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Simple Summary: Immunotherapy aims to engage various immune cells in the elimination of cancer
cells. Neutrophils are the most abundant leukocytes in the circulation and have unique mechanisms
by which they can kill cancer cells opsonized by antibodies. However, neutrophil effector functions
are limited by the inhibitory receptor SIRPα, when it interacts with CD47. The CD47 protein is
expressed on all cells in the body and acts as a ‘don’t eat me’ signal to prevent tissue damage. Cancer
cells can express high levels of CD47 to circumvent tumor elimination. Thus, blocking the interaction
between CD47 and SIRPα may enhance anti-tumor effects by neutrophils in the presence of tumor-
targeting monoclonal antibodies. In this review, we discuss CD47-SIRPα as an innate immune
checkpoint on neutrophils and explore the preliminary results of clinical trials using CD47-SIRPα
blocking agents.

Abstract: In the past 25 years, a considerable number of therapeutic monoclonal antibodies (mAb)
against a variety of tumor-associated antigens (TAA) have become available for the targeted treatment
of hematologic and solid cancers. Such antibodies opsonize cancer cells and can trigger cytotoxic
responses mediated by Fc-receptor expressing immune cells in the tumor microenvironment (TME).
Although frequently ignored, neutrophils, which are abundantly present in the circulation and
many cancers, have demonstrated to constitute bona fide effector cells for antibody-mediated tumor
elimination in vivo. It has now also been established that neutrophils exert a unique mechanism of cy-
totoxicity towards antibody-opsonized tumor cells, known as trogoptosis, which involves Fc-receptor
(FcR)-mediated trogocytosis of cancer cell plasma membrane leading to a lytic/necrotic type of cell
death. However, neutrophils prominently express the myeloid inhibitory receptor SIRPα, which
upon interaction with the ‘don’t eat me’ signal CD47 on cancer cells, limits cytotoxicity, forming a
mechanism of resistance towards anti-cancer antibody therapeutics. In fact, tumor cells often overex-
press CD47, thereby even more strongly restricting neutrophil-mediated tumor killing. Blocking the
CD47-SIRPα interaction may therefore potentiate neutrophil-mediated antibody-dependent cellular
cytotoxicity (ADCC) towards cancer cells, and various inhibitors of the CD47-SIRPα axis are now
in clinical studies. Here, we review the role of neutrophils in antibody therapy in cancer and their
regulation by the CD47-SIRPα innate immune checkpoint. Moreover, initial results of CD47-SIRPα
blockade in clinical trials are discussed.
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1. Introduction

Cancer is one of the leading causes of death, globally [1]. In 2020, approximately
19.3 million new cancer cases were diagnosed, which is estimated to increase to 28.4 million
cases by 2040. Furthermore, almost 10.0 million patients died because of cancer worldwide
in 2020 [2]. For many years, surgery, chemotherapy and radiotherapy have been used as
the main treatments for cancer. However, durable remissions are not achieved in many
cases with these treatments. Therefore, there is a pertinent unmet need to develop new
therapies. Immunotherapy focuses on stimulating the patient’s own immune system and
recruits immune cells to kill tumor cells [3]. One way to accomplish this is via monoclonal
antibodies (mAbs) that target tumor-associated antigens (TAA) [4]. Examples include
rituximab directed against CD20 on malignant B cells, trastuzumab against Her-2/neu
on, e.g., subsets of breast cancer cells, and cetuximab, recognizing epidermal growth
factor receptor (EGFR) that is overexpressed on many epithelial cancers. Antibodies
consist of two fragment antigen-binding (Fab) domains and one fragment crystallizable
(Fc) region, which can interact with specific antigens and Fc receptors (FcRs) on immune
cells, respectively. Anti-TAA mAbs can recruit and stimulate specific immune cells to the
tumor microenvironment (TME) [5].

Monoclonal antibodies can have both direct and indirect anti-tumor effects. Direct
anti-tumor effects can occur through interference with signaling pathways of growth fac-
tors. For example, EGF stimulates tumor cell proliferation, migration and invasion [6].
Antibodies targeting EGFR prevent ligand binding and receptor dimerization, resulting in
growth arrest [7,8]. Monoclonal antibodies can also have indirect effects on tumor growth
by targeting e.g., the tumor vasculature. During cancer progression, tumor cells stimulate
angiogenesis through the production of vascular endothelial growth factor (VEGF). VEGF
interacts with VEGF receptor (VEGFR) expressed on endothelial cells, thereby promot-
ing proliferation, migration and survival of vascular endothelial cells [9]. Monoclonal
antibodies targeting VEGF or VEGFR inhibit angiogenesis, resulting in suppressed tumor
growth in vivo [10,11]. Furthermore, mAbs also act indirectly to opsonize cancer cells
and to promote tumor elimination by stimulating the immune system. This may occur in
different ways. Firstly, mAbs can stimulate complement-dependent cytotoxicity (CDC),
through activation of the complement pathway [12,13]. Complement components subse-
quently interact to form the membrane attack complex (MAC), which generates pores in
the target cell membrane, resulting in tumor cell lysis [12]. Secondly, mAbs can trigger
antibody-dependent killing of tumor cells by interacting with FcRs on various immune cells,
including NK cells, macrophages and neutrophils. NK cells kill antibody-opsonized cancer
cells via antibody-dependent cellular cytotoxicity (ADCC), which involves the exocytosis
of cytotoxic granules containing perforin and granzymes and the subsequent induction of
cancer cell apoptosis [14]. Macrophages are known to eliminate tumor cells via antibody-
dependent cellular phagocytosis (ADCP) [15]. Neutrophils also express various FcRs and
can eliminate cancer cells in an antibody-dependent manner by mechanisms described
in more detail below [16]. In addition, mAbs can promote T cell-mediated anti-cancer
responses by stimulating FcRs on antigen-presenting cells [17].

Another way in which mAbs can promote anti-cancer immunity is by functioning
as an agonist for co-stimulatory molecules or as an antagonist for inhibitory receptors.
Immune cells express various co-stimulatory receptors, which mediate immune activation
essential for tumor eradication. Several agonist antibodies have been developed to stim-
ulate co-stimulatory molecules, such as CD40, GITR and OX40 [18]. These receptors are
expressed on T cells, B cells, NK cells, and antigen-presenting cells (APCs), and stimulation
of these receptors enhances the anti-tumor immune response [19–21]. In addition, therapeu-
tic mAbs can block so called immune checkpoints, which are inhibitory receptors expressed
on immune cells that deliver inhibitory signals after interaction with a ligand expressed on
either tumor cells or other cells [22]. Under normal conditions, such checkpoints function
to maintain homeostasis and prevent autoimmunity. Tumor cells can overexpress these lig-
ands, allowing them to escape immune-mediated killing [23]. For example, overexpression
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of the immune checkpoint programmed death-ligand 1 (PD-L1) on cancer cells and the pres-
ence of programmed death-1 (PD-1) on T cells is correlated with poor disease outcomes in
various human cancers [24,25]. Antibodies can be used to block these interactions between
the inhibitory receptor and its ligands, which can result in enhanced anti-tumor effects [22].
Currently, most immune checkpoint inhibitors approved for clinical use target the adaptive
immune system [26]. Antibodies such as anti-PD-1 (e.g., pembrolizumab and nivolumab),
anti-PD-L1 (e.g., avelumab or atezolizumab) and anti-CTLA-4 (e.g., ipilimumab) have been
shown to significantly improve patient survival [27–30]. However, in spite of the clinical
progress this has provided, still many patients do not experience durable responses to
these antibody therapies [31]. It is likely that the innate immune system is also controlled
by immune checkpoints, which could therefore also be attractive targets for therapeutic
intervention. Several potential immune checkpoints have been identified on myeloid cells
that limit anti-tumor effector functions, and may therefore serve as potential targets for
immunotherapy [32]. Currently, the best studied innate immune checkpoint involves sig-
nal regulatory protein α (SIRPα), an inhibitory receptor which is more or less selectively
expressed on myeloid cells, including neutrophils, macrophages and subsets of dendritic
cells. Ligation of SIRPα by its ligand CD47 limits effector functions and thereby tumor cell
elimination [33]. This has been extensively described for macrophages. However, more
recently a role for SIRPα on neutrophils has been demonstrated. Neutrophils are the most
abundant leukocytes in the circulation and play a major role as a first line of defense during
infection [34]. In the past decade it has become clear that they also play a significant role
in cancer [35,36]. Therefore, neutrophils may also be interesting target effector cells for
immunotherapy. In this review, we discuss the role of neutrophils in cancer and describe
the contribution of CD47-SIRPα as an innate immune checkpoint for neutrophils. Moreover,
the current status of CD47-SIRPα blockade in the clinic will be discussed.

2. Neutrophils and Their Role in Cancer

Neutrophils are essential immune cells involved in the initial host defense towards
bacterial and fungal pathogens. They are the most abundant leukocytes in human blood,
comprising 50–70% of circulating white blood cells [34]. It has been described that in
the circulation, neutrophils have a short half-life of only 5.4 days [37]. Therefore, more
than 1011 neutrophils are estimated to be produced each day in the bone marrow [38].
The role of neutrophils in immunity against pathogens, particularly bacteria and fungi,
is well-established. However, only more recently has the important role of neutrophils
in cancer has been recognized [35]. The exact functional contributions of neutrophils in
cancer appear complex and are not completely understood, as they have been described to
stimulate tumor growth, but may also have prominent anti-tumor effects, depending on
circumstances [35,39–47]. Neutrophils in the TME are also referred to as tumor-associated
neutrophils (TANs). In many cases, TANs appear to have largely pro-tumorigenic functions,
as a high abundancy of neutrophils in the tumor has been associated with poor progno-
sis [40,48]. Accordingly, the neutrophil-to-lymphocyte ratio (NLR) in blood has been found
to be a prognostic marker for disease outcome [49,50]. Neutrophils may promote tumor
progression by functioning as so called granulocytic myeloid-derived suppressor cells
(G-MDSCs) [51,52]. G-MDSCs can suppress the immune-mediated destruction of cancer
cells by expressing checkpoint molecules or secreting immunosuppressive cytokines [51].
However, the exact mechanisms by which G-MDSC suppress T cell-mediated anti-tumor
immunity have not been fully elucidated. Moreover, a number of other mechanism(s) have
been proposed by which neutrophils may positively or negatively affect tumor growth and
survival. Fridlender and colleagues suggested that the function of TANs is dependent on
their activation and differentiation state, and proposed the paradigm of the anti-tumoral ‘N1’
neutrophils versus the pro-tumoral ‘N2’ neutrophils [53]. This distinction is similar—albeit
far less well defined—as the one used for tumor-associated macrophages, where classically
activated ‘M1’ macrophages are regarded as potent effector cells in tumor killing while
alternatively activated ‘M2’ macrophages tune the inflammatory response and promote an-
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giogenesis, tissue remodeling and repair [54]. In addition, it was proposed that neutrophils
with an N2 phenotype can be polarized to neutrophils with an N1 phenotype by blocking
TGF-β [53]. Identifying ways to stimulate anti-tumor effector functions of neutrophils
could therefore be a potential strategy to enhance tumor cell destruction.

