = 0.125, and
ScM = SMM = SMF = 0). We notice here a more aggressive tumour fingering
morphology compared to the baseline result.Moreover, theminimum of theM2TAMs
density inside the tumour domain is also decreased. To understand the reason behind
this, we refer to the M2–cancer adhesion part of (12), where we note that this process
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Fig. 9 Simulations illustrating
the effects of each freshly
introduced adhesion separately.
Hence, a corresponds to the
baseline solution (also seen in
Fig. 8), and b–e represent the
effect of each strength ScM,
SMM, SMc and SMF,
respectively. Finally, f
corresponds to their combined
effects (i.e., we take ScM, SMM,
SMc and SMF from the
parameter set S in
“Appendix A”). Each simulation
presented in this figure uses the
initial conditions from (21), and
Fig. 7. Moreover, each
simulation corresponds to 50�t
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does not only depend on the cancer cell density but also on the free space available
(accounted for via (1 − ρ(u))+). Therefore, M2 TAMs prefer areas of the tumour
domain where the density of the cancer cells is high yet not too high, so that there
is some free space available. Hence, this process could be one of the mechanisms
responsible for accumulating and keeping M2 TAMs in the peripheral region.

In Fig. 9e, we consider the effect of M2–fibre adhesion (to explore the possibility
that M2 TAMs movement depends also on the oriented ECM fibres). To this end, we
set SMF = 0.3 (and ScM = SMM = SMc = 0). Comparing this simulation result
with the baseline result shown in Fig. 9a, we can see that the M2 TAMs follow the
fibre orientations. Since we assumed aligned ECM fibres (i.e., induced by the oriented
ECM fibre density shown in Fig. 7b), the M2 TAM density in the peripheral region is
higher in the direction of the oriented ECM fibres (as the initial ECM fibres have all
the same top-left orientations on the macro-scale), and so at the top-left region of the
tumour the M2 TAMs macrophages density is higher. This indicates that M2 TAMs
accumulations may also depend on the oriented ECM fibre distribution.

Finally, in Fig. 9f, we combine all these adhesion processes (i.e. we use the values
from the parameter set S in “Appendix A” for ScM, SMM, SMc and SMF). Until this
point, we have not emphasised the fact that by considering each of these processes
separately, we observed a slightly smaller tumour spread compared to the baseline
simulation. However, as shown in Fig. 9f, by combining all these adhesion processes,
we see an increase in tumour spread. This suggests that it may not be enough to focus
only on one aspect of macrophages and rather we need to focus on these processes as
a whole in order to stop the pro-tumoural behaviour of the M2 TAMs. Hence, these
different adhesion processes may work with and magnify each other in an underlying
fashion that creates a favourable environment for tumour development.

The Impact of ECMFibre Structure and Fibre-Adhesion Strengths on Tumour Dynam-
ics

Next, we explore how the fibrous composition of ECM and the corresponding fibre-
adhesion strengths affect the evolution of the solid tumour. In Fig. 10, we investigate
the effect of changing (i) the ECM fibre percentage (compared to the non-fibre ECM)
and (ii) theM2–fibre and cancer–fibre adhesion strengths, for the particular case where
we have only M2–fibre adhesion (i.e. ScM = 0, SMM = 0, SMc = 0). For comparison
purposes, in Fig. 10a we present again theM2–fibre adhesion case (i.e., the one shown
in Fig. 9e, where SMF = 0.3, and ScF = 0.3.

In Fig. 10b, we decrease the fibre magnitude and take the ratio between the fibre
and non-fibre ECM to be 10%:90%. In this case, we see both more tumour fingers
and an increase in the tumour spread. This is expected since by decreasing the fibre
percentage, we also decrease the fibre adhesions. Moreover, the accumulation of fibres
at tumour boundary becomes less dense, allowing the tumour to spread further, more
efficiently.

In Fig. 10c, we consider again the baseline ECM fibre percentage (20%) but we
decrease theM2–fibre adhesion strength to SMF = 0.1 (while keeping the cancer–fibre
adhesion strength SMF = 0.3). We observe here that due to the changes within the
oriented ECM fibres distribution (caused by the fibres rearrangement at the micro-
scale induced by the macro-scale spatial flux of cancer cells and M2 TAMs), the
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Fig. 10 Simulations when only
M2–fibre adhesion is present
(i.e., we set ScM = 0, SMM = 0,
SMc = 0) at time 50�t : a
baseline for this figure and so it
is identical to Fig. 9e with 20%
fibres (80% non-fibre ECM) and
ScF = 0.3, SMF = 0.3; b same
fibre-adhesion strengths but with
only 10% fibres (90% non-fibre
ECM); c 20% fibres with
decreased M2–fibre adhesion
SMF = 0.1; d 10% fibres with
decreased M2–fibre adhesion
SMF = 0.1; e 20% fibres and
both cancer and M2–fibre
adhesion strengths are reduced
ScF = 0.1 and SMF = 0.1; f
10% fibres with the reduced
fibre adhesion strengths
ScF = 0.1 and SMF = 0.1
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macrophages cannot move efficiently within the tumour micro-environment, and
within the assumed conditions of low macrophages–fibre adhesion strength, the effect
of themacrophages diffusion increases. Comparing these simulation results with those
in Fig. 10a, we see a considerable increase in tumour spread. This suggests that the
decrease in theM2–fibres adhesion leads to a diffusion-dominated macrophage move-
ment, which likely helps tumour spread indirectly via the degradation of ECM.

In Fig. 10d, we present the simulation results whenwe decrease the fibre percentage
to 10% and keep a low small M2–fibre adhesion strength (SMF = 0.1, as in Fig. 10c.
Compared to the situation addressed inFig. 10b,wherewehad largermacrophage-fibre
adhesion strength, we note here an increase in the tumour spread. However comparing
now the results in row 4 to the ones in Fig. 10c (where we had identical adhesion
strength, but with increased level of ECM fibres to 20% was considered) we observe
a decrease in the tumour spread. Hence, the decreased level of macrophages–fibres
adhesion strength (considered in simulations on rows 3 and 4) reverses the observation
concerning tumour spread that emerged by comparing Fig. 10a, b (with a higher level
of macrophages–fibres adhesion strength, SMF = 0.3). Hence, macrophages–fibres-
mediated movement exerts a level of control on the tumour spread and the evolution
of its morphology, by monotonically reducing tumour diffusive spread and at the same
time stimulating lobular cancer invasion patterns.

In Fig. 10e, f, we investigate the effects of weak M2–fibre adhesion combined with
weak cancer–fibre adhesion (i.e. ScF = 0.1, SMF = 0.1). Comparing the simulation
results in Fig. 10ewith those in Fig. 10c, we conclude that by reducing the cancer–fibre
adhesion strength, we decrease significantly the tumour spread. However, if we reduce
also the amount of fibres to 10% (see rows 5 and 6), we see an increase in tumour
spread (likely due to larger cell–non-fibre adhesions).

