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Abstract

The success or failure of the street network depends on its reliability. In this article, using
resilience analysis, the author studies how the shape and appearance of street networks in
self-organised and top-down planned cities influences urban transport. Considering London
and Beijing as proxies for self-organised and top-down planned cities, the structural proper-
ties of London and Beijing networks first are investigated based on their primal and dual rep-
resentations of planar graphs. The robustness of street networks then is evaluated in primal
space and dual space by deactivating road links under random and intentional attack sce-
narios. The results show that the reliability of London street network differs from that of Bei-
jing, which seems to rely more on its architecture and connectivity. It is found that top-down
planned Beijing with its higher average degree in the dual space and assortativity in the pri-
mal space is more robust than self-organised London using the measures of maximum and
second largest cluster size and network efficiency. The article offers an insight, from a net-
work perspective, into the reliability of street patterns in self-organised and top-down
planned city systems.

Introduction

Cities, as complex systems, exhibit a wide diversity both in their overall shape (circular, sprawl-
ing, linear, or even fractal) and in the appearance of their street networks (regular, treelike, and
organic) [1]. Such diversity of urban morphologies is closely linked to the urbanisation process.
Recent studies in the evolution of cities through street networks show this urbanisation is either
a process of densification governed by self-organisation (i.e. out of the control of any central
agencies) or a top-down planned process [2-5]. Recently, the robustness of cities has become a
new focus for thinking about both the short and long-term futures of city systems [6]. One of
the aspects in urban studies is to consider cities as networks [7]. Cities are network world
including tube network, street network, gas network, power network, telephone network, social
network, and so on. In the last decade the study of network robustness has become an impor-
tant area of research in many disciplines such as biology [8], computer science [9], physics
[10-15], urban science [6, 7], and so on. Street networks, as a backbone of cities, have always
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been an important research object in understanding evolution of cities [4, 15-19]. No matter
what kind of networks in cities, it is crucial to understand how networks perform and when
networks collapse in the face of disruption. The process to understand the robustness of net-
worked systems is closely relevant to the study of percolation on networks, which has been
studied in the literatures [10-12, 14, 15]. By far the majority of work has focused on the perco-
lation threshold of networked systems in primal space. In the study of street networks, the pri-
mal space is a graph representation of the networks where intersections are vertices and
segments are edges. However, previous works have shown dual space is a more suitable repre-
sentation of street networks, which is employed in consideration of describing complexity of
urban street networks [2, 18-21]. Here the dual space is a graph representation of street net-
works where roads are vertices and intersections are edges.

Inspired by the significant number of works done on the network resilience and the recent
development of the robustness of cities, the research is going to understand the resilience of
self-organised and top-down planned city systems from a network perspective. The aim of the
article is to study how the shape and appearance of urban street networks in self-organised and
top-down planned city systems impacts on urban transport by resilience analysis in the primal
space and dual space. In this study, London and Beijing are chosen as proxies [21, 22] for self-
organised and top-down planned cities respectively by studying the robustness of tree-like and
grid-like street networks. The topological and geometrical properties of London and Beijing
networks first are investigated to see how to differentiate between London and Beijing. Graph
theory offers a natural way to study the properties of street networks. A graph by G ={V,E}isa
set of vertices V and a set of edges E representing the relations between the pairs of vertices.
Urban transport systems as networks can be represented as planar graphs and these have been
widely studied [21, 23, 24]. There are two kinds of graph representations that are primal and
dual. The primal graph is a straightforward representation of street network where intersec-
tions are vertices and street segments are edges. It is well accepted that such a representation is
not sufficient to describe the complexity of street networks although it retains the geometric
patterns and geographical properties (i.e geographical positions, street lengths and so on).
However, such complexity of street network can be represented in the dual space [19-21, 25].
In the dual representation of street network, successive street segments are identified as consti-
tutive transportation unit (i.e. road). In the dual graph, a road is a vertex and intersection is
edge. Such representation gives prominence to topological relationship of transportation enti-
ties by ignoring geometrical properties of roads. By analysing the properties of street network
in the both primal and dual space, one can investigate the complexity of street network in both
topological and geometrical space. Then, the reliability of the London and Beijing networks is
analysed by simulating random failure and intended attack following the method introduced
by [26]. Starting from a primal graph with its associated dual graph, an edge is erased in the
primal space and then obtain a new primal and dual graph. In this process, relevant quantities
(e.g. maximum and second largest cluster size, network efficiency, diameter, average degree,
etc) are monitored to see how they vary in the primal and dual space.