3. Cytotoxic Effector Functions of Neutrophils

Neutrophils intrinsically possess a variety of cytotoxic effector mechanisms to kill
pathogens. To do so, they require stimulation via immunoreceptors, such as Toll-like
receptors (TLRs) or C-type lectin receptors (CLRs) that bind unique microbial components
known as pathogen-associated molecular patterns. However, cancer cells do not, in general,
express such unique molecular patterns for which neutrophils have dedicated receptors.
Nonetheless, in the presence of exogenous therapeutic antibodies against TAA, neutrophils
use their Fc receptors for the recognition of antibody-opsonized tumor cells. Neutrophils ex-
press various FcRs through which they can recognize mAb-opsonized tumor cells (Table 1).
Human neutrophils constitutively express FcγRs with a low affinity for IgG, i.e., FcγRIIIb
(CD16b) and FcγRIIa (CD32a), as well as the IgA FcR FcαRI (CD89). One study has re-
ported that neutrophils may have a low expression of FcγRIIIa (CD16a) [55]. In addition, a
minority of individuals express low levels of FcγRIIb and/or FcγRIIc, based on specific
SNPs in the FCGR2B or FCGR2C gene, respectively, but the functional relevance of these re-
mains to be established [56,57]. In addition, expression of the high-affinity FcγR, i.e., FcγRI
(CD64), is increased on G(M)-CSF and/or IFN-γ stimulated neutrophils [58,59]. The most
abundant FcγR on neutrophils is FcγRIIIb. However, this is a GPI-linked molecule and
does not contain intracellular signaling motifs. Blockade of FcγRIIIb enhanced neutrophil-
mediated ADCC of solid cancer cells [60], suggesting that the highly expressed FcγRIIIb
acts as a decoy receptor and limits tumor cell killing by neutrophils by competing for
antibody binding to other FcγRs. FcγRIIa is a stimulating FcγR, containing an intracellu-
lar immunoreceptor tyrosine-based activating motif (ITAM) in its cytoplasmic region. A
polymorphic amino acid at position 131 in the FcγRIIa protein modulates the affinity of
FcγRIIa and neutrophil killing capabilities towards antibody-opsonized cancer cells for
some IgG isotypes, including the currently most frequently used IgG1 and IgG2 therapeutic
antibodies [61,62]. Furthermore, selective blockade of FcγRIIa significantly reduced the
killing of IgG-opsonized target cells [63], which suggests that FcγRIIa is in fact the principle
FcγR receptor involved in ADCC. FcγRI is only expressed on activated neutrophils and
has high affinity for IgG. However, its role in regulating ADCC is not clear yet. Specific
blockade of FcγRI partially reduced neutrophil-mediated killing of IgG-opsonized Raji
cells [64], but in other studies, no effect on ADCC was observed when FcγRI was inhibited
on neutrophils [61,64,65]. Neutrophils also express FcαRI, the FcR for IgA. Stimulation
of FcαRI on neutrophils with IgA TAA-mAbs results in potent tumor cell killing, which
notably occurs in absence of prior neutrophil activation [66–70]. In addition, FcαRI (but
not FcγR) signaling results in the secretion of leukotriene B4 (LTB4), which is a potent neu-
trophil chemoattractant promoting the recruitment of neutrophils to the tumor site [71,72].
Thus, different FcRs may play a role in the recognition of mAb-opsonized tumor cells by
neutrophils necessary for tumor cell killing.

After recruitment of neutrophils to the TME and recognition of mAb-opsonized tu-
mor cells, an immunological synapse is created between neutrophils and tumor cells.
Neutrophil-mediated cytotoxicity is strictly dependent on the formation of this immuno-
logical synapse [73,74]. It has been demonstrated, based on antibody-blocking experiments,
that Mac-1 (i.e., complement receptor (CR) 3; αmβ2, consisting of CD11b and CD18) is an
absolute requirement for the establishment of this immunological synapse [74,75]. Cyto-
toxicity towards antibody-coated tumor cells was absent in Mac-1-deficient neutrophils,
compared to normal Mac-1-expressing neutrophils [74]. In addition, immune cells isolated
from Mac-1-deficient mice were unable to kill tumor cells ex vivo [75].
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Table 1. Fc receptors expressed on neutrophils.

Name FcγRI
(CD64) FcγRIIa (CD32a) FcγRIIb (CD32b) FcγRIIc (CD32c) FcγRIIIa (CD16a) FcγRIIIb (CD16b) FcαRI (CD89)

Structure

Affinity High Low Low Low Low Low High

Expression on neutrophils Induced 1 + Genotype-dependent 2 Genotype-dependent 3 −/+ 4 + +

Class Activation Activation Inhibition Activation Decoy Activation

1 Expression of FcγRI on neutrophils can be induced by stimulation with G(M)-CSF or IFN-γ. 2 Expression of
FcγRIIb occurs in some individuals (allele frequency ~10.1%) and is dependent on SNPs in the promotor region of
the FCGR2B gene (promotor haplotype 2B.4) [56,57]. 3 Expression of FcγRIIc occurs in some individuals (allele
frequency ~11.7%) and is dependent on SNPs in exon 3 and intron 7 of the FCGR2C gene [56,57]. 4 One study
suggested neutrophils may express low levels of FcγRIIIa [55].

Neutrophils have various cytotoxic mechanisms that may be involved in tumor cell
eradication. Together with basophils and eosinophils, neutrophils are categorized as gran-
ulocytes, named for the abundance of granules in the cytoplasm. These granules are
important for their function, as they store mixtures of anti-microbial components and
toxic proteases [76]. Neutrophils contain four different subtypes of granules, that can be
separated based on their contents: primary, secondary and tertiary granules, as well as
secretory vesicles [77]. The primary, secondary and tertiary granules are created at different
times during neutrophil differentiation, and therefore some compounds may be present in
multiple granule subtypes, while others are mainly found in one type of granule. Primary
granules, also referred to as azurophilic granules, contain potent cytolytic enzymes, such
as myeloperoxidase (MPO), neutrophil elastase (NE), cathepsins and defensins [78]. Sec-
ondary granules, also known as specific granules, and tertiary, or gelatinase, granules have
similar contents, both containing matrix metalloproteases. However, secondary granules
store lactoferrin, while tertiary granules contain relatively high levels of gelatinase [78].
Secretory vesicles contain human plasma proteins, suggesting that they are created through
endocytosis. Secretory vesicles are important because of their receptor-rich membrane,
containing for example the β2-integrin Mac-1 [79]. After stimulation, neutrophils release
the contents of these granules into the extracellular space. During degranulation, first
the secretory vesicles are released, followed by tertiary, secondary and finally primary
granules [80]. The different cytotoxic compounds may subsequently contribute to the erad-
ication of tumor cells, as different components isolated from neutrophil granules, including
MPO [81], defensins [82], granzyme B [83] and NE [84], were able to kill tumor cells. In ad-
dition, different cytokines and chemokines can be released, which can stimulate and recruit
other immune cells [85]. Nonetheless, different studies have shown that the disruption of
granule release or proteolytic activity did not affect tumor cell killing in vitro [64,65,86],
suggesting that neutrophils can kill tumor cells independent of degranulation.

Some studies have suggested that neutrophils may induce tumor cell apoptosis in vitro
through the Fas/Fas ligand (FasL) pathway, which is an important cellular pathway in-
volved in the regulation of apoptosis (Figure 1). It has been demonstrated that FasL-
expressing myoblasts were able to eliminate rhabdomyosarcoma (Rh) cells in a Fas/FasL-
dependent manner [87]. As neutrophils express FasL [88], induction of the Fas/FasL
pathway might be one mechanism to induce apoptosis in cancer cells. In vitro inhibition
of Fas/FasL signaling resulted in increased tumor growth in a co-culture of neutrophils
and A549 lung cancer cells [89]. However, these results have not yet been confirmed by
other studies.
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Figure 1. Putative cytotoxic effector functions of neutrophils to kill tumor cells. Neutrophils possess
various cytotoxic mechanisms that may play a role in tumor elimination, i.e., induction of apoptosis
via Fas/Fas-L interactions, trogoptosis and via stimulation of the adaptive immune system.

Another potential cytotoxic effector mechanism of neutrophils is the formation of
neutrophil extracellular traps (NETs) during a process referred to as NETosis. During NE-
Tosis, neutrophils can release granular proteins in combination with chromatin, forming an
extracellular structure that has been shown to trap and kill bacteria [90]. In general, NETosis
is considered a form of active/regulated neutrophil cell death, during which the nuclear
envelope and granular membranes disintegrate, followed by rupture of the cell membrane,
releasing the NET [91]. Another form of NETosis, termed ‘Vital NETosis’, that does not
require neutrophil lysis has additionally been proposed [92,93]. It has been suggested
that neutrophils can secrete chromatin via vesicular transport, allowing the neutrophil to
survive and perform effector functions even after NET release [92,94,95]. Although NETs
have been shown to effectively kill microbes, no studies have shown that NETs can induce
tumor cell death. Furthermore, several studies have shown that the presence of NETs in the
tumor is associated with worse cancer progression and prognosis [96–99]. These studies
have suggested that NETs promote tumorigenesis by shielding the tumor from immune
cells [98], or by enhancing tumor cell motility in response to the interaction between NET
DNA and CCDC25 [99]. Further studies are needed to clarify the role of NETs in anti-cancer
immunity by neutrophils.

Furthermore, neutrophils are able to efficiently kill pathogens through phagocyto-
sis. During this process, neutrophils undergo morphological changes, allowing them to
completely encapsulate microbes, particles or small cells into a vacuole called the phago-
some [100,101]. Phagocytosis is an active process; thus, recognition of the target is needed
through different receptors, such as pattern recognition receptors (PRRs) and FcRs. After
engulfment, the phagosome undergoes a maturation process, allowing it to acquire its
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cytotoxic properties. The phagosome fuses with neutrophil granules, thereby releasing
cytotoxic enzymes into the phagosome, creating a phago-lysosome. This creates an acidic
and highly toxic environment, resulting in degradation of the phagocytosed particles [101].
In addition, the activated NADPH oxidase complex produces reactive oxygen species
(ROS) in the phago-lysosome. However, neutrophils from patients with chronic granulo-
matous disease (CGD), which have mutations in components of the NADPH oxidase and
thereby do not produce ROS, were equally capable of killing antibody-opsonized cancer
cells compared to neutrophils from healthy donors [64,65,86]. In addition, inhibition of the
NADPH oxidase by diphenyleneiodonium (DPI) did not affect neutrophil-mediated tumor
killing [65]. Thus, at least the NADPH oxidase complex appears not to be involved in
tumor killing by neutrophils. It was previously suggested that neutrophils can phagocytose
small tumor cells, i.e., B chronic lymphocytic leukemia [102]. However, it was later shown
using live-cell imaging and flow cytometry that neutrophils may actually use another
mechanism, referred to as trogocytosis, to acquire tumor cell fragments [103], which can
lead to the killing of tumor cells [65]. During trogocytosis, neutrophils ingest small pieces
of cancer cell plasma membrane in a Mac-1-dependent manner [65,104]. This occurs by
an endocytic process in which the tumor material ends up in phago-lysosomes contain-
ing granule-derived material such as MPO and lactoferrin. Eventually, trogocytosis can
result in a necrotic type of cell death, called trogoptosis [65]. Not only is this mechanism
important for the destruction of particularly solid tumor cells [60,61,64,65], but trogoptosis
may potentially also cause the release of danger-associated molecular patterns (DAMPs) or
tumor antigens, that may further enhance the anti-tumor immune response. It is as of yet
not entirely clear how trogoptosis is exactly induced. However, it has been suggested that
mechanical forces exerted by the high-avidity state of the Mac-1 integrin play a critical role
in the disruption of the tumor cell membrane [65,104]. Interestingly, whereas neutrophils
can kill antibody-opsonized tumor cells by trogoptosis, recent evidence demonstrates that
tumor cells can resist trogoptosis by membrane repair, a process that is apparently largely
mediated via the exocyst complex [105].