Next, in contrast to Fig. 10, where no macrophage–macrophage self-adhesion nor
cancer–macrophage or macrophage–cancer adhesion relations were considered, we
address the case in which these processes are present, namely ScM > 0, SMM > 0
and SMc > 0 (with the baseline values given in “Appendix A”, used also in Fig. 9f).
Furthermore, as before, we vary the values of cell–fibres andmacrophages–fibre adhe-
sion, ScF and SMF. In these conditions, in Fig. 11, we explore the importance of the
M2–fibre adhesion compared to the rest of the adhesion terms. Again, for comparison
purposes, in Fig. 11a we show the baseline dynamics of this case, as copied from
Fig. 9f.

In these new conditions, Fig. 11a–d shows that changes in macrophage–fibre adhe-
sion at ECM fibres regimes of both 20% and 10% do not have a significant impact
on the tumour spread (although a smaller cancer spread is noticed when lower SMF is
considered).

However, as shown in the ECM regime with 20% fibres levels, the comparison of
the results from row 5 (where low cancer–fibre adhesion ScF = 0.1 is considered) with
those in row 2 highlights the importance of cancer–fibres adhesion within the invasion,
as we record higher tumour spread for higher values of ScF. The same behaviour is
observed through the comparison of row 4 and row 6, where the same variation of ScF
when we consider a lower level of ECM fibres and of macrophage–fibre adhesion,
SMF = 0.1.
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Fig. 11 Simulations at time
50�t when all new M2 TAM
adhesions are present: i.e., using
the values from the parameter
set S (see “Appendix A”, for
ScM, SMM, SMc) while altering
ScF and SMF: a the baseline for
this figure that is identical to
Fig. 9f); b decreased M2–fibre
adhesion SMF = 0.1 with 20%
fibres; c 10% fibres with
SMF = 0.3; d 10% fibres with
decreased M2–fibre adhesion
SMF = 0.1; e 20% fibres and
both cancer and M2–fibre
adhesion strengths are reduced
ScF = 0.1 and SMF = 0.1; f
10% fibres with the reduced
fibre adhesion strengths
ScF = 0.1 and SMF = 0.1
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Finally, by comparing Fig. 11a, b, e, we observe that it is the cell–fibres rather than
the macrophages–fibre adhesion that plays the dominant role at higher level fibres
(20%) within the ECM. However, the comparison between rows 3, 4 and 6 of Fig. 11
shows that in regimes with lower levels of fibres (10%) within the ECM, the influence
of the macrophages–fibres adhesion on the overall cancer invasion is still important.

The Effect of Random Micro-fibre Distribution
In all our previous numerical simulations, we used the micro-fibre structure

described in Fig. 7b that we repeated for eachmicro-fibre domain δY (x), thus inducing
the same fibre orientation at eachmacro-scale node (top-left orientation seen in Fig. 8).
Now we consider random mass distributions of micro-fibres for each micro-domain
δY (xi , y j ), (i.e. we draw five random straight lines in each δY rather than use the
five-line configuration presented in Fig. 7b).

In Fig. 12, we present three simulations with randomised mass distributions of
micro-fibres on each δY (xi , y j ), i, j ∈ {1, . . . , n} (where the same randomdistribution
is used for all three simulations as an initial condition). Here, we focus on the case
when all of the adhesion terms are present (i.e. ScM, SMM, SMc, SMF, ScF > 0, as
given in “Appendix A”).

In Fig. 12a, we use 20% fibres, and we observe that due to the random fibres, the
tumour spread is reduced (by ≈ 25%) compared to Fig. 9f. This is not surprising as
we moved from aligned fibres to a random oriented fibres, where the movement is
expected to be slower.

In Fig. 12b, we reduce the fibres to 10%, and we observe an even greater tumour
reduction compared to the aligned fibre case in Fig. 10b (approximately 43% reduction
in tumour area). Also, as before, we see an increase in the tumour spread when we
decrease the fibres from 20% to 10%.

In Fig. 12c, we not only consider randommicro-fibre structures but also use random
macro-fibremagnitudes (i.e. at eachmacro-node, we now have a random level of fibres
between 10% and 20%). For this case, we see that tumour spread is slightly greater
than for the 20%fibre case, but slightly smaller than for the 10% case.We can conclude
from here that using random fibres may considerably reduce tumour spread, but it does
not introduce new tumour morphology.

3.4 Different Tissue Conditions

Based on biological knowledge (Hanahan andWeinberg 2011; Weinberg 2006), given
the complex and naturallymultiscale cancer invasion process, a solid cancer progresses
further within the surrounding tissue provided that significant but not complete tumour
peritumoural ECM degradation will have been achieved, i.e., favourable tissue con-
ditions for invasion are met. In all the simulations that we carried out so far in this
work, these tissue conditions for tumour progression have been explored within the
framework defined in Trucu et al. (2013), where these were captured through a tissue
parameter β ∈ (0, 1), which characterises the relative level of significant degradation
of the peritumoural ECM. For all the results presented in Figs. 8, 9, 10, 11, 12, this
parameter was set to the level of β := 0.65, which corresponds to relatively mild
conditions for invasion. However, as we wish to explore our modelling also for more
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Fig. 12 Simulations with
random fibre structures for each
micro-fibre domain δY
combined with every adhesion
terms (i.e., using ScM, SMM,
SMc, SMF and ScF from the
parameter set S “Appendix A”)
at time 50�t : a (first two rows)
represents the result of random
micro-fibre structure, but their
macro-scale magnitude is still
considered to be a constant 20%;
b (third and fourth rows)
presents the result of 10% fibres
with random structures; c (last
two rows) also uses random
structure but also uses random
macro-scale magnitude for each
micro-domain δY between 10%
and 20%
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demanding tissue conditions for tumour invasion that requires more elevated levels of
significant peritumoural ECMdegradation, we nowvary the parameterβ by increasing
its value.

To illustrate our results in new tissue conditions favourable for tumour progression
induced by elevated values of β, in Fig. 13a, we show the result for our model without
the new adhesion processes and tissue conditions induced by β = 0.8. Here, we
observe a pronounced lobular formation and increased fingering within the tumour
morphologywhere the number and size of the islands inside tumour are also increased.
Then, the results in Fig. 13b show that, by increasing further the tissue parameter
β = 0.825 (while keeping the same diffusion and adhesion regime), we obtain an
even more aggressive tumour fingering and lobular formation, and a rather decreased
tumour area compared to Fig. 13a. Finally, in Fig. 13c, we show the results that we
obtain when we re-introduce the adhesion processes (i.e. we take ScM, SMM, SMc and
SMF from the Parameter setS in “Appendix A”) which results in further decrease in the
tumour area while maintaining a significant tumour fingering and lobular behaviour.

4 Conclusion

In this study, we further developed the multiscale moving-boundary framework for
tumour invasion introduced in Shuttleworth and Trucu (2019), Trucu et al. (2013),
by including also a tumour-associated macrophage cell population, with the goal of
investigating the interactions between macrophages directional movement and the
directionality of ECM fibres on the overall tumour spread. We focused on the M2-like
macrophages since various experimental and clinical studies have shown that these
cells are not only one of the most abundant immune cell populations that infiltrate the
tumour mass (Kelly et al. 1988; Vinogradov et al. 2014), but they are also involved in
the degradation of ECM (Dollery and Libby 2006; Madsen et al. 2013; Newby 2008;
Rath et al. 2019) thus helping tumour invasion. We considered this modelling and
computational approach since in the experimental literature there is still little knowl-
edge about the directional interactions of macrophages with the directional/random
ECM architecture, and how this affects tumour spread.