The history of London dates back over 2000 years, to the Roman invasion of AD 43. How-
ever, Beijing has a history of more than 3,000 years, and has functioned as capital for more
than 850 years. Although London and Beijing have both been planned since being established,
the two cities experienced different historical development (or urbanisation) processes. For
instance, the development of London suffered historically from damage caused by fire, and
aerial bombardment. After the Great Fire there was no great network or plot redesign but after
World War II although there was some localised plot redesign in the Comprehensive Develop-
ment Areas (CDAs) and there was new road construction of the M25, M4, Westway etc., the
basic radial structure of existing main routes remained intact. The historical development of
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Fig 1. Street networks of metropolitan area delimited by orbital roads— M25 for London and 6th ring for Beijing. Left panel: London street network
(source: UK Ordance Survey (see S1 Appendix), Using: Meridian 2 Digimap Ordnance Survey Service). London street network is governed by dendritic
pattern. Right panel: Beijing street network (source: Open Street Map (OSM) (see S1 Appendix), Using: Road Shapefile Layer). Beijing street network is

dominated by grid-like pattern.

doi:10.1371/journal.pone.0141736.9001

London can therefore be understood as resulting from a process of self-organisation [18].
Investigation into the street network of London shows that its topological structure tends to be
self-organised, varying between a growing random city and a grid-like city [21]. By contrast, in
the development process of Beijing, the original inner city (including the Forbidden City), and
its peripheral areas survived several periods of chaos caused by civil war during the dynastic
struggles in Chinese history and have not changed much since their creation. In spite of this, in
recent decades the two capital cities have grown rapidly, particularly in Beijing. Nevertheless,
the backbone of the street networks of each city still remain its original forms [18, 27]. Research
shows that as the city evolves, its street network is preserved, frozen in time. In particular,
some street networks maintain their overall geometry for hundreds of years and are thus
extremely resilient to change [3, 17, 28].

In Fig 1, the distinct patterns of the London (a) and Beijing (b) street networks are displayed
in their metropolitan areas bounded by the M25 orbital road in London and the 6 ring in Bei-
jing. There are two basic structures which can be observed in planar transportation networks:
tree-like networks and grid-like networks [29, 30]. From Fig 1, it appears that the Beijing street
network is dominated by a grid-like structure whereas the London street network tends to a
more dendritic and less grid-like structure. This becomes clear when their topology and geome-
try are characterised based on their primal and dual representations.

Analysis

Primal graphs are created for each city and the properties first are characterised by measures in
the primal space. ‘Connectivity’is a measure of linkage of street network by calculating ratio (E/
V) of the number of edges (E) to the number of vertices (V) in a planar graph [30]. In the case
of London, V'is 74557 and E is 107194 while in the case of Beijing, V'is 44770 and E is 67941.
Accordingly, value of ‘connectivity’ equals to 1.518 for Beijing, which is higher than the value of
1.438 for London. This means that Beijing has greater linkage when compared to London. For
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the structures of street networks, previous studies show they can be identified and evaluated by
the measures of gridness, treeness, ringness, webness,Shannon entropy [17, 23, 29-31],typology
[32]. That is, a well planned city is likely to have a square-like or grid-like structure in contrast
to a self-organised city’s dendritic structure. To quantify differences between self-organised
and top-down planned cities, ‘meshness’ and ‘organic’ indicators are utilised to measure forms
of cities.

Meshness and Organic

Meshness of a planar graph is defined as a ratio of the existing and the maximum number of
faces in a graph [23, 33]:

F
M= 1

2V -5 1)
F=E-V+1 (2)

where M is the ‘meshness’ coefficient; F is the number of faces of the planar graph; E is the num-
ber of edges and V is the number of vertices. M varies from 0 (tree-like network) to 1 (complete
network). A square-like grid network is a compromise between tree-like and complete net-
works. M is usually small because of the lack of triangles or squares in real cities. For example,
an average M of 20 real-world cities is 0.219 [33]. As opposed to the ‘meshness’, ‘organic’ indi-
cator r, is used to measure whether a street network has been planned or not by calculating the
ratio of dead ends (k = 1) and “unfinished’ crossings (k = 3). The ‘organic’ r, is defined as fol-
lows [1]:

V() +VE)
XLV

where V(j) is the number of vertices of degree k = j. That is, if this ratio is small, the number of
dead ends (k = 1) and ‘unfinished’ crossing (k = 3) is small compared to the number of regular
crossings with k = 4 [5, 31]. The vertices with degree k = 2 are not counted. Fig 2 shows the his-
togram of degree distribution for London and Beijing in the primal space, indicating that
degree distribution is very peaked around 3-4. To calculate 'meshness’ M and ’organic’ r, using
Egs (2) and (3). It is found that values of M and r, are approximately 0.26 and 0.63 for Beijing
while M and r, for London are 0.22 and 0.89. The investigation result for London is consistent
with the study in the literature by [33]. Indicators M and r, suggest the London street network
is ‘organic’ as opposed to the lanned street network of Beijing.