In addition to their effector functions in the innate immune system, several studies
have suggested that neutrophils may also play a role in activating and regulating adaptive
immunity [106,107]. Neutrophils can migrate to lymphoid organs [108], where they can
regulate T lymphocyte functions through the release of cytokines, or by acting as antigen-
presenting cells [109–111]. These different functions show that neutrophils have various
ways by which they can stimulate the eradication of tumor cells, obviously making them
an interesting and meaningful target effector cell for anti-tumor therapy.

4. CD47-SIRPα as an Innate Immune Checkpoint in Neutrophil-Mediated
Tumor Killing

In recent years, different mechanisms have been identified that counteract cytotoxic
effector mechanisms of neutrophils. For example, inhibitory pathways can limit neu-
trophil activation and thereby prevent tumor cell killing. Currently, the best studied
inhibitory pathway is the interaction between CD47 and SIRPα, which constitutes the focus
of this review.

The SIRP family is a multigene family consisting of five members: SIRPα, SIRPβ1,
SIRPβ2, SIRPγ and SIRPδ in humans [112]. SIRPα (also known as CD172a, SHPS-1, p84,
MFR, MYD-1 or PTPNS1) is an inhibitory receptor expressed on myeloid cells, including
macrophages, neutrophils and myeloid dendritic cells, as well as on neuronal cells in the
central nervous system [113]. The protein contains three extracellular immunoglobulin
(Ig) superfamily (IgSF) domains, consisting of one V-type IgSF (IgV) domain and two
C1-type IgSF (IgC) domains, one transmembrane region and an intracellular tail capable of
inhibitory signaling (Figure 2) [114]. The intracellular tail contains four tyrosine residues,
forming two typical immunoreceptor tyrosine-based inhibitory motifs (ITIM). In addition,
the extracellular IgV-domain contains a ligand-binding region, allowing SIRPα to interact
with its ligand, CD47 [115].
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Figure 2. The CD47-SIRPα axis. Interaction between the IgV-domain of CD47 and the IgV-domain
of SIRPα results in phosphorylation of the two ITIMs in the intracellular SIRPα tail. As a conse-
quence, the phosphatases SHP-1 and SHP-2 are recruited, which are subsequently activated and
able to regulate downstream cellular signaling pathways, e.g., FcR or TLR signaling, by tyrosine
dephosphorylation of various mediators. In addition, neutrophil Mac-1 activation is inhibited in a
Kindlin3-dependent manner. Abbreviations: K3: Kindlin3.

The CD47 protein (also known as IAP, MER6 or OA3) is a transmembrane glyco-
protein expressed on virtually all cells in the body, including both hematopoietic and
non-hematopoietic cells [116]. It is a member of the Ig superfamily, and consists of an
extracellular IgV-like domain at the N-terminus, a region with five membrane-spanning
segments, and a cytoplasmic C-terminus ranging from 3–36 amino acids [117]. CD47
was identified independently on different cell types, resulting in different nomenclature.
It was first described as integrin-associated protein (IAP), as it was shown to associate
with integrins, e.g., αvβ3, on various cell types [118]. In addition, CD47 was identified as
OA3, an antigen overexpressed on ovarian carcinoma cells [119]. As it is now clear that
this molecule is expressed on various cell types, and can interact with different proteins,
including integrins, thrombospondins (TSP), VEGFR and SIRPs, the current consensus is to
refer to it as CD47 [117,120].

The interaction between CD47 and SIRPα was first described in 1999 in mice [121].
Using SIRPα-expressing murine brain cells, CD47 was identified as a binding partner
of SIRPα. This was confirmed by anti-CD47 mAbs, which blocked the attachment of
various cells to SIRPα-coated substrates [121]. Subsequently, CD47 was also recognized as
a ligand for SIRPα in humans [122]. Similarly, in rats a CD47-targeting mAb was identified
to prevent the adherence of SIRPα-coated beads [123]. The interaction between CD47
and SIRPα has been analyzed in detail with high-resolution X-ray crystallography and
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mutagenesis studies [124]. The N-terminal end of SIRPα domain 1 (IgV-domain) consists
of four loops, which all contribute to binding of CD47. The N-terminal end of CD47 also
forms loops, which are needed for the interaction between CD47 and SIRPα. In addition,
CD47 contains a pyroglutamate at the N-terminal, that plays a significant role in the
interaction [124,125].

In humans, two allelic variants of SIRPα have been identified: SIRPα1 and SIRPαBIT [61].
Within a healthy Caucasian population, SIRPαBIT and SIRPα1 homozygotes represent 15.9
and 48.7% of the population, respectively, with 35.4% heterozygous for SIRPα1/SIRPαBIT [61].
These variants differ by as much as 13 amino acid residues in the IgV domain responsible for
CD47 binding. However, no differences in CD47 binding were observed between SIRPα1 and
SIRPαBIT [61,126,127]. This may not be surprising, as the polymorphisms occur primarily out-
side the CD47 binding site [61]. Whereas these polymorphisms could in principle still have an
effect on downstream signaling capacities and thereby affect neutrophil effector functions, such
as ADCC, no differences were observed in neutrophil-mediated ADCC of trastuzumab-coated
SKBR3 cancer cells between neutrophils from donors with the three different genotypes [61].
Thus, it appears that neutrophil ADCC is not affected by the SIRPα genotype.

4.1. SIRPα Signaling

To investigate the mechanism of CD47-SIRPα signaling, the immunological synapse
between target cells and neutrophils was investigated. It was already established that
Mac-1 is essential for the formation of this synapse [74]. However, whether and how
SIRPα signaling affects the formation or maintenance of the synapse was not yet clear.
During the formation of effector-target interactions, CD47 and SIRPα are both present
in the immunological synapse, as SIRPα translocates to the synapse in the presence of
CD47, while it is excluded from the synapse in the absence of CD47 [128,129]. Cell–cell
contacts between neutrophils and CD47-expressing or CD47-deficient SKBR3 cells were
analyzed and indicated that disruption of the CD47-SIRPα axis resulted in the promotion
of neutrophil–tumor cell interactions in the presence of tumor-targeting antibodies [65].

After ligation by CD47, ITIM motifs in the cytoplasmic tail of SIRPα are phosphory-
lated, most likely by Src family kinases. This leads to recruitment of tyrosine phosphatases,
in particular Src homology region 2 (SH2)-domain-containing phosphatase-1 (SHP-1) and
-2 (SHP-2), which are considered to be principal mediators of SIRPα inhibitory signaling
(Figure 2) [130,131]. After recruitment of SHP-1 and SHP-2 to SIRPα, these phosphates un-
dergo conformational changes, allowing them to become activated [132]. The phosphatases
can subsequently dephosphorylate various downstream substrates, thereby regulating piv-
otal intracellular signaling pathways, such as FcR and TLR signaling [65,86,133]. Therefore,
different effector functions can be regulated by inhibitory signaling through CD47-SIRPα
interactions. In addition, SIRPα might associate with the inhibitory protein kinase Csk and
the adaptor protein Grb-2 [134], but the role of these molecules in neutrophil killing has
not been explored.

Recently, it was demonstrated that the disruption of CD47-SIRPα interactions resulted
in increased Mac-1 integrin activation. The resulting enhancement of cytotoxic synapse
formation likely explains the potentiation of cytotoxicity after CD47-SIRPα blockade [104].
Integrin activation can be triggered by various extracellular stimuli, including FcR signaling,
which occurs in the context of antibody-mediated cytotoxicity. In the case of β2 integrins
(e.g., Mac-1), talin1 and kindlin3 subsequently bind to the intracellular domain of the β

chain (CD18), stimulating integrin activation and association with the cytoskeleton [135].
Patients with leukocyte adhesion deficiency type III (LAD3) lack expression of kindlin3
due to a mutation in the gene encoding the kindlin3 protein, FERMT3. Using neutrophils
of LAD3 patients, it was demonstrated that interference with SIRPα signaling promotes
integrin activation in a kindlin3-dependent manner [104]. Thus, it seems that CD47-
SIRPα interactions prevent integrin activation in a kindlin3-dependent manner (Figure 2),
resulting in less firm cell–cell contacts between neutrophils and antibody-opsonized tumor
cells, reduced trogocytosis and, consequently, a virtual absence of trogoptosis in LAD3
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neutrophils. Blocking the CD47-SIRPα axis therefore results in enhanced integrin activation,
subsequently stimulating trogoptosis of antibody-opsonized tumor cells.

A similar mechanism might affect effector functions of other SIRPα-expressing cells,
such as ADCP by macrophages. The interaction of CD47 with SIRPα on macrophages
led to suppressed integrin activation and reduced the spreading and engulfment of mAb-
opsonized beads [128]. In addition to myeloid cells, SIRPα is also expressed on B1 lym-
phocytes, a subtype of murine B cells, which produce natural antibodies [136]. Using
transgenic mice which lack the intracellular domain of SIRPα and therefore have defective
SIRPα signaling, it was observed that B1 cells produce more antibodies when SIRPα sig-
naling is disrupted. In addition, these SIRPα-mutant B1 cells displayed enhanced Mac-1
integrin-dependent migration [136]. Taken together, these studies demonstrate that block-
ing SIRPα can enhance various Mac-1 integrin-dependent cellular functions, including
cytotoxicity and migration, and suggest that the function of the CD47-SIRPα checkpoint
may be intimately linked to that of Mac-1.

4.2. Neutrophil Effector Functions Influenced by CD47-SIRPα

Neutrophils have various effector functions essential for their role in immunity. As
SIRPα signaling can regulate various signaling pathways, different effector functions may
be influenced by the CD47-SIRPα interaction. In the 1990s, it was suggested that CD47
may play a role in neutrophil transmigration [137–139]. More recently, signaling via the
CD47-SIRPα axis has been demonstrated to regulate neutrophil-mediated cytotoxicity [140].