To address this lack of knowledge and to propose new hypotheses on these interac-
tions, we started with the modelling framework in Shuttleworth and Trucu (2019) that
focused on the dynamics of tumour cells and extracellular matrix at both micro- and
macro-scales and introduced a newmacro-scale equation for the pro-tumourM2 cells.
In this new equation, we considered the M2 TAMs movement to be both random and
directed, with the directed movement being the result of self-adhesion and fibre adhe-
sions, as well as M2–cancer adhesion. The rest of the M2 TAMs dynamics included
a linear death term, a proliferation term and an influx term where we assumed a con-
stant influx of M2 TAMs on the outer tumour boundary. Since the M2 TAMs secrete
MDEs, the degradation of both ECM components is not only influenced by the density
of the cancer cells but also by the density of M2 TAMs. Therefore, the macrophages
have a direct contribution to the source for the proteolytic micro-dynamics of MDEs
occurring at the invasive edge of the tumour, which ultimately determines the way the
tumour boundary is relocated during invasion. Furthermore, as macrophages are mov-
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Fig. 13 Simulations, at time
50�t , with the extended model
(14) for different tissue
conditions (β), while we
consider 20% fibres. a
simulation with
zero-macrophage adhesion
coefficients (i.e. ScM = 0,
SMM = 0, SMc = 0 and
SMF = 0) and an increased
β = 0.8; b the tissue parameter
is further increased to β = 0.825
without considering any
macrophage adhesion processes
(i.e. ScM = 0, SMM = 0,
SMc = 0 and SMF = 0); c
simulation with β = 0.825
where we take the values for
ScM, SMM, SMc and SMF from
the Parameter set S in
“Appendix A”
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ing, they influence the re-arrangement of the micro-fibres through the flux that they
induce. Thus, the M2 macrophages are involved in both the top-down and bottom-up
links of the two interconnected multiscale subsystems that take place both at leading
edge and on the bulk of an invading tumour (which are schematically summarised in
Fig. 6).

While the genuine heterogeneous and multiphase structure of the ECM has been
acknowledged by the entire experimental and biological community (Hanahan and
Weinberg 2011; Hynes and Naba 2012), the two-phase ECM modelling perspective
proposed in this current work (as well as in Shuttleworth and Trucu (2019, 2020a, b))
not only that was naturally motivated, but the insights that this brings (through the
possibility of exploring in detail the multiscale and complex adhesive interaction
between the cells andmacrophages on the one hand and both the non-fibres ECMphase
(Ghosh et al. 2017; Gras 2009; Gras et al. 2008; Jacob et al. 2016) and the oriented
ECM fibre phase (Wolf et al. 2009; Wolf and Friedl 2011)) opens the way for a deeper
understanding of both directed and undirected tumour cell population movement in
the presence of M2 TAMs macrophages. This will have direct implication in the
planned future works on drug and chemotherapy delivery which naturally follows the
non-fibres ECM phase, rather than the ECM fibres phase.
We used this new extended multiscale moving-boundary mathematical model to
explore some biological hypotheses regarding the role of M2 cells on tumour spread.
First, we investigated the individual effects of the cancer–M2 and M2–cancer adhe-
sions, as well as the M2–self- and M2–fibre adhesions, and we concluded that
individually these interactions do not lead to a significant increase in tumour spread.
However, they do change the tumour morphology, by leading to various accumulation
sites for the M2 TAMs (see Fig. 9). We also showed that combining all these different
adhesion terms leads to an increase in tumour spread. Then, we explored how the
fibrous component of the ECM and the corresponding fibre adhesion strengths could
affect tumour development (see Figs. 10 and 11). The simulations showed that decreas-
ing the fibre density could be helpful to reduce tumour spread, but this depended also
on the M2 TAMs directed movement via fibre adhesion. We also investigated the
importance of M2–fibre adhesion compared to the rest of the adhesions. In our model,
this suggested that theM2–fibre adhesion plays a minor role and does not significantly
affect tumour development. Moreover, we considered an unstructured, randommicro-
fibre structure that revealed that although it does not introduce new properties, it can
reduce the spread quite dramatically.We note here that all these numerical results were
obtainedwith a lowβ value (to be consistentwith the studies in Shuttleworth andTrucu
(2019, 2020a, b)), which means that even if the ECM was not significantly degraded,
the tumour was still able to invade the surrounding tissue. Therefore, changes in the
various parameter values considered in Figs. 9, 10, 11, 12 did not lead to huge differ-
ences in tumour invasion patterns. However, in Fig. 13, we present some simulations
for the tumour dynamics , as we varied the tissue environment parameter β. We have
seen that for higher β, changes in cell–cell and cell–matrix adhesion strengths lead to
completely different tumour invasion patterns, with more tumour fingering, and clear
unidirectional movement towards the direction of ECM fibres.
All these numerical results indicate that the combined effects of macrophage–tumour–
ECM interactions (via different cell–cell and cell–fibre adhesions), and the constant-
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vs.-density-dependent diffusion, are important for tumour development. Moreover,
these results allow us to conclude that it is difficult to ascertain at a macroscopic level
the specific molecular (i.e. adhesion) mechanisms that could be responsible for the
observed macroscopic patterns of tumour spread and/or accumulation.

The complexity of the interaction between tumour cell and macrophages exceeds
the context captured in this work through the mutual adhesion terms involved in the
macroscopic model equations. For example, this approach does not capture explicitly
the complex cross talk between tumour cells and macrophages via chemokines. Such
aspects will be investigated in future studies. Further, due to the complexity of the
multiscale moving-boundary framework and the numerical simulations of these equa-
tions, in this work we focused only on the dynamics of the tumour and the immune
cells infiltrating it. For this reason, we assumed that macrophages enter the tumour
though tumour boundary. In the future, we will extend this modelling approach to
account also for the dynamics of macrophages outside the tumour (which are attracted
to the tumour site via chemokines secreted by the tumour cells (Green et al. 2009)).

Finally, another aspect that will be addressed in future work is the analysis of the
complex multiscale numerical framework proposed in this study. As this computa-
tional framework is new, this is an open problem that requires a proper independent
investigation.
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A Parameter Values

In Table 2, we present the baseline set of parameters used in this work.

B Definition of the Outer Boundary @Äo(t)

Let x ∈ ∂Ω(t). Then, x ∈ ∂Ωo(t) if and only if there exists φx : [0,∞) → R
d such

that the following four properties hold true simultaneously:

1) φx (0) = x, (22)

2) φx (s) �= x, ∀s ∈ (0,∞), (23)

3) Imφx \ {x} ⊂ �Ω(t), (24)

4) lim
s→∞ dist(φ(s), ∂Ω(t)) = ∞, (25)
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where ∀ s ∈ (0,∞), we have dist(φ(s), ∂Ω(t)) := inf
z∈∂Ω(t)

‖ φ(s) − z ‖2 and

represents the Euclidean distance from φ(s) to ∂Ω(t).

C The Compact Support FunctionÃ

The smooth compact support function ψ : Rd → R+ used for the construction of
standard mollifiers used in this paper is defined as usual by

ψ(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp

(
1

‖ x ‖22 −1

)

∫
B(0,1)

exp

(
1

‖ z ‖22 −1

)
dz

if x ∈ B(0, 1),

0 if x /∈ B(0, 1).

(26)

D Hadamard Product and Frobenius Inner Product

The Hadamard product of two square matrices A and B of the same dimensions is the
matrix entry-wise product that is defined by

(A ◦ B)i, j = Ai, j · Bi, j ,

which we use to derive our numerical scheme.

Table 2 Parameter set S
VariableValue Description Reference

Dc 10−4 Diffusion coeff. for the cancer cell population cDomschke et al. (2014)

DM 5 × 10−5 Diffusion coeff. for the M2 TAM population MEstimated using Hayenga et al. (2015)

Dm 2.5 × 10−3Diffusion coeff. for MDEs Peng et al. (2017)

Smax 0.5 Cell–cell adhesion coeff. Shuttleworth and Trucu (2019)

Smin 0.01 Minimum level of cell–cell adhesion Estimated

Scl 0.01 Cell–non-fibre adhesion coeff. Shuttleworth and Trucu (2019)

ScM 0.125 Cell–macrophage adhesion coeff. Estimated

ScF 0.3 Cell–fibre adhesion coeff. Domschke et al. (2014)

SMM 0.175 Macrophage self-adhesion coeff. Estimated

SMc 0.125 Macrophage–cancer adhesion coeff. Estimated

SMF 0.3 Macrophage–fibre adhesion coeff. Estimated

μc 0.25 Proliferation coeff. for cancer cell population c Domschke et al. (2014)

μcM 1.4 Coeff. for the M2 TAMs dependence in the Estimated using Hu et al. (2015)

cancer cell proliferation
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Table 2 continued

Variable Value Description Reference

M0 0.05 Influx of the M2 TAMs Estimated

μM 0.1 Inside tissue proliferation rate of M2 TAMs Estimated

μMF 2.4 Coeff. for the ECM stiffness dependence in the Estimated using Hayenga et al. (2015)

M2 TAMs proliferation

dM 0.03 Decay rate of M Estimated using Strachan et al. (2013)

λlc 1.0 Degradation coeff. for non-fibre ECM due Estimated

to the tumour

λlM 1.0 Degradation coeff. for non-fibre ECM due to Estimated

the M2 TAMs

γFc 0.75 Degradation coeff. for fibre ECM due to the Estimated

tumour

γFM 0.75 Degradation coeff. for fibre ECM due to Estimated

the M2 TAMs

α1 0 Baseline remodelling Estimated

α2 0 Remodelling of the non-fibre ECM due to the Estimated

M2 TAMs

αc 1 MDE secreting rate by the cancer cells Estimated

αM 1 MDE secreting rate by the M2 TAMs Estimated

R 0.15 Sensing radius Shuttleworth and Trucu (2019)

r 0.0016 Width of micro-fibres Shuttleworth and Trucu (2019)

fmax 0.6360 Maximum of micro-fibre density at any point Shuttleworth and Trucu (2019)

p 0.2 Percentage of non-fibre ECM Shuttleworth and Trucu (2019)

hL 0.03125 Macro-scale spatial step-size Trucu et al. (2013)

ε 0.0625 Size of the boundary micro-domain εY (x) Trucu et al. (2013)

δ 0.03125 Size of the fibre micro-domain δY (x) Shuttleworth and Trucu (2019)

The Frobenius norm of an n by m matrix A is the square root of the sum of all
elements of A, i.e.

∑
(A) := Tr

(
AH A

)
,

where AH is the conjugate transpose.

E Details on the Fibre Relocation Vector andMicro-Fibre
Rearrangement Process

Aswementioned in Sect. 2.2.2, the rearrangement process of the ECMfibres occurs on
eachmicro-domain δY (x) via the spatial redistribution of themicro-fibres f (z, t). This
process is initiated by a macroscopic cell population flux that gets formed at (x, t) ∈
Ω(t)×[0, T ] (which accounts for both cancer cell andM2TAMsfluxes) and acts on the
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mass distribution of micro-fibres on δY (x), causing the redistribution of these on both
δY (x) and its neighbouring micro-domains. As detailed in Shuttleworth and Trucu
(2019), this is done via an emerging relocation vector νδY (z) that accounts not only for
the rearrangement vector r(δY (x), t), but also upon the degree of alignment between
the barycentral position vector xdir(z) := z − x and the acting rearrangement vector
r(δY (x), t) as well as both the level of fibres saturation at z and the level of occupancy
at the target position z∗. Thus, the relocation vector νδY (z)(z, t) is mathematically
formulated as:

νδY (x)(z, t) := [
xdir(z) + r(δY (x), t)

] · f (z, t)[ fmax − f (z, t)]
f ∗+ ‖ r(δY (x), t) − xdir(z) ‖2 · χ{ f (·,t)>0},

with xdir(z) := z − x denoting the associated barycentric position vector, fmax being
the maximum level of fibres at any micro-location ζ ∈ δY (x), f ∗ = f (z, t)/ fmax
being the microfibres level of saturation, and χ{ f (·,t)>0} representing the characteristic
function of themicro-fibres support. To highlight their roles in themicro-scale process,
we refer the reader again to Fig. 4, where we consider a typical example of xdir(z),
r(δY (x), t) and νδY (x)(z, t).

Finally, the amount of fibres distributed at z that will be moved to the new micro-
position z∗ is controlled by a movement probability pmove that explores the fibre
capacity available at the new location, and so this is given as

pmove := max

(
0,

fmax − f (z∗)
fmax

)
,

the amount of fibres moving to z∗ is given by pmove · f (z, t) and the rest of the fibres
(1 − pmove) · f (z, t) remain at position z.

F Brief Details of the BoundaryMicro-Scale

As we mentioned in Sect. 2.2.3, to account for the proteolytic molecular processes
occurring along the invasive edge of the tumour, we follow Trucu et al. (2013).
To this end, we consider a time-dependent bundle of overlapping micro-domains
P(t) := {εY }εY∈P(t) of appropriate cell-scale size ε, as illustrated in Fig. 5, which
cover the entire cell-scale neighbourhood of the tumour interface where the MDEs
micro-dynamics takes place, i.e. ∂Ω(t) ⊂ ∪εY∈P(t)εY . This bundle of micro-domains
P(t) enables us to decompose the micro-dynamics taking place on ∪εY∈P(t)εY , and
to explore this on a union of micro-processes taking place on each micro-domain
εY ∈ P(t). Therefore, under the presence of the MDEs source induced by the macro-
dynamics and defined in (19), as theMDEs are only assumed here to exercise a random
movement within their molecular range (that dictates the size of our cell-scale ε > 0),
their spatio-temporal evolution over εY during the time interval [t0, t0 + �t] is given
by

∂m

∂t
= Dm�m + h(y, τ ) (27)
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where Dm is a constant diffusion coefficient. As we do not assume any memory from
previous proteolytic activity, we always consider zero initial conditions. Further, as
we assume that all the molecular activity occurs within εY as well as that there is no
molecular transport over the boundary, we impose zero-flux boundary conditions.