During neutrophil transmigration, neutrophils undergo several steps, i.e., tethering,
rolling, adhesion, and transmigration, allowing them to enter tissues from the blood cir-
culation. During tethering, neutrophils form weak interactions with endothelial cells to
slow down neutrophils, allowing their rolling across the endothelium. This, in conjunction
with other stimuli, induces formation of stronger intercellular interactions resulting in
firm neutrophil adhesion to endothelial cells. Neutrophils are subsequently able to cross
the endothelial layer and enter the tissues. The first indication that CD47 may play a
role in neutrophil transmigration was observed in vitro, since blocking CD47 with anti-
CD47 mAbs resulted in delayed fMLP- and IL-8-mediated transmigration of neutrophils
across an epithelial monolayer [137,141]. Anti-CD47 mAbs did not disrupt neutrophil
adhesion to epithelial cells, indicating that CD47 may affect the transmigration step of
neutrophils across the epithelial layer [138]. This effect was mediated by tyrosine kinases,
such as Src family kinases and Syk tyrosine kinases, as specific inhibition reverted the
effect of anti-CD47 mAbs [141,142]. In vivo studies with CD47-deficient mice suggested
a prominent defect in neutrophil extravasation leading to a lethal defect in the clearance
of pathogenic bacteria. While this defect in neutrophil migration was clearly linked to
β3-integrin function, it is not known whether CD47 was primarily required for pathogen
recognition by neutrophils or for the actual migration process itself [139]. CD47 has a
variety of well-established binding partners, including integrins, TSP-1, VEGFR and SIRPs.
Therefore, it was investigated as to what extend CD47-SIRPα interactions are regulating
trans-endothelial/epithelial migration. Anti-SIRP mAbs inhibited neutrophil transmigra-
tion across an epithelial monolayer and collagen-coated filters, albeit with different kinetics
when compared to anti-CD47 mAbs [143]. Blocking the CD47-SIRPα interaction with a
function-blocking peptide, which binds to the CD47 binding domain of SIRPα, resulted
in inhibited neutrophil transepithelial migration in vitro [144]. Of note, questions with
respect to the specificity of the peptide for CD47-SIRPα interactions can be raised. However,
SIRPα-mutant mouse neutrophils, lacking the cytoplasmic region of SIRPα, transmigrated
significantly less in vitro when compared to wild type (WT) neutrophils in response to
the chemoattractant C5a [145]. In vivo, transmigration of these SIRPα-mutant neutrophils
was also slightly delayed when compared to WT neutrophils [145]. This demonstrates that
signaling via the intracellular tail of SIRPα may, at least to some extent, controls neutrophil
transmigration. Nonetheless, it remains difficult to anticipate how much of an effect SIRPα
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signaling may have on the overall accumulation of neutrophils in tissues, including tumors,
even though such migration may be clearly affected by CD47-targeting agents.

In addition to an effect on neutrophil transmigration, the CD47-SIRPα axis also reg-
ulates neutrophil cytotoxicity. Pioneering studies reported by Oldenborg et al. showed
that CD47 restricted the clearing of red blood cells (RBC), suggesting that the broadly
expressed CD47 functions as a signal of ‘self’ to control the elimination of normal cells by
the immune system [146]. In particular, it was found that CD47-deficient RBCs were rapidly
cleared, within hours, after their infusion into healthy recipient mice due to phagocytosis
by macrophages [146]. For comparison, normal CD47-expressing RBC have a lifespan of
45 days in mice. Thus, it became clear that CD47 essentially functions as a ‘don’t eat me’
signal. It was established in subsequent studies that SIRPα was the inhibitory receptor
limiting the phagocytosis of CD47-expressing erythrocytes and that CD47-SIRPα interac-
tions were also restricting phagocytosis and clearance of IgG- or complement- opsonized
erythrocytes [131,147]. It should be noted that not only macrophages but also neutrophils
are able to eliminate IgG-opsonized RBCs, at least in vitro, and this process is also enhanced
after blocking CD47-SIRPα [140]. This principle extends beyond red blood cells, and has
now been observed for platelets and other hematopoietic cells, as well as non-hematopoietic
cells [148–153]. In line with this, the lack of species compatibility between CD47-SIRPα is
an important hurdle for xenotransplantation, and, inversely, an exaggerated binding of
human CD47 to NOD SIRPα was found to be responsible for the superior engraftment
of human tissues in immunodeficient mice in a NOD background [152,154,155]. These
findings firmly established the role of the CD47-SIRPα axis in the clearance of normal
cells, and also inspired the initial studies to demonstrate its role as an innate immune
checkpoint in the antibody-dependent destruction of cancer cells by macrophages and
neutrophils [127,156].

4.3. The Innate Immune Checkpoint CD47-SIRPα in Cancer

In the clinic, high CD47 expression has been correlated with a worse prognosis of
patients with non-small cell lung cancer (NSCLC) [157]. Interactions between CD47 on
tumor cells and SIRPα on neutrophils inhibit neutrophil effector functions, allowing the
tumor to escape immune surveillance (Figure 3A) [156,158]. Therefore, targeting the innate
immune checkpoint CD47-SIRPα could be a potential way to improve current antibody
therapies, as it can stimulate neutrophil-mediated tumor killing (Figure 3B). Blocking CD47-
SIRPα can be established by various methods: i.e., anti-CD47 mAbs, anti-SIRPα mAbs,
or alternative ways, e.g., by downregulating CD47 or by affecting the SIRPα binding site.
In vitro, macrophages can eliminate various opsonized solid [159–165] and hematological
cancer [64,156,166,167] cell types via ADCP, which can be further promoted by treatment
with anti-CD47 mAbs. Similarly, anti-CD47 mAbs enhance neutrophil-mediated ADCC of
solid cancers in vitro, such as neuroblastoma [168]. However, it appears that neutrophils are
less capable of killing hematologic cancer cells, and blockade of the CD47-SIRPα axis with
anti-CD47 mAbs is not enough to promote tumor elimination. For example, neutrophils
were unable to eliminate rituximab-opsonized B cell lymphoma cells [64]. Even when
the CD47-SIRPα axis was disrupted using anti-CD47 Fab fragments, neutrophil-mediated
ADCC was not improved, although tumor cell elimination was significantly increased
when combined with sodium stibogluconate (SSG; an alleged inhibitor of SHP-1) [64]. It is
important to note that some anti-CD47 antibodies can by themselves opsonize tumor cells,
depending on their ability to still bind Fc-receptors, and hence act as a two-edged sword,
i.e., by opsonizing tumor cells for phagocytosis and simultaneously inhibiting CD47-SIRPα
interactions. In some cases, it therefore appears that anti-CD47 antibodies were sufficient for
killing by myeloid cells, without the need of additional anti-TAA mAbs [161,166,169,170].
Since CD47 is broadly expressed on normal cells, it is highly undesirable to therapeutically
use an anti-CD47 antibody with a functional Fc tail, as this would also trigger effector
responses against the patient’s healthy cells. As an alternative to anti-CD47 antibodies,
anti-SIRPα antibodies have also been studied for their ability to promote tumor elimina-
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tion. By targeting SIRPα, neutrophil-mediated ADCC of various opsonized cancer cells,
such as breast cancer [65], neuroblastoma [168], and colorectal adenocarcinoma [171,172]
was promoted.
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Figure 3. CD47-SIRPα signaling prevents neutrophil-mediated tumor cell killing. (A) Ligation of
CD47 and SIRPα controls integrin (Mac-1) activation on neutrophils. This subsequently results
in less cell–cell contacts between neutrophils and tumor cells, limiting trogoptosis of tumor cells.
(B) Disruption of the CD47-SIRPα interaction allows Mac-1 activation, resulting in enhanced synapse
formation, trogocytosis and eventually trogoptosis of antibody-opsonized cancer cells.

Blockade of the CD47-SIRPα axis generally only enhances tumor killing in the presence
of tumor-targeting antibodies [61,64,127,168]. Consequently, not only enhanced CD47
expression on the tumor, but also decreased expression of TAAs on tumor cells can reduce
or preclude neutrophil-mediated killing, as observed, e.g., in neuroblastoma cells of the
mesenchymal phenotype that have lost GD2 expression [168].

Tumor-targeting mAbs stimulate neutrophil activation and tumor killing via FcR
binding and signaling. As neutrophils express a variety of FcRs, different antibody isotypes
can be used to stimulate neutrophils. Currently, most therapeutic mAbs are of the IgG1
isotype, which bind most FcγRs on neutrophils, including the highly expressed FcγRIIIb,
which acts as a decoy receptor [60,173]. Treatment with IgG1 mAbs alone can enhance tumor
killing by neutrophils. However, combination with CD47-SIRPα blockade significantly
enhanced the cytotoxic capabilities of neutrophils [127]. In addition, some IgG2 mAbs are
used in the clinic. IgG2 is able to effectively trigger myeloid cells, like neutrophils, at least
as effective as IgG1, since it has a high affinity for FcγRIIa, which is the main FcγR involved
in ADCC, and lower affinity for the decoy receptor FcγRIIIb [61,173,174]. Targeting various
solid tumor cells (A431, A1207, Kyse-30, SAT, Kyse-150, SCC-25) with anti-EGFR IgG2
resulted in increased neutrophil-mediated ADCC compared to IgG1 [174]. Inhibition
of CD47-SIRPα by the decreased expression of CD47 on tumor cells further enhanced
anti-tumor effects of neutrophils [174]. Besides IgG antibodies, IgA antibodies can also
effectively stimulate neutrophils, as they express FcαRI. Several studies have demonstrated
that stimulation of neutrophils with IgA mAbs results in an even more potent anti-tumor
response than IgG [66,67,69,70]. Furthermore, the killing of IgA-opsonized targets appears
independent of neutrophil pre-activation with e.g., GM-CSF or IFN-γ and G-CSF, which is
required for IgG-induced ADCC [127,175,176]. Inhibition of CD47-SIRPα further enhanced
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the destruction of IgA-opsonized tumor cells by neutrophils in vitro as well as in vivo [86].
Moreover, a combination of anti-SIRPα with IgA tumor targeting also promoted neutrophil
recruitment to the tumor site in vivo [86], consistent with the known stimulating effects
of IgA on neutrophil-recruiting chemoattractants, such as LTB4, which act in an autocrine
fashion and may help to form a positive feedback loop [71].

Within bispecific antibodies (BsAb), opsonization and CD47-SIRPα blocking activity
can be combined in one antibody, as Fab regions can target different antigens [177]. By
combining a TAA-targeting mAb and anti-CD47 or anti-SIRPα mAb, immune cells can
be recruited to the tumor and become fully activated by one antibody. For example, the
GPC3xCD47 BsAb targets the TAA GPC3, expressed on hepatocellular carcinoma (HCC)
cells, and CD47, as well as FcγRs via a functional IgG1 Fc tail [178]. Both in vitro and in vivo,
GPC3xCD47 BsAb promoted neutrophil- and macrophage-mediated tumor killing of GPC3-
expressing Raji cells. Similarly, the CD47xEGFR-IgG1 BsAb enhanced neutrophil ADCC of
EGFR-expressing cancer cells [179]. The CD70/KWAR23 BsAb targets the TAA CD70 and
SIRPα [172]. This BsAb significantly enhanced phagocytosis of CD70-expressing cancer
cell lines in vitro. Furthermore, CD70/KWAR23 BsAbs limited the growth of Burkitt’s
lymphoma cells in vivo [172]. These preclinical studies have demonstrated that blocking
the CD47-SIRPα interaction, by either mAbs or BsAbs, may promote tumor cell killing by
myeloid cells such as neutrophils and macrophages.

5. Targeting CD47-SIRPα to Potentiate Antibody Therapy

The preclinical evidence that inhibition of the CD47-SIRPα checkpoint may promote
the efficacy of tumor-directed therapeutic antibodies has prompted the clinical development
of a variety of compounds targeting CD47-SIRPα. Currently, different agents, such as
antibodies against either CD47 or SIRPα, or other therapeutic biologics directed against
CD47, are being investigated for their ability to block the CD47-SIRPα axis to promote
tumor reduction. Whereas CD47-SIRPα targeting is often referred to as a method to
improve macrophage mediated-phagocytosis, it is clear that neutrophils may also play a
critical role as effector cells towards cancer cells during tumor-targeting antibody therapy
in general [36,172,180–182]. Moreover, neutrophils may also prominently contribute to
the enhanced tumor elimination after CD47-SIRPα disruption [172]. In addition, there
is accumulating evidence that also adaptive T cell-mediated anti-cancer immunity can
be promoted by CD47-SIRPα blockade [183,184]. Clearly, this also sets the stage for a
combination of CD47-SIRPα antagonists with PD1–PDL1 inhibitors [185–188]. Along
these lines, there is even initial evidence that CAR-T cell activity may be promoted by
CD47-SIRPα inhibitors [189].

5.1. CD47-Targeting Agents

Many different CD47-targeting agents have been developed, including anti-CD47
antibodies and SIRPα-Fc fusion proteins. Currently, 24 CD47-targeting mAbs are tested in
72 clinical trials (Table 2). Some trials have already demonstrated promising results, with
limited toxicity and good initial indications for anti-tumor efficacy.

Magrolimab (also known as GS-4721 or Hu5F9-G4) is a humanized anti-CD47 blocking
antibody with a IgG4 tail modified to prevent Fab arm exchange [190]. As the IgG tail is still
functional, at least to some extent with respect to FcγRI binding [62], the anti-CD47 antibody
may simultaneously function as an opsonizing antibody. In pre-clinical studies, combined
treatment with Magrolimab and trastuzumab resulted in enhanced anti-tumor effects in
NSG and C57BL/6 mice that had been xenografted with human SKBR3 cancer cells [191].
Treatment with Magrolimab or trastuzumab alone did not decrease tumor size in vivo. Due
to these promising pre-clinical results, Magrolimab was the first in class anti-CD47 mAb
that entered clinical trials, and is currently also the most clinically advanced CD47-SIRPα-
targeting agent. This was also the first trial in the field with reported results [192]. In the first
phase I clinical trial (NCT02953509), 22 NHL patients were treated with a combination of
Magrolimab and rituximab [193]. In general, the combination was well tolerated, as adverse
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events were predominantly of grade I or II, and included anemia (42%) and infusion-related
reactions (36%). The occurrence of anemia was expected, as it is an on-target effect of anti-
CD47 antibody therapy. The objective response rate (ORR) in NHL patients was 50%, with
a complete response (CR) in 36% of patients [193]. This clinical trial was extended into
a phase II trial (NCT02953509), in which NHL patients, divided into diffuse large B-cell
lymphoma (DLBCL) and indolent lymphoma, were treated with Magrolimab and rituximab.
Again, an interim analysis (n = 115 patients) showed that treatment was well tolerated, with
only 7% of adverse events being grade III or IV. For DLBCL patients, 39% of patients had
an ORR, with 20% having a CR. In addition, for patients with indolent lymphoma, an ORR
of 66% was observed, with a complete response in 24% of patients [194]. Magrolimab also
showed promising results in a phase I trial (NCT02216409) with patients with advanced
solid tumors, including colorectal, ovarian, salivary, fallopian tube, and breast cancer [195].
Treatment with various doses of Magrolimab induced mainly grade I and II adverse events,
including but not limited to transient anemia (57% of patients), lymphopenia (34%) and
hyperbilirubinemia (34%). Moreover, partial remissions were observed in two patients with
ovarian/fallopian tube cancers [195]. Treatment with Magrolimab has also been studied
in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS).
Monotherapy of Magrolimab in AML patients in a phase I trial (NCT02678338; CAMELLIA)
resulted in anemia in 93% of patients, and hemagglutination in 87% [196]. In addition,
73% of patients achieved stable disease, but no objective responses were observed. To
enhance Magrolimab efficacy in patients with AML or MDS, treatment was combined with
azacitidine, a chemotherapeutic agent used to treat MDS. Combination of Magrolimab and
azacitidine in a phase Ib clinical trial (NCT03248479) showed very encouraging responses
in both AML and MDS patients, with an ORR of 65 and 91%, respectively [197–200]. Grade
III or IV adverse events in AML patients included anemia (31%), hyperbilirubinemia (19%)
neutropenia (19%), and thrombocytopenia (17%) [200]. In MDS patients, grade III or IV
adverse events observed included anemia (38%), neutropenia (19%) and thrombocytopenia
(18%). These promising results led to the start of multiple phase III clinical trials with MDS
and AML patients (NCT04313881, ENHANCE; NCT04778397, ENHANCE-2; NCT05079230,
ENHANCE-3). Currently, a large variety of clinical trials are ongoing to investigate the
effect of Magrolimab for the treatment of various cancers (Table 2).

Another anti-CD47 antibody is CC-90002, which has a humanized IgG4-PE (S228P
and L235E mutation) tail, preventing FcγR interactions [201]. In pre-clinical studies, CC-
90002 induced anti-tumor activity in vitro and in vivo against various hematological and
solid cancers [202]. In a phase I trial (NCT02641002), patients with relapsed and/or
refractory (r/r) AML and MDS were treated with CC-90002. Serious treatment-related
adverse events were observed in 82% of patients and included febrile neutropenia (10/23)
and bacteremia (4/23). In addition, no objective responses were observed in the treated
patients. Due to the lack of a clinically sufficiently encouraging profile, as well as frequent
anti-drug antibodies (ADA) development, this program was discontinued. CC-90002
treatment was also investigated as therapy for NHL patients in combination with rituximab
(NCT02367196) [203], but this trial also showed low efficacy and was discontinued.

Letaplimab (also referred to as IBI188) is another anti-CD47 IgG4 antibody. Similar to
the other anti-CD47 mAbs, Letaplimab was able to promote macrophage ADCP in vitro. In
addition, it stimulated anti-tumor effects in NHL and AML/MDS xenograft mouse models
in combination with rituximab or azacitidine [204]. In an initial phase Ia clinical trial
(NCT03763149), the tolerability and safety of Letaplimab were assessed in patients with
advanced or refractory solid tumors or lymphoma [205]. In general, treatment was well
tolerated, with mainly grade I or II adverse events. Three out of twenty patients experienced
adverse events of grade III or higher, i.e., hyperbilirubinemia, thrombocytopenia or anemia,
each in one patient. Currently, five other clinical trials are ongoing with Leraplimab as a
monotherapy, or in combination with rituximab, anti-PD-1, or chemotherapy in patients
with various cancers, including solid tumors, lymphomas, MDS or AML (Table 2).
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Lemzoparlimab (also referred to as TJ011133 or TJC4) is also a fully human anti-CD47
IgG4 antibody. As most anti-CD47 antibodies cause anemia due to phagocytosis of RBCs,
Lemzoparlimab was generated to specifically target CD47 on malignant cells while not
recognizing CD47 on RBCs, due to unique CD47 binding properties [206]. In a phase
I study (NCT03934814), patients with solid tumors were treated with monotherapy of
Lemzoparlimab [206]. During this trial, only grade I or II adverse events were observed,
including anemia in 30% of patients. In addition, one out of three patients treated with
30 mg/kg Lemzoparlimab had a partial response, and three out of sixteen patients in the
trial achieved stable disease [206]. In the same trial, patients with r/r NHL were treated
with a combination of Lemzoparlimab and rituximab [207]. Most adverse events were
grade I and II, and anemia and thrombocytopenia were observed as one isolated episode.
In addition, three out of seven patients had a CR, one had a partial response, and three
achieved stable disease. In an ongoing phase I/II clinical trial (NCT04202003), r/r AML
and MDS patients were treated with monotherapy of Lemzoparlimab [208]. Most adverse
events were grade I or II, but one patient experienced grade III thrombocytopenia. As
recruitment is still ongoing, no results are yet available on response rates in this trial.

Another method to target CD47 is with a fusion protein consisting of the N-terminal
IgV-domain of SIRPα and a functional Fc region, also known as SIRPα-Fc. These proteins
basically function as a decoy receptor and prevent CD47 binding to SIRPα. In addition, the
functional Fc tail can interact with FcγRs, to further enhance anti-tumor activity through,
e.g., ADCP or ADCC. An example of a SIRPα-Fc in clinical trials is TTI-621, a fully human
SIRPα-Fc with a functional IgG1 Fc region [209]. In vitro, TTI-621 was able to strongly
bind various tumor cell lines and primary patient tumors [209]. In addition, TTI-621
also bound to cells in peripheral blood, as CD47 is widely expressed on normal cells. In
co-cultures, the addition of TTI-621 significantly enhanced macrophage phagocytosis of
various hematologic and solid tumors [209,210]. The in vivo treatment of AML xenografted
mice with TTI-621 resulted in significantly reduced tumor burden [209]. Similar results were
observed with B cell lymphoma xenograft models. Treatment tolerance and adverse events
were therefore assessed in a phase I clinical trial (NCT02663518), in which 164 patients
with relapsed or refractory hematologic malignancies were treated with TTI-621 alone
or in combination with rituximab or nivolumab (anti-PD-1, a checkpoint molecule on T
cells) [211]. Treatment was well tolerated by patients until a maximally tolerated dose
(MTD) of 0.2 mg/kg. Grade III treatment-related adverse events occurred in 37% of
patients and included thrombocytopenia (20%), anemia (9%) and neutropenia (9%). In
addition, some indication of therapeutic responses was observed in patients treated with
TTI-621 alone or in combination with rituximab or nivolumab. In NHL patients receiving
monotherapy TTI-621, the ORR was 10%, with 5% of patients having a CR. For NHL
patients receiving TTI-621 and rituximab the ORR was 23%, with a CR in 9% of patients.
In HL patients receiving combination treatment with TTI-621 and nivolumab an ORR of
50%, with 25% of patients achieving a CR. TTI-621 monotherapy resulted in an ORR of
20, 13 and 5% in patients with T cell NHL, HL and AML, respectively [211]. Following
these results, 35 patients with cutaneous T cell lymphomas (CTCL) or solid tumors received
intralesional TTI-621 in another phase I trial (NCT02890368) [212]. Treatment was well
tolerated, as no treatment related adverse events of grade III or higher were observed.
Rapid responses (median 45 days) were observed and 90% of patients had reduced tumor
sizes after treatment with TTI-621 [212]. Thus, these initial phase I trials demonstrate
that treatment with TTI-621 does not cause severe toxicities (at the MTD) and has some
anti-tumor effects in various cancer types, e.g., CTCL and hematologic cancers.

TTI-622 also is a fully human SIRPα-Fc, consisting of the CD47-binding domain of
SIRPα and an IgG4 Fc tail. It was suggested that TTI-622 does not bind to RBCs, unlike
many anti-CD47 agents, thereby limiting adverse events such as anemia. In an ongoing
phase I trial (NCT03530683), preliminary results were published of 25 patients with r/r
lymphoma, who were treated with various doses of TTI-622 monotherapy [213]. In 48%
of patients, treatment-related adverse events were reported, mostly being grade I or II.
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Grade III adverse events observed included neutropenia (9%), thrombocytopenia (5%) and
anemia (2%). Objective responses were observed in nine patients, and included two CRs
and seven PRs [214]. In this ongoing trial, combinations of TTI-622 with azacitidine or other
chemotherapeutic agents are also being investigated in hematologic cancers. Moreover, a
clinical trial (NCT05139225) has started in which the toxicity and efficacy of TTI-621 and
TTI-622 are being compared in combination with the anti-CD38 antibody daratumumab in
relapsing multiple myeloma patients.