Using the solution of (27), we adopt the technique developed in Trucu et al. (2013)
to determine the relocation of the boundary. To that end, as described in Trucu et al.
(2013), we select an appropriate dyadic decomposition {Dk}k∈J of the boundary
micro-domain εY (x) ∈ P(t). Furthermore, we denote by yk the barycentre of each
Dk and we further select a subfamily of dyadic cubes {Dk}J ∗ that are furthest away
from x and are outside ofΩ(t0)with the property that they still support a level ofMDEs
that exceeds the mean of MDEs distributed on εY (x). Then, the transitional measure
of movement that was introduced in Trucu et al. (2013) (assessing the likelihood of the
boundary to migrate based on the amount of MDEs transported in the peritumoural
region) is given by

q(x) :=
∫
εY (x)\Ω(t0)

m(y, τ f ) dy∫
εY (x) m(y, τ f ) dy

(28)

and is used to evaluate whether the boundary point x will be moved to a new location
or will stay at the same position. This assessment is carried out by comparing the
likelihood for invasion given by the transitional measure of movement with respect
to the significant level of peritumoural ECM degradation that is explored by a tissue
parameterβ ∈ (0, 1), as defined inTrucu et al. (2013). This tissue parameterβ explores
the necessary level of significant (but not complete) ECM degradation for the tumour
to progress and captures the tissue conditions for invasion through the tissue thresholds
ω : (0, 1) × εY (xB) → [0, 1] given by

ω(β, εY (x)) :=

⎧⎪⎪⎨
⎪⎪⎩

sin

[
π

2

(
1 − α(x)

β

)]
if α(x) ≤ β,

sin

[
π(α(x) − β)

2(1 − β)

]
if α(x) > β,

(29)

where α(x) is defined by

α(x) := l(x, t + �t) + F(x, t + �t)

supξ∈∂Ω(t0)

[
l(ξ, t + �t) + F(ξ, t + �t)

] .

Provided that sufficient degradation but not total destruction of the ECM has taken
place over the time interval [t0, t0 + �t], situation that is explored by the condition

q(x) > ω(β, εY (xB)),

then the predicted tumour boundary movement is exercised in the direction ηεY (x) and
magnitude ξεY (x) obtained from the boundary micro-dynamics (as described in Trucu
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et al. (2013)), given by

ηεY (x):= x + ν
∑
l∈J ∗

(∫

Dl

m(y, τ f ) dy

)(
yl − x

)
, ν ∈ [0,∞),

ξεY (x):=
∑
l∈J ∗

∫
Dl

m(y, τ f ) dy

∑
l∈J ∗

∫
Dl

m(y, τ f ) dy
‖ −→xyl ‖2 .

(30)

This way, over the time interval [t0, t0 + �t], the macroscopic tumour Ω(t0) will be
progressed into a newly expanded invasive tumour domain Ω(t0 + �t).

G Numerical Schemes

To describe our numerical approach, let us introduce some basic notation that will be
used throughout the whole section. Let L be the length of Y and hL = �x = �y to
be the spatial step size that is uniform in both direction. The uniform discretisation of
the maximal tissue cube Y is represented through the set of discretised macro-spatial
locations {(xi , y j )}i, j=1...N , with N = L/hL + 1.

To numerically solve the macro-dynamics (14), we adopt the non-local predictor–
corrector scheme introduced in Shuttleworth and Trucu (2019) (involving the Euler
method as predictor, and a non-local Trapezoidal rule as corrector) and we follow
Domschke et al. (2014), Gerisch and Chaplain (2006, 2008) to construct a flux limiter
method for the spatial derivatives. Also, to evaluate the adhesion terms Ac and AM

defined in (5) and (12), respectively, we aim to use a fast convolution-driven approach.
Finally, we detail the MDE-micro-scale calculations.

G.1 Macro-Scale Dynamics

In this section, we focus on deriving the numerical scheme for model (14). Hence, in
(14), we have two distinct spatial operators, namely a diffusion and an adhesion term.
Since the form of both of these terms is similar for cancer cells and M2 TAMs, in the
following, we will focus only on describing the scheme that we derive for the cancer
cell population.

Focusing now on the discretisation of the spatial operator in (14), which can be
expressed as

∇ · Fc := ∇ · [(Dc∇c) − cAc],

let us start by addressing first the diffusion part, ∇ · (Dc∇c), and only afterwards will
formulate the computational approach for the adhesion part ∇ · cAc.

123



148 Page 36 of 50 S. Suveges et al.

G.1.1 Discretisation of the Diffusion Operator∇ · (Dc∇c)

Denoting for convenience the gradient flux of the cancer cells by

Fc,D := Dc∇c, (31)

this diffusion part of the spatial operator ∇ · Fc can therefore be rewritten as ∇ ·
(Dc∇c) = ∇ · Fc,D , and to discretise this, we simply use a second-order central
difference scheme with the usual 5-point stencil.

During the computations, we detect our expanding tumour domain Ω(t0) via an
indicator function denoted by I(·, ·) : X × Y → {0, 1}, with X = Y = {1, . . . , N },
and defined by

I(i, j) :=
{
1 if (xi , y j ) ∈ Ω(t0),

0 otherwise,
(32)

which enables us to determine whether a spatial node is inside or outside the tumour
domain. Further, we construct a similar indicator function for the boundary nodes.
Hence, let us denote this by IB(·, ·) : X × Y → {0, 1} and define it as

IB(i, j) :=
{
1 if (xi , y j ) ∈ ∂Ω(t0),

0 if (xi , y j ) /∈ ∂Ω(t0),
(33)

where ∂Ω(t0) denotes the boundary of the domain Ω(t0). These two functions allow
us to split the macro-scale dynamics computation into two parts, i.e. strictly inside the
tumour and on the tumour boundary. Themotivation behind this is that, given the com-
plexity of ourmultiscale algorithm (where“on-the-fly” rearrangements ofmicro-fibres
are required), to reduce the computational time, we aim to apply some appropriately
constructed universal discrete macro-scale numerical operators that would enable us
to deal with the approximation of the right-hand side spatial operators at as many
macro-nodes as possible at once, ultimately resulting in a macro-scale computational
techniques that is faster than the one proposed in Shuttleworth and Trucu (2019).
However, due to the continuously changing tumour domain Ω(t) (resulting in an
irregular tumour shape) and the presence of zero-flux boundary conditions for the
tumour macro-dynamics, we cannot derive one global numerical approach for the
dynamics at all the tumour macro-points, and rather we need to split the computation
in these two parts (i.e. inside the tumour and tumour boundary) and deal with them
separately.

For convenience, we also define the indicator function for the interior of Ω(t0) by
II (·, ·) = I(·, ·) − IB(·, ·) as

II n(i, j) :=
{
1 if (xi , y j ) ∈ Ω(t0) and (xi , y j ) /∈ ∂Ω(t0),

0 else,
(34)
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Then, using these two indicator functions (33) and (34), we also define two sets of
points ΛB and ΛI n , containing the boundary and interior nodes, respectively,

ΛB := {(i, j) ∈ X × Y | IB(i, j) = 1},
ΛI n := {(i, j) ∈ X × Y | II n(i, j) = 1}. (35)

Since, aiming to reduce computational cost, our goal is to partition the problem into two
main computational components, it is therefore indispensable to split appropriately
the numerical approximation of the diffusion part of the spatial operator, namely of
∇ · Fc,D . For this, let us notice that at any spatial node (xi , x j ) ∈ Ω(t0) ⊂ Y , the
discretisation of ∇ · Fc,D can actually be represented as follows

∇ · Fc,D(i, j) =

⎧⎪⎨
⎪⎩

∇ · F I n
c,D(i, j) if (i, j) ∈ ΛI ,

∇ · F B
c,D(i, j) if (i, j) ∈ ΛB,

0 else.