ALX148 (also known as Evorpacept) is another SIRPα-Fc fusion protein. More specif-
ically, ALX148 consists of an inactive human IgG1 Fc region that is fused to a modified
N-terminal IgV-domain of SIRPα, which enhances CD47 binding [215,216]. As ALX148
has ~50,000× higher binding affinity to CD47 compared to wild-type SIRPα, it prevents
SIRPα ligation by acting as a potent decoy receptor. The Fc region is able to interact with
neonatal Fc receptors, allowing for extended pharmacokinetics. Contrarily, the Fc tail is
unable to bind human FcγRs, preventing targeting of immune cells to normal cells [216].
In pre-clinical studies, ALX148 improved the phagocytosis of OE19, DLD-1, MM1.R, and
Daudi tumor cells opsonized with trastuzumab, cetuximab, daratumumab (anti-CD38),
and obinutuzumab (anti-CD20), respectively [216]. Mice engrafted with human B cell
mantle cell lymphoma were treated with ALX148 or obinutuzumab alone or as combi-
nation therapy [216]. Combination treatment significantly inhibited tumor growth when
compared to monotherapies. Similar results were observed in mice engrafted with OE19
gastroesophageal tumors, treated with ALX148 and trastuzumab, and mice harboring Raji
B cell lymphoma tumors, treated with ALX148 and rituximab [216]. In a phase I clinical
trial (NCT03013218; ASPEN-1), 110 patients with advanced or metastatic solid tumors were
treated with various doses of ALX148 alone or in combination with pembrolizumab (anti-
PD-1) or trastuzumab [217]. All treatments were well tolerated, with four serious adverse
events in patients treated with ALX148 alone, five in patients treated with ALX148 and pem-
brolizumab, and one serious adverse event related to ALX148 plus trastuzumab treatment.
The most common serious adverse events were thrombocytopenia and neutropenia. In ad-
dition to toxicity, the preliminary therapeutic effects of ALX148 were assessed. Of patients
treated with monotherapy with ALX148 18% had stable disease. Combination therapy of
patients with head and neck squamous cell carcinoma (HNSCC) receiving ALX148 and
pembrolizumab, NSCLC patients treated with ALX148 and pembrolizumab, and patients
with gastric or gastroesophageal junction cancer who received ALX148 and trastuzumab,
resulted in stable disease in 18, 20, 5, and 21% of patients, respectively [217]. Currently, nine
other clinical trials are ongoing in which ALX148 is being given in combination with various
mAbs and chemotherapeutic agents to treat patients with hematologic or solid cancers
(Table 3). Most of these trials are phase I or II, but also a phase II/III trial has started for the
treatment of advanced gastric cancer in combination with ramicirumab (anti-VEGFR) and
paclitaxel (NCT05002127; ASPEN-6). Several other CD47-targeting agents are currently
also entering the clinical phase (Tables 2 and 3).

Targeting CD47 on tumor cells allows for simultaneous tumor cell opsonization when
the compounds contains a functional Fc tail. However, as indicated above, CD47 is widely
expressed on virtually all cells in the body, and, particularly, hematologic adverse events are
often observed in patients treated with anti-CD47 mAbs, e.g., anemia, thrombocytopenia,
lymphopenia, and neutropenia. In addition, anti-CD47 antibodies may not only disrupt
interactions with SIRPα, but also with other CD47 ligands, e.g., thrombosponin-1 or inte-
grins, which could cause other adverse events [192]. Therefore, anti-SIRPα antibodies may
in principle provide a better alternative.

5.2. Anti-SIRPα mAbs

Since SIRPα expression is much more restricted, with its expression largely confined
to myeloid immune cells, it may be easier to saturate. Therefore, lower antibody concentra-
tions may be needed to obtain beneficial clinical responses [192]. Nonetheless, an important
aspect to consider is the large homology between SIRP family members. For example,
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SIRPγ also binds CD47, but is expressed on T cells, and has been suggested to play a role
in T cell activation and transmigration in vitro [203]. Thus, the specificity of anti-SIRPα
antibodies is key, and if such antibodies cross-react with other SIRP family members, their
potential associated effects on safety and efficacy should be considered.

Recently, three anti-SIRPα antibodies have entered the clinical phase in seven clinical
trials (Table 4). The first anti-SIRPα mAb entering clinical trials was CC-95251, a fully
human IgG1 anti-SIRPα antibody with a K322A mutation, rendering the Fc tail inactive
in terms of complement activation, but maintaining FcγR binding capacity. CC-95251,
was selected, as it exhibits a high binding affinity to the different variants of SIRPα and
blocks binding to CD47 by binding to the CD47-binding domain in SIRPα [218]. In vitro
experiments with DLBCL cell lines demonstrated that CC-95251 alone did not significantly
enhance macrophage ADCP. However, in combination with rituximab, CC-95251 had a
synergistic effect and promoted ADCP of tumor cells. Toxicity was assessed in cynomolgus
monkeys, indicating safe intravenous administration and no significant depletion of blood
cell counts [218]. Following these results, a phase I clinical trial (NCT03783403) was
initiated, in which 230 patients with advanced solid or hematologic malignancies were
intended to be treated with CC-95251 monotherapy or in combination with cetuximab or
rituximab. Recently, the first interim results of 17 NHL patients treated with CC-95251
and rituximab were published [219]. In these patients, grade III or higher adverse events
included neutropenia (53%), infections (24%) and thrombocytopenia (6%). The ORR was
56% and 25% of patients achieved a CR [219]. This trial is still ongoing, and recently
another trial (NCT05168202) has been announced, investigating the effect of CC-95251 in
combination with azacitidine on r/r AML and MDS.

BI765063 (also referred to as OSE-172) is a humanized IgG4 anti-SIRPα antibody with
S229P and L445P mutations, which only binds to one of the major SIRPα polymorphic
variants (V1, also known as SIRPαBIT) present in the population. BI765063 is reported to
be unable to bind SIRPγ, and thus should preserve T cell activation and migration [188].
In vivo, a murine variant of BI765063 promoted ADCC and ADCP of triple-negative breast
cancer cells. In addition, anti-tumor effects were enhanced even further in combination with
other checkpoint blockades, e.g., anti-PD-L1 antibodies. Analysis of the TME demonstrated
that T lymphocytes accumulated in the tumor in mouse models [188]. BI765063 has entered
an initial phase I clinical trial (NCT03990233), in which it is used to treat patients with
advanced solid tumors as a monotherapy, or in combination with an anti-PD-1 antibody
(BI754091). Preliminary results have been presented at ASCO and ESMO meetings. Fifty
patients with solid cancer have received monotherapy BI765063 [220]. No dose-limiting
toxicities were observed and mostly grade I and II adverse events were reported. Only
one patient experienced a grade III infusion-related reaction and none of the patients had
anemia or thrombocytopenia as a result of the treatment. One patient showed durable PR,
and had increased CD8 T-cell infiltration into the TME upon BI765063 treatment. After
two weeks, an increased expression of PD-L1 was measured on the tumor [220]. Thus,
combination with anti-PD-1 or anti-PD-L1 antibodies may further enhance clinical benefit.
In the same trial, 12 patients were treated with a combination of BI765063 and an anti-PD-1
mAb (BI754091) [221]. Only grade I/II adverse events were reported, and again no anemia
or thrombocytopenia were observed. One patient with endometrial carcinoma had a PR
and another patient had significant tumor shrinkage [221]. This clinical trial is still ongoing,
whereas two other trials (NCT04653142 and NCT05249426) have started, to investigate the
toxicity and efficacy of BI765063 in combination with anti-PD-1/PD-L1 and opsonizing
antibodies in solid cancer patients.

One other anti-SIRPα antibody has entered clinical trials: i.e., GS-0189, an anti-SIRPα
IgG1 with an N197A mutation. In 2020, a phase I clinical trial (NCT04502706) started in
which NHL patients were treated with GS-0189 alone or in combination with rituximab.
However, no results have been published yet and the development of this agent has
apparently been discontinued after nine patients had been treated. Collectively, preliminary
results of clinical trials with CC-95251 and BI765063 have suggested the limited toxicity of
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targeting SIRPα in patients with solid or hematologic cancers. In addition, partial responses
were observed in some patients, with the ones in NHL appearing as least as good as with
some of the more advanced CD47-targeting agents. Treatment with BI765063 also resulted
in enhanced T cell recruitment. Thus, targeting SIRPα may be an interesting alternative to
CD47-targeting agents, to block the CD47-SIRPα interaction and to establish meaningful
clinical responses.

5.3. Alternative Ways to Disrupt CD47-SIRPα Interactions

Besides CD47- or SIRPα-targeting antibodies, the CD47-SIRPα axis can be disrupted
in alternative ways, for example by downregulating CD47. Galectin-9 (Gal-9) is a β-
galactoside-binding galectin, and has been described for its role in cancer, as loss of Gal-9
is associated with tumor progression and metastasis [222]. However, recently it has been
identified that Gal-9 also affects CD47 expression [223]. Associated with this finding, in
co-cultures, treatment with Gal-9 significantly enhanced trogocytosis of FaDu cells by
neutrophils, but not phagocytosis by macrophages. In addition to downregulation of
CD47 on tumor cells, it was shown that the treatment of neutrophils with Gal-9 induced
neutrophil activation, such as induced calcium flux, and degranulation, measured by
upregulation of CD11b, CD18, CD11c, CD15, CD66b and CD63 on the cell’s surface. In
co-cultures with FaDu or Caco2 cancer cell lines, neutrophils were able to kill significantly
more tumor cells after Gal-9 treatment [223].

Recently, a small molecule, RRx-001, was identified as a tumor targeting agent, as it also
downregulates CD47 on tumor cells [224]. RRx-001 activates the peroxisome proliferator-
activated receptor gamma (PPAR-γ), which is a nuclear receptor transcription factor that
inhibits Myc by heterodimerizing with retinoid X receptor. Inhibition of the transcription
factor Myc subsequently results in downregulation of CD47 [225]. RRx-001 treatment
decreased both the expression of CD47 on A549 lung cancer cells, and SIRPα expression
on monocytes and macrophages in vitro [226]. Consequently, enhanced phagocytosis of
A549 lung cancer, or AU-565, MCF-7, and MDA-MDB-231 breast cancer cells was observed.
Treatment of A549-bearing nude mice with RRx-001 resulted in a significant reduction
of tumor growth [226]. A phase I trial (NCT01359982) with 25 patients with advanced
soluble cancers showed that treatment with RRx-001 was well tolerated with no clinically
significant toxicity [227]. In addition, 67% of patients had stable disease and 5% had a
partial response. A phase II clinical trial (NCT02489903) showed that RRx-001 is also able
to downregulate PD-L1 on small cell lung cancer cells [228]. Moreover, RRx-001 can have
a direct anti-tumor effect through epigenetic modulation in multiple myeloma cells [229].
Currently, RRx-001 is tested in various clinical trials [230].