(36)

Further, considering now the three-row matrices {Ti }i=2,N−1

Ti := [0 . . . 0︸ ︷︷ ︸
i−2

, I3, 0 . . . 0︸ ︷︷ ︸
N−i−1

] (37)

where 0 represents a three-dimensional zero column vector and I3 is the 3×3 identity
matrix, for any (i, j) ∈ {2, . . . , N − 1}, we extract the 3 × 3 sub-matrices centred
at (i, j) that contain the values at (i, j) and its corresponding eight neighbouring
locations for the various constituents of the coupled dynamics. Thus, these submatrices
are given by

[cni, j ] = Ti c
n T ᵀ

j , [(Dc)ni, j ] = Ti (Dc)n T ᵀ
j , (38)

where cn and (Dc)n are the corresponding discretised values for the cell population
and cell diffusion coefficient (that is dependent on macrophages and ECM fibres) at
the mesh points {(xi , y j )}i, j=1...N , at time step n. With these notations (detailed in
(38)), we will be able to represent finite-difference approach for ∇ · Fc,D in terms of
matrix operations.

In this context, our scheme for spatial flux∇ ·Fc(·, ·) can be written down explicitly
using central differences and midpoint approximations. Thus, for ∇ · F I n

c (·, ·), using
the Hadamard product “◦” (defined for completion in “Appendix D”, while for further
details, we refer the reader to Horn and Johnson (1991)), ∀(i, j) ∈ ΛI n and for any
time step n, we have that

(∇ · F I n
c,D

)n
i, j = 1

�x2

2∑
k=1

[∑(
[(Dc)ni, j ] ◦ K2k−1

A

)
·
∑(

[cni, j ] ◦ Kk
F

)

−
∑(

[(Dc)ni, j ] ◦ K2k
A

)
·
∑(

[cni, j ] ◦ Kk
B

)]
,

(39)
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Here,
∑

denotes the Frobenius inner product (Golub and van Loan 2013), which, for
completion, is also defined in “Appendix D”. Furthermore, the “K”s terms appearing
in the above formula are the 3 × 3 discrete matrices induced by the finite-difference
method at each (i, j) ∈ ΛI . Specifically, for any k = 1 . . . 4, each Kk

A describes the
average between the centre point (i, j) and one of its neighbours and is given by the
3 × 3 associated matrices

K1
A=

⎡
⎣

0 0 0
0.5 0.5 0
0 0 0

⎤
⎦, K2

A=
⎡
⎣
0 0 0
0 0.5 0.5
0 0 0

⎤
⎦, K3

A=
⎡
⎣
0 0.5 0
0 0.5 0
0 0 0

⎤
⎦, K4

A=
⎡
⎣
0 0 0
0 0.5 0
0 0.5 0

⎤
⎦. (40)

Further, in (39) Kk
F and Kk

B denote the 3 × 3 matrices generated by the forward and
backward differences, respectively. Hence, in both direction i (if k = 1) and direction
j (if k = 2), these are given by:

K1
F =

⎡
⎣
0 0 0
1 −1 0
0 0 0

⎤
⎦, K1

B =
⎡
⎣
0 0 0
0 1 −1
0 0 0

⎤
⎦, K2

F =
⎡
⎣
0 1 0
0 −1 0
0 0 0

⎤
⎦, K2

B =
⎡
⎣
0 0 0
0 1 0
0 −1 0

⎤
⎦. (41)

Finally, we can observe that at the interior nodes ofΩ(t0), Eq. (39) can be equivalently
expressed via discrete convolutions, and so we can write this as

(∇ · F I n
c,D

)n = 1

�x2

2∑
k=1

[(
(Dc)n ∗ K̃2k−1

A

)
◦
(
cn ∗ K̃k

F

)

−
(
(Dc)n ∗ K̃2k

A

)
◦
(
cn ∗ K̃k

B

)]
,

(42)

where ∗ is the discrete convolution operator (Damelin and Miller 2011) for the dis-
cretised tumour dynamic constituents. Furthermore, due to the definition of discrete
convolution, the K̃s used in (42) are appropriately derived from Ks (defined in (40)
and (41)) and are given as

K̃ := J3KJ3,

where J3 is the anti-diagonal identity matrix, i.e.

J3 =
⎡
⎣
0 0 1
0 1 0
1 0 0

⎤
⎦ . (43)

However, for the boundary nodes, the discretisation formulated in (42) could not be
applicable directly, and so for this we revisit (39) by taking into account now the
zero-flux boundary conditions. These boundary conditions are accounted for through
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a new family of 3 × 3 sub-matrices that are defined as follows:

[cni, j ]B := [cni, j ] ◦ [In
i, j ] + (J3[cni, j ]J3) ◦ (1 − [In

i, j ]
)
,

[(Dc)ni, j ]B := [(Dc)ni, j ] ◦ [In
i, j ] + (J3[(Dc)ni, j ]J3) ◦ (1 − [In

i, j ]
)
,

(44)

where1 is a 3×3matrix of ones, J3 is the anti-diagonal identity matrix defined in (43),
while the 3 × 3 matrices [In

i, j ] are given at each (i, j) by

[In
i, j ] := Ti In T ᵀ

j . (45)

Therefore, using (44), we separate these boundary sub-matrices into two parts, i.e. a
part that is inside the tumour and to another part that is outside the tumour (determined
by the indicator function I). Hence, in these 3 × 3 boundary sub-matrices, the distri-
bution at the nodes that are inside the tumour is the same as the one defined in (38), but
we appropriately provide values on the neighbouring nodes, captured by [In

i, j ], outside
the tumour so that we could implement the zero-flux boundary condition. Hence, at
any time tn , our scheme at any boundary node (i, j) ∈ ΛB is given by

(∇ · F B
c,D

)n
i, j = 1

�x2

2∑
k=1

[∑(
[(Dc)ni, j ]B ◦ K2k−1

A

)
·
∑(

[cni, j ]B ◦ Kk
F

)

−
∑(

[(Dc)ni, j ]B ◦ K2k
A

)
·
∑(

[cni, j ]B ◦ Kk
B

)]
,

(46)

where the “K” matrices involved here are the ones that we already defined in (40) and
(41).

G.1.2 Discretisation of the Adhesion Operator∇ · cAc

Now we shift our attention to the cancer cell adhesion term ∇ · cAc. Postponing for
the moment, the spatial discretisation of the adhesion vector fieldAc at time tn , which
we denote by An

c , whose details will be discussed in Sect. G.2, in the following we
will focus on addressing the overall discretisation of the adhesion operator ∇ · cAc,
for which we will propose a flux limiter approach.

Although also here we will split the discretised spatial tumour domain into two
regions, these will be slightly different from the interior and boundary parts mentioned
in the previous section. Further, since we aim here to use a flux limiter, such approach
requires the usage of “ghost” outside nodes that are further away from the boundary
nodes than their immediate neighbours (for instance, the ghost point (i + 2, j) if
(i, j) ∈ ΛB). Thus, we appropriately split Ω(t0) into two regions that we refer to as
the “layer” and “inside” parts.

Focusing first on the inside part, this is determined by the requirements of the
flux limiter (detailed below), which, for calculations at position (i, j), demands avail-
abilities for the values of the quantities involved on a region that includes the four
neighbours (in both i and j directions) of the four neighbouring locations with respect
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to (i, j). Therefore, the inside part contains the discretised spatial region given by
the macro-nodes of the domain Ω(t0) that are at least two macro-nodes “distance”
away from the boundary, hence this consists of all the points that are neither boundary
points nor immediate neighbours of any boundary point. Thus, we can determine the
inside part mathematically by considering the following indicator function denoted
by II (·, ·) : X × Y → {0, 1} and define by

II (i, j) :=
{
1 if (I ∗ Kin)i, j = 1,

0 if (I ∗ Kin)i, j = 0,
(47)

where ∗ is the discrete convolution operator, I is defined in (32) and Kin is defined
by

Kin = 1

13

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦

,

which is based on the stencil induced by the flux limiter scheme.
Turning now our attention to the layer part, the macro-nodes that are considered to

be in this region of the discretised tumour domain Ω(t0) are the ones that are either
classified as boundary nodes or their immediate neighbours. The motivation behind
this is again to treat nodes that use values at ghost/outside points differently than the
ones that do not require such values during the approximation and would this way
enable a reduction in the computational cost. Thus, the points in the layer region are
simply given by the difference indicator function IL := I − II , i.e.,

IL(i, j) :=
{
1 if I(i, j) − II (i, j) = 1,

0 if I(i, j) − II (i, j) = 0.
(48)

Therefore, using (47) and (48), we obtain that the discretised inside and layer parts of
Ω(t0), denoted here by ΛI and ΛL , are given by the preimages ΛI := I−1

I ({1}) and
ΛL := I−1

L ({1}), respectively, i.e.

ΛI := {(i, j) ∈ X × Y | II (i, j) = 1},
ΛL := {(i, j) ∈ X × Y | IL(i, j) = 1}.

Focusing now on computations on the inside region of Ω(t0), at any time tn and any
inside node (i, j) ∈ ΛI , the cancer cell adhesion discretisation is defined by

∇ · (cAc)
n
i, j := 1

�x

(
(Hx )ni, j − (Hx )ni−1, j

)
+ 1

�y

(
(Hy)ni, j − (Hy)ni, j−1

)
(49)
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where Hx
i, j and Hy

i, j are defined as

(Hx )ni, j := max{0, sgn[(F y
c,A)ni, j ]}(L+

x )ni, j + min{0, sgn[(F x
c,A)ni, j ]}(L−

x )ni, j ,

(Hy)ni, j := max{0, sgn[(F y
c,A)ni, j ]}(L+

y )ni, j + min{0, sgn[(F y
c,A)ni, j ]}(L−

y )ni, j .
(50)

Here, for a compact notation, (F x
c,A)ni, j and (F y

c,A)ni, j denote the cancer cell adhesion
fluxes and they are given by

(F x
c,A)ni, j := cni, jAx

c (tn,u
n
i, j , (θ f )

n
i, j ),

(F y
c,A)ni, j := cni, jAy

c (tn,uni, j , (θ f )
n
i, j ),

(51)

where uni, j = (cni, j , F
n
i, j , l

n
i, j , M

n
i, j )

T (defined in (1)) with the matrices cn , Fn , ln , Mn

and (θ f )
n represent the discrete values at the grid points of the cancer cells, fibres

ECM, non-fibres ECM, M2 TAMs, and oriented ECM fibres, respectively. Also, in
(51) Ax

c and Ay
c denote the x and y components of the adhesion vector field Ac,

respectively.
Furthermore, in Eq. (50), the terms (L+

x )ni, j , (L
−
x )ni, j , (L

+
y )ni, j and (L−

y )ni, j are usu-
ally referred to as state interpolants, and to construct these, we involve the so-called
limiter function φ(r), which ultimately enables us to use second-order approximation
when the solution is smooth and a first-order approximation near sharp gradients.
Hence, these state interpolants at time tn and any inside node (i, j) ∈ ΛI are defined
by

(L+
x )ni, j := (F x

c )ni, j + 1

2
φ(r xi, j )

(
(F x

c )ni, j − (F x
c )ni−1, j

)
,

(L−
x )ni, j := (F x

c )ni+1, j + 1

2
φ

(
1

r xi+1, j

)(
(F x

c )ni+1, j − (F x
c )ni+2, j

)
,

(L+
y )ni, j := (F y

c )ni, j + 1

2
φ(r yi, j )

(
(F y

c )ni, j − (F y
c )ni, j−1

)
,

(L−
y )ni, j := (F y

c )ni, j+1 + 1

2
φ

(
1

r yi, j+1

)(
(F y

c )ni, j+1 − (F y
c )ni, j+2

)
,

(52)

where r xi, j and r
y
i, j are the smoothness monitor functions in x- and y-directions, respec-

tively, i.e., they are given by

r xi, j :=

⎧⎪⎨
⎪⎩

(F x
c )ni+1, j − (F x

c )ni, j

(F x
c )ni, j − (F x

c )ni−1, j

if (F x
c )ni, j �= (F x

c )ni−1, j

and (F x
c )ni+1, j �= (F x

c )ni, j ,

0 otherwise,

(53a)

r yi, j :=

⎧⎪⎨
⎪⎩

(F y
c )ni, j+1 − (F y

c )ni, j

(F y
c )ni, j − (F y

c )ni, j−1

if (F y
c )ni, j �= (F y

c )ni, j−1

and (F y
c )ni, j+1 �= (F y

c )ni, j ,

0 otherwise.

(53b)
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Fig. 14 The sensing region B(0, R). a Decomposition of the region using annulus sectors Sν with
barycentres bSν , highlighted with red dots. b Illustration of the vector-valued Ac(x, y), influenced by
the surrounding components and the strength of these bonds. c Highlight of an annulus sector Sν with its
barycentre bSν as well as the four neighbouring on-grid points {yibSν }i=1,4

In all of our numerical simulations (presented Sect. 3), we use the so-called UMIST
limiter function (Lien and Leschziner 1994) (although there are more limiter functions
available (Kuzmin 2006)) that is given by

φ(r) := max[0,min(2r , 0.25 + 0.75r , 0.75 + 0.25r , 2)],

which completes the flux limiter part of the scheme for any inside node (i, j) ∈ ΛI

at time tn .
Finally, we turn our attention to the computations on the layer part ΛL of the

discretised tumour domainΩ(t0). To approximate the cancer cell adhesion term∇·cAc

in this region, we use a first-order upwind scheme, whichwe obtain by choosing φ ≡ 0
in (52). Hence, with φ ≡ 0, we can now use directly the method derived in (49)–(53)
for any node that is a layer point, but not a boundary point, i.e., at all spatial nodes
(i, j) ∈ ΛL \ ΛB . This leaves us with only the boundary nodes where we still need
to address the computation. Since at these points we also aim to use the unwinding
scheme, we need to appropriately approximate the value of any ghost point. To that
end, we involve a first-order approximation of the cancer cell zero-flux boundary
condition which then enables us to appropriately estimate the values at the required
ghost/outside point. Finally, this allows us to use the method derived in (49)–(53),
for any boundary node (i, j) ∈ ΛB at any time step n, with φ ≡ 0. Therefore, we
have fully defined our numerical scheme for the spatial transport of the cancer cell
population i.e. for ∇ ·Fc. To avoid repetition, we did not include here also the details
of the derivation of the numerical scheme for the M2 TAM macrophages, as, due to
the similarity in the structures of the spatial operators (involved in the transport of
M2 TAMs), the numerical treatment is identical to the one outlined for the cancer cell
equation. Hence, the scheme derived in this section is straightforward to implement
for the M2 TAMs as well, or in fact for any other population with the same spatial
operators and so we do not pay special attention for this procedure.
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G.2 Adhesion Terms