CD47-SIRPα interactions can also be disrupted by modulating enzymatic modifica-
tions of the SIRPα-binding domain in CD47. In a FACS-based haploid genetic screen, the
gene encoding glutaminyl-peptide cyclotransferase-like (QPCTL, isoQC) was identified
to significantly reduce the binding capabilities of SIRPα to CD47 [125,231]. QPCTL is an
enzymatic modifier, which adds pyroglutamate modifications to proteins. It has previously
been demonstrated that CD47 contains an N-terminal pyroglutamate, which is involved in
SIRPα binding [124]. Knockout of QPCTL decreased SIRPα binding in various human cell
lines (HAP1, A375, A431, A549, DLD1, and RKO), while the overall expression of CD47
remained unaffected [125]. Similarly, treatment with small molecule inhibitors targeting
QPCTL, i.e., SEN177 and PQ912, significantly reduced binding to SIRPα. In a co-culture of
human macrophages and anti-CD20 treated Raji cells, the addition of SEN177 significantly
increased phagocytosis [125]. Neutrophil-mediated ADCC of cetuximab-treated A431 cells
or trastuzumab-treated Ba/F3 cells was significantly enhanced by treatment with SEN177
or knockout of QPCTL as well. These results were confirmed by other studies, showing that
SEN177 treatment significantly enhanced ADCP by macrophages and neutrophil-mediated
ADCC [232–234]. Another QPCTL inhibitor, luteolin, also abrogated the interaction be-
tween CD47 and SIRPα [235]. In addition, in co-cultures of H929 or DLD1 cancer cells
with mouse bone-marrow-derived macrophages, phagocytosis was significantly improved
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after treatment with luteolin. To determine the effect in vivo, human FcαRI transgenic
BALB/c mice were injected with 1:1 WT and QPCTL knockout Ba/F3 cells [125]. Mice
were subsequently treated with anti-Her-2/neu IgA antibodies or PBS. Only in the IgA
anti-HER-2/neu treated mice was profound killing of QPCTL knockout cells observed. In
addition, an influx of neutrophils into the tumor was observed as a result of anti-HER-
2/neu IgA treatment in combination with QPCTL knockout. The specific depletion of
neutrophils with anti-Ly6G antibodies abrogated the treatment effect, demonstrating that
neutrophils were the main effector cells eliminating QPCTL-deficient tumor cells [125].
These studies demonstrate that alternative ways of targeting the CD47-SIRPα axis may
perhaps also have potential to promote tumor elimination. However, more pre-clinical and
clinical studies are needed to demonstrate whether these compounds are well tolerated
and effective in patients.

Despite the promising preliminary results observed in the various clinical trials target-
ing the CD47-SIRPα axis, it is important to consider the ways by which tumor cells may
adopt resistance against these therapies. Since neutrophils, but also macrophages, require
tumor opsonization with anti-TAA antibodies, loss of TAA expression will prevent tumor
opsonization and thereby reduce killing by these immune cells. This has already been
observed for neutroblastoma cells, where the TAA expression of GD2 can decrease during
anti-GD2 mAb therapy [168]. Moreover, tumor cells may upregulate other (perhaps less
well defined) checkpoint molecules to limit immune activation and tumor killing. Lastly,
tumor cells could escape elimination by preventing immune cell infiltration, by creating an
immunosuppressive microenvironment. Thus, although CD47-SIRPα appears to enhance
tumor killing, the therapy is dependent on the opsonization of the tumor cells and possibly
also the immunosuppressive state of the TME.

6. Conclusions

The inhibitory receptor SIRPα, expressed on myeloid cells, limits immune effector
functions upon interaction with CD47 on opposing cells. The CD47 protein is expressed on
virtually all cells in the body, including hematologic and non-hematologic cells. Notably,
tumor cells often overexpress CD47 on their cell membrane to evade immune-mediated
tumor cell killing. Disrupting the interaction between CD47 and SIRPα may therefore
promote anti-tumor effects by neutrophils and macrophages. Neutrophils are promising
effector cells in cancer therapy, due to their high abundance in the circulation and ability
to eliminate opsonized tumor cells in vitro and in vivo. After CD47-SIRPα blockade,
neutrophil-mediated tumor cell killing by trogoptosis is greatly promoted. This effect is
only observed in the presence of opsonizing tumor-targeting antibodies. Currently, many
CD47-targeting agents have been developed and a variety have entered the clinical phase.
Some compounds have already shown encouraging results, with limited well-tolerated
toxicities and promising efficacy. An interesting alternative to CD47-targeting compounds
are SIRPα-targeting agents. Due to the broad expression of CD47, side effects such as
anemia, neutropenia and thrombocytopenia were frequently observed in clinical trials. In
addition, high concentrations were needed to achieve saturation and therapeutic effects.
SIRPα expression is much more restricted, and therefore lower antibody concentrations
may be needed to observe beneficial effects. Preliminary results with anti-SIRPα antibodies
in clinical trials showed that treatments were well tolerated. In addition, some patients
had rapid responses, with significantly reduced tumor sizes. Taken together, targeting
the innate immune checkpoint CD47-SIRPα has great potential to potentiate antibody
therapy in cancer. Exactly how successful CD47-SIRPα targeting drugs can be, and in
which patients with what combinations, will undoubtedly soon become clear in this rapidly
advancing field.
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Table 2. CD47-targeting antibodies investigated in clinical trials. Currently, 25 anti-CD47 mAbs are investigated in 73 clinical trials, as mono- or combination therapy
for various indications. Table updated until 7 April 2022.

Anti-CD47 mAbs

Compound Type Phase
Trial
Identifier Name Indication Treatment

Results
Ref.

Toxicity (≥Grade 3) ORR (DCR)

Magrolimab/
GS-4721/
(Hu5F9-G4)

anti-CD47
IgG4

1/1b NCT02678338 CAMELLIA r/r AML and
hrMDS Mono 72% anemia

6% lymphopenia AML = 0% (56%) [196,236]

1 NCT03248479

AML (65% TP53
mut) +Azacitidine

31% anemia
19% hyperbilirubinemia
19% neutropenia
17% thrombocytopenia

65% (97%) [198–200]

int/high risk MDS
(13% TP53 mut) +Azacitidine

38% anemia
19% neutropenia
18% thrombocytopenia

91% (100%) [198–200]

1 NCT02216409 Solid cancer Mono
18% lymphopenia
14% anemia
7% Hyperbilirubinemia

2/44 (OvC and FTC) [195]

1b/2 NCT02953782 CRC KRAS wt/mut +Cetuximab 12% anemia
12% hyperbilirubinemia

wtKRAS = 6% (50%)
mKRAS = 0% (38%) [237]

1b/2 NCT02953509

NHL +Rituximab
42% anemia
15% neutropenia
36% infusion reactions

NHL = 45% (62%)
Indolent = 61% (85%)
DLBCL = 36% (48%)

[193,194]

NHL +Rituximab + Gemcitabine +
Oxaliplatin [192–194]

1 NCT03558139 Ovarian cancer +Avelumab

1b/2 NCT03863509 MORPEUS-UC Urothelial & Bladder
cancer +Atezolizumab

1b NCT03922477 AML +Atezolizumab

1 NCT03527147 PRISM NHL +Rituximab + Acalabrutinib

2 NCT04788043 HL +Pembrolizumab

1 NCT04599634 VENOM r/r indNHL/CLL +Obinutuzumab + Venetoclax

1 NCT04754724
High-risk &
rrNeuroblas-
toma/rOsteosarcoma

+Dinutuximab

+Dinutuximab + surgery
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Table 2. Cont.

Anti-CD47 mAbs

Compound Type Phase
Trial
Identifier Name Indication Treatment

Results
Ref.

Toxicity (≥Grade 3) ORR (DCR)

1b/2 NCT04541017
CTCL (Myc.
Fungoides & Sezary
Syndr.)

+Docetaxel + Mogamilizumab

Mogamilizumab mono

2 NCT04827576 Solid (mNSCLC,
mSCLC, mUC) Mono

3 NCT04313881 ENHANCE Untreated hrMDS
+Azacitidine

Azacitidine mono

3 NCT05079230 ENHANCE-3 Untreated AML
+Azacitidine + Venetoclax

Azacitidine + Venetoclax

1b/2 NCT04435691 r/r and nd AML +Azacitidine + Venetoclax

2 NCT04958785 tnmBC
+Paclitaxel- + Nab paclitaxel

+Sacituzumab govitecan

2 NCT04892446 r/r MM

+Daratumumab

+Pomalidomide +
Dexamethasone

+Bortezomib +
Dexamethasone

3 NCT04778397 ENHANCE-2 untreated T53mut
AML

+Azacitidine

phys choice

2 NCT04854499 untreated HNSCC

+Pembrolizumab

+Pembrolizumab +
chemo/Docetaxel

2 NCT04778410
newly diagnosed or
r/r AML

+Azacitidine + Venetoclax

+MEC chemo

+CC-486

1 NCT05169944
Malignant brain
cancer (children &
adults)

Mono
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Table 2. Cont.

Anti-CD47 mAbs

Compound Type Phase
Trial
Identifier Name Indication Treatment

Results
Ref.

Toxicity (≥Grade 3) ORR (DCR)

CC90002 anti-CD47
IgG4PE

1 NCT02641002 r/r AML and
hrMDS Mono

36% feb neutropenia
32% thrombocytopenia
29% anemia
18% neutropenia
11% hypokalemia

AML = 0/14 (0/14)
MDS = 0/3 (2/3) [201,238]

1 NCT02367196 Solid
cancer/MM/NHL +/− Rituximab 38% neutropenia NHL = 13% (25%) [203]

Letaplimab/
IBI188

anti-CD47
IgG4

1 NCT03763149 Solid tumors and
lymphomas Mono

1/20 anemia
1/20
hyperbilirubinemia
1/20 thrombocytopenia

[205]

1/1b NCT03717103
Solid tumors and
lymphomas

Mono

+Rituximab

1b NCT04861948

Solid tumors (Lung
adenocar.,
Osteosarc., Soft
tissue sarc.)

+IBI188 (Anti-PD1)/chemo +
Bevacizumab/GM-CSF

1 NCT04511975 newly diagnosed
hrMDS +Azacitidine

1b NCT04485052 newly diagnosed or
rrAML +Azacitidine

1b NCT04485065 newly diagnosed
hrMDS +Azacitidine

IBI322 CD47/PDL1
BsAb IgG4

1a NCT04338659 Solid tumors Mono

1/1b NCT04328831 Solid tumors Mono

1/1b NCT04912466 Hematologic cancer Mono

1a/1b NCT04795128 Hematologic cancer Mono

1a/1b NCT05148442 r/r AML and r/r
MDS +Azacitidine
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Table 2. Cont.

Anti-CD47 mAbs

Compound Type Phase
Trial
Identifier Name Indication Treatment

Results
Ref.

Toxicity (≥Grade 3) ORR (DCR)

AO176
anti-CD47
IgG2

1/2 NCT03834948 Solid tumors
Mono

+Paclitaxel/Pembrolizumab

1/2 NCT04445701 Multiple myeloma Mono

+DEX/Bortezomib

SRF231 anti-CD47
IgG4 1/1b NCT03512340 Solid and

hematologic cancer Mono

1/25 feb neutropenia
1/25 hemolysis
1/21 thrombocytopenia
1/21 elevated
lipase/amylase

0% [239]

TG1801/NI-1701
CD47/CD19
BsAb IgG4

1 NCT03804996 B lymphoma Mono

+Ublituximab

1/1b NCT04806035 CD20+ NHL and
CLL

Mono

+Ublituximab

Lemzoparlimab/
TJ011133/
TJC4

anti-CD47 IgG4

1 NCT03934814

Melanoma Mono 5% elevated lipase 1/20 (4/20) [206]

NHL +Rituximab 11% neutropenia
NHL = 71%
Indolent = 75%
DLBCL = 50%

[207]

Solid and
hematologic cancer

Mono

+Rituximab

+Pembrolizumab

1/2a NCT04202003 AML and ir/hrMDS +Azacitidine 1/5 thrombocytopenia 1/5 [208]

1 NCT04912063 untreated AML and
hrMDS +Azacitidine + Venetoclax
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Table 2. Cont.