Focusing now our attention to the sensing region x+B(0, R), where the cell-adhesion
processes cell–fibres ECM adhesion and cell–non-fibres ECM adhesion, as well as
cell–cell self-adhesion and cell–cell adhesion for both cancer cells and M2 TAMs
macrophages populations (modelled in (5) and (12)) are exercised, we adopt the par-
titioning of this region from Shuttleworth and Trucu (2019) as illustrated in Fig. 14.
Furthermore, as the computational procedure is identical for both adhesion operators
Ac (that is associated with cancer cell) and AM (that is associated with M2 TAMs
macrophages), let us detail this approach simultaneously, i.e. for the adhesion operator
A ∈ {Ac,AM }.

Thus, let us denote the number of annulus sectors in this partitioning by Ns , and
since this determined by the intersection of each of the s annuli centred at x with
a number of uniformly distributed sectors 2m+(k−1) (which is dyadic-ally increasing
as k progresses from the first and inner most annulus to that last and biggest one),
k ∈ {1, . . . , s}, we have that

Ns :=
s∑

k=1

2m+(k−1),

Then, denoting these annulus sectors by Sν , with ν = 1, . . . ,Ns , this enables us
to approximate the adhesion integral (5) the integral of the step function associated
with these sectors, whose value on each Sν is appropriately constructed as a linear
combination of the mean values on Sν of the cancer cell populations, M2 TAMs
macrophages and ECM components involved in the adhesion processes described by
(5) and (12).

Hence, to calculate these mean values, on each Sν , we first need to integrate the
cancer and M2 TAM macrophages populations, the non-fibres ECM, the fibres ECM
as well as the fibres orientation on Sν . For this, we denote the off-grid barycentres
of each annulus sector by bSν and observe first that each bSν belongs to the rectangle
defined by its four immediately surrounding on-grid macro-mesh neighbouring nodes
{yibSν }i=1,4, as illustrated in Fig. 14c, namely

bSν ∈ [y1bSν , y3bSν ] × [y2bSν , y4bSν ], (54)

Then, we use bilinear shape functions to obtain the values of cancer population,
M2 TAMs macrophages, the non-fibres ECM, the fibres ECM as well as the fibres
orientation on Sν at bSν as a convex combination with uniquely determined weights
βk

ν , k = 1, . . . ,4 of the values these quantities carry at the neighbouring on-grid points
{yibSν }i=1,4.

Finally, since we seek to use again convolutions for our calculation, Ns different
matrices are constructed (one for each barycentre) that we denote here by KSν

A . For
this, considering an arbitrary annulus k and a sector j that defines Sν , the associated
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KSν

A is given by

KSν

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . . . . . . . 0
...

. . .

0 . . . β1
ν β3

ν . . . 0
0 . . . β2

ν β4
ν . . . 0

...
. . .

0 . . . . . . . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which is a P × P-matrix (with P := (�2R/�x� + 1)) that corresponds to the on-grid
minimal squared regions ofmacro-meshpoints {yix }i=1,P2 that cover the sensing region
B(x, R), and that is nonzero only on the four positions corresponding to the barycentre
bSν neighbouring locations where this is given by the weights βk

ν , k = 1, . . . ,4.
Therefore, at each instance of time tn , the approximation of the adhesion integral

A ∈ {Ac,AM } is given by

An =
Ns∑

ν=1

An
Sν

,

where the expression ofAn
Sν

for each of the two adhesion operators in {Ac,AM } is as
follows:

– for A := Ac, we have

(Ac)
n
Sν

= K (bSν )

R

[(
nνK̃Sν

A
)

∗
(
Scccn + Scl ln + ScMMn

)

+
(
n̂νK̃Sν

A
)

∗
(
ScF Fn

)][
1 − ρ

(
unbSν

)]+
.

– for A := AM , we have

(AM )nSν
= K (bSν )

R

[(
nνK̃Sν

A
)

∗
(
SMMMn + SMcc

n
)

+
(
n̂νK̃Sν

A
)

∗
(
SMFF

n
)][

1 − ρ
(
unbSν

)]+
.

with K̃Sν

A being the flipped matrix associated with KSν

A obtained with the help of the
J3 anti-diagonal identity matrix defined in (43), i.e.

K̃Sν

A := J3KSν

A J3.
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G.3 Boundary Micro-Scale Dynamics

To calculate the source term h(·, ·) defined in (19) which is used in the MDE micro-
scale equation (20), we need to integrate the cancer and M2 TAMs densities. For any
such integral, we can use discrete convolutions with an appropriately chosen matrix
KI that will be detailed below. As before, we split the source into two parts

h(i, j) =
{
hI (i, j) if (i, j) ∈ ΛI n ∪ ΛB,

0 else.

Hence, at time tn the source inside the tumour domain is given by

hnI = 4γ 2 (N f − 1)2

I ∗ 1
◦
[(

αcc
n + αMMn) ∗ KI

]
, (55)

where I was defined in (32), 1 is a matrix of ones with size being the same as KI

that is a [2γ /�x + 1] × [2γ /�x + 1] matrix with γ defined in (19). Equation (55) is
simply the measure of the boundary domain εY multiplied by the ratio of the nodes
that lie inside the tumour times the integral. For our calculations, we constructKI via
the trapezoidal method, and so this is given by

KI =

⎡
⎢⎢⎢⎢⎢⎣

1 2 . . . 2 1
2 4 . . . 4 2
...

...
. . .

...
...

2 4 . . . 4 2
1 2 . . . 2 1

⎤
⎥⎥⎥⎥⎥⎦

.

At this point, we need to note that besides the usual error that the trapezoidal method
gives due to the discontinuity we have in B(y, γ ) ∩ Ω(t) using a universal matrix for
the integration has its drawbacks. This is because when we use the same matrix KI

for each B(y, γ )∩Ω(t), then essentially we ignore that the function is discontinuous,
resulting in an increase in the coefficients of the boundary nodes. On the other hand,
by constructing unique kernels, we also run into difficulties in some cases; therefore,
a universal matrix KI was chosen to calculate the integral.

Since both cancer and macrophage densities are on the macro-scale, and we need
to solve the MDE equation defined in (20) on the micro-scale, the source needs to be
approximated on each micro-point y. To do this, we adopt the technique described in
Trucu et al. (2013), i.e. involving bilinear shape functions on a square micro-mesh.
Finally, due to the simplicity of the equation, we involve the Method of Lines, where
the time-marching is carried out via the backward Euler method, while the space
discretisation is based on central differences.
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