Anti-CD47 mAbs

Compound Type Phase
Trial
Identifier Name Indication Treatment

Results
Ref.

Toxicity (≥Grade 3) ORR (DCR)

1 NCT04895410 r/r MM

Mono

+Pomalidomide +
Dexamethasone

+Carfilzomib +
Dexamethasone

+Daratumumab +
Dexamethasone

1/2 NCT05148533
advanced,
melanoma, GC,
HNSCC

+Toripalimab

ZL1201 anti-CD47 IgG4 1 NCT04257617 Solid cancer and
lymphoma Mono

HX009 CD47/PD1
BsAb IgG4

1 NCT04097769 Solid cancer Mono

2 NCT04886271 Solid cancer Mono

1/2 NCT05189093
r/r Lymphoma
(NHL, Hodgkin,
PTCL)

Mono

AK117 anti-CD47 IgG4

1 NCT04349969 Solid cancer and
NHL Mono

1/2 NCT04900350 MDS +Azacitidine

1 NCT04728334 r/r Solid cancer and
NHL Mono

1b/2 NCT04980885 AML +Azacitidine

1b/2 NCT05214482 adv. Solid cancer +AK112 (anti-PD-1/VEGF
BsAb) +/− chemo

1b/2 NCT05229497 adv. Solid cancer
(Ph2: Adv HNSCC)

+ AK112 (anti-PD-1/VEGF
BsAb) + chemo

1b/2 NCT05235542
adv. solid cancer
(Ph2: Adv GEJ or
Esoph Cancer)

+ AK104 (anti-PD-1/CTLA4
BsAb) +/− chemo
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Table 2. Cont.

Anti-CD47 mAbs

Compound Type Phase Trial
Identifier

Name Indication Treatment
Results

Ref.
Toxicity (≥Grade 3) ORR (DCR)

IMC-002 anti-CD47 IgG4
1 NCT04306224 Solid and

hematological Mono

1 NCT05276310 adv. solid cancer

SGN-CD47M anti-CD47 ADC 1 NCT03957096 Solid cancer Mono

PF-07257876 CD47/PDL1
BsAb IgG4 1 NCT04881045 NSCLC, SCCHN,

ovarian cancer Mono

TQB2928 CD47-SIRPα
NME 1 NCT04854681

Solid and
hematological
cancer

Mono

H4C1/
SHR-1603 anti-CD47 1/2 NCT04588324 Solid cancer +SHR2150 (TLR7 agonist) +

chemo + Anti-PD-1

STI-6643 anti-CD47 IgG4
(228P) 1 NCT04900519 Solid cancer Mono

sB24M anti-
CD47/TNF-α 1 NCT04895566 Severe Pyoderma Mono (local application)

IMM0306 CD47/CD20
BsAb IgG1 1 NCT04746131 NHL Mono

SHR-1603 anti-CD47 IgG4 1 NCT03722186 Solid cancer and
rrLymphoma Mono

anti-CD47 anti-CD47 1 NCT05266274 recurr AML after
transplantation +Azacitidine

Gentulizumab anti-CD47
1 NCT05221385 Adv solid cancer

and NHL Mono

1a NCT05263271 r/r AML and MDS Mono

TQB2928 anti-CD47 1 NCT05192512 Adv solid cancer
and lymphoma Mono

BAT7104 CD47/PDL1
BsAb 1 NCT05200013 Adv solid cancer Mono

SG2501 CD47/CD38
BsAb 1 NCT05293912 r/r hematologic

malignancies Mono
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Table 3. SIRPα-Fc fusion proteins investigated in clinical trials. Currently, 9 SIRPα-Fc compounds are investigated in 22 clinical trials, as mono- or combination
therapy for various indications. Table updated until 7 April 2022.

SIRPα-Fc

Compound Type Phase
Trial
Identifier Name Indication Treatment

Results
Ref.

Toxicity (≥Grade 3) ORR (DCR)

TTI-621 SIRPα-IgG1Fc

1/1b NCT02663518 Lymphoma

Mono
9% neutropenia
20% thrombocytopenia
9% anemia

NHL = 10% (62%)
Indolent = 0% (78%)
DLBCL = 29%
(29–50%)

[211,240]

+Rituximab
9% neutropenia
20% thrombocytopenia
9% anemia

NHL = 23% (62%)
Indolent = 50%
(100%)
DLBCL = 20% (57%)
CTCL = 18%
PTCL = 26%
Hodgkin = 13% (63%)

[211,241]

+Nivolumab
9% neutropenia
20% thrombocytopenia
9% anemia

NHL = 50% (50%) [211]

1 NCT02890368

CTCL Mono None reported CTCL = 90% (34%) [212]

Solid tumors,
melanoma, breast ca,
soft tissue sarcoma,
CTCL

Mono

+Anti-PD-1/PD-L1
(nivolumab, pembrolizumab,
durvalumab, avelumab, or
atezolizumab)

+PEG-IFN-α2a

+T-VEC

+radiation

1/2 NCT04996004 Leiomyosarcoma +Doxorubicin



Cancers 2022, 14, 3366 27 of 41

Table 3. Cont.

SIRPα-Fc

Compound Type Phase
Trial
Identifier Name Indication Treatment

Results
Ref.

Toxicity (≥Grade 3) ORR (DCR)

TTI-622 SIRPα-IgG4Fc
1/1b NCT03530683

r/r NHL Mono
9% neutropenia
5% thrombocytopenia
2% anemia

NHL = 24% (53%)
Indolent = 33% (33%)
DLBCL = 21% (43%)

r/r NHL, r/r MM,
newly diagnosed
AML T53wt/mut

Mono

+Azacitidine +/− Venetoclax

+Carfilzomib +
Dexamethasone

1/2 NCT05261490 OvC +Pegylated Doxoribicin

Both TTI-621 and
TTI-622 1 NCT05139225 r/r MM +Daratumumab

Hyaloronidase-fihj

ALX-
148/Evorpacept

affinity-
enhanced
SIRPα-FcDEAD

1 NCT03013218 ASPEN-1

Hematologic and
SCLC

+Rituximab 6% neutropenia
3% anemia

NHL = 48% (60%)
Indolent = 61% (91%)
DLBCL = 38% (48%)

[242,243]

Mono

+Nivolumab

Gastric cancer +Trastuzumab + Ramucirumab
+ Paclitaxel

44% neutropenia
33% hypertension
22% anemia

72% (89%) [244–246]

+Trastuzumab

6% thrombocytopenia
6% neutropenia
<5% feb neutropenia
WBC count

21% (47%) [217,244,
245]

HNSCC +Pembrolizumab +
5FU/Platinum

38% neutropenia
31% anemia 39% (89%) [245,246]

+Pembrolizumab

Rare (<5%) anemia,
thrombocytopenia,
AIHA, neutropenia,
pancytopenia

20–40% [217,245,
246]

NSCLC +Pembrolizumab

Rare (<5%) anemia,
thrombocytopenia,
AIHA, neutropenia,
pancytopenia

5% (40%) [217]
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Table 3. Cont.

SIRPα-Fc

Compound Type Phase
Trial
Identifier Name Indication Treatment

Results
Ref.

Toxicity (≥Grade 3) ORR (DCR)

1/2 NCT04417517 ASPEN-2 untreated or r/r
hrMDS +Azacitidine

18% neutropenia
18% feb neutropenia
14% thrombocytopenia
9% anemia

55% (80%) [247]

2/3 NCT05002127 ASPEN-6 HER-2+ GC/GJC

+Trastuzumab + Ramucirumab
+ Paclitaxel

Trastuzumab + Ramucirumab
+ Paclitaxel

Ramucirumab + Paclitaxel

1/2 NCT04755244 ASPEN-5 AML +Venetoclax + Azacitidine

2 NCT04675333 ASPEN-4 HNSCC +Pembrolizumab +
5FU/Platinum

2 NCT04675294 ASPEN-3 HNSCC
+Pembrolizumab

Pembrolizumab mono

2 NCT05167409 Microsatellite stable
rCRC +Cetuximab + Pembrolizumab

1/2 NCT05025800 NHL +Rituximab + Lenolidamide

1/2 NCT05027139
metastatic/inoperable
HER-2+ BC/GEC
cancer

+Zanidatamab (anti-HER-2
BsAb)

2 NCT05167409 MSS CRC +Cetuximab + Pembrolizumab

SL-172154 SIRPα-Fc-
CD40L

1 NCT04406623
Ovarian, Fallopian
tube, peritoneal
cancer

Mono

1 NCT04502888 HNSCC & CSCC Mono (intratumorally)

CPO107/JMT601
SIRPα
ECD/anti-CD20
BsAb IgG1

1/2 NCT04853329 NHL Mono

IMM01 SIRPα-Fc 1/2 NCT05140811 AML and MDS +Azacitidine
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Table 3. Cont.

SIRPα-Fc

Compound Type Phase
Trial
Identifier Name Indication Treatment

Results
Ref.

Toxicity (≥Grade 3) ORR (DCR)

IMM2902 SIRPαECD/anti-
HER-2 1 NCT05076591 HER-2+ BC and GC Mono

DSP107 SIRPα-41BB
fusion

1/2 NCT04440735 Solid/NSCLC
Mono

+Atezolizumab

Table 4. SIRPα-targeting antibodies investigated in clinical trials. Currently, 3 anti-SIRPα mAbs are investigated in 7 clinical trials, as mono- or combination therapy
for various indications. Table updated until 7 April 2022.

Anti-SIRPα mAbs

Compound Type Phase
Trial
Identifier Name Indication Treatment

Results
Ref.

Toxicity (≥Grade 3) ORR (DCR)

GS-0189 anti-SIRPα IgG1
N297A 1 NCT04502706 NHL

Mono

+Rituximab

CC-95251 anti-SIRPα IgG1
K322A

1 NCT03783403
Solid and
hematologic
cancer

Mono 53% neutropenia
6% thrombocytopenia 56% (56%) [219]

+Cetuximab/Rituximab

1 NCT05168202 r/r AML/MDS
Mono

+azacitidine
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Table 4. Cont.

Anti-SIRPα mAbs

Compound Type Phase
Trial
Identifier Name Indication Treatment

Results
Ref.

Toxicity (≥Grade 3) ORR (DCR)

BI765063/
OSE-172

anti-SIRPαBIT
IgG4
S229P-L445P

1 NCT03990233 Solid cancer
Mono None reported 1/50 PR (HCC) [220]

+BI754091 (anti-PD-1) 1 rash maculo-papular 19% (25%) [220]

1 NCT04653142 Solid cancer
Mono

+BI754091 (anti-PD-1)

1 NCT05068102 Melanoma,
HNSCC, NSCLC

Mono (Biodistribution,
imaging with
89Zr-BI765063)

1 NCT05249426

HNSCC +BI754091 (anti-PD-1) +/−
Cetuximab/chemo

HCC
+BI754091 (anti-PD-1) +/−
BI836880 (anti-VEGF/Ang2
BsAb)
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