(3)

Dual representation and Hierarchical Intersection Continuity Negation
(HICN)

To identify roads from street networks in dual space, the well known approaches are Street
Name (SN) [20] which is based on the symbolic properties of the streets (i.e. street name), and
Intersection Continuity Negotiation (ICN) [25] which is based on the geometrical properties of
the streets (i.e. angle). The merits and shortcomings of the two methods are discussed in [34].
The SN method works well on large roads in self-organised cities such as motorways or dual-
carriageways but is often misleading in minor roads such as residential roads since it changes
several times for the same road. In contrast, the ICN method works well on minor roads in
planned cities but not on major roads like ring roads. In fact, urban road networks are similar
to the cardiovascular network in that they form hierarchical branching structures that deliver
traffic throughout the city [35]. Accordingly, the research constructs dual graphs for each city
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Fig 2. Histogram of degree distribution in the primal space for London (Left) and Beijing (Right).
doi:10.1371/journal.pone.0141736.9002

using the Hierarchical Intersection Continuity Negation (HICN) method [19], which is a hybrid
method is developed by combining the geometrical ICN with a symbolic SN method. The
HICN first recognises major roads (e.g. ring roads, motorways and dual-carriageway) by apply-
ing the SN method, then to identify minor roads by employing the ICN method. The choice of
angular threshold in the study is 77/2 mainly because the street segments in London and Beijing
form angles larger than 71/2 belonging generally to the same roads. It should be noted that two
roads with distinct types should be given different road IDs even though the two roads are
aligned. Before creating dual graph via HICN, street names in the both datasets is edited manu-
ally in order to keep street names consistent in symbolism. That is, one road consisting of a set
of continuous segments only shares one name. In the case of London, the HICN first is applied
to determine motorways (e.g M25) and dual-carriageways (e.g A406 and B515) using the SN
method. Finally, minor roads is identified by applying the ICN method. In the case of the Bei-
jing street network, the SN method first is applied to ring roads (from 2th ring to 6th ring),
major roads (e.g. primary roads, secondary roads, and tertiary roads), and then the ICN
method is used to minor roads (e.g. residential roads).

Betweenness Centrality

Betweenness centrality is a measure that computes the relative importance of a vertex or edge in
a graph in accessibility. The betweenness centrality of a vertex in a graph G = (V,E) is defined as:

B, = ZB’—(I) (4)

j#8€G ﬁ )

where B; is the betweenness centrality of a vertex or edge in accessibility; S;,(i) is the number of
the shortest paths between vertices or edges j and g, passing through vertex or edge 7; B;, is the
number of all shortest paths between them. Vertex betweenness centrality in the dual space is
calculated and then mapped to the street network in the associated primal space. Keep in mind
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Fig 3. Betweenness centrality on the street networks, which is calculated from the dual space. Left panel: London; Right panel: Beijing. The roads with
maximum betweenness centrality in London and Beijing are orbital roads (M25 for London and 4th ring for Beijing). Map composed in ESRI ArcGIS 10.1.

doi:10.1371/journal.pone.0141736.9003

that a vertex in the dual is equivalent to a road in the primal, which is a collection of edges. Fig 3
shows the maps of betweenness centrality in the dual space for London (left panel) and Beijing
(right panel) street networks. Clear hierarchical structure is visible in Fig 3 where in the case of
London, the roads with higher betweenness centrality are motorway, and arterials with radia-
tion orientation from city centre to periphery and in the case of Beijing the roads with higher
betweenness centrality are ring roads and primary roads but they have a grid-like shape. Motor-
way and ring roads connect to arterials and minor roads which connect to lower-capacity sur-
face streets with the design goal of distributing traffic throughout the city.

Closeness Centrality

Closeness centrality is a measure of the centrality of a vertices in a network based on the average
distance of all shortest paths from that vertex to every other reachable vertex in the network.
That is, it measures at the minimum how many steps are needed to access every other vertex
from a given vertex. The closeness centrality of a vertex in graph G = (V,E) is defined as [36]:

C=v-1/> d, (5)

i#veG

where d;, is shortest distance in the graph G between a given vertex i and every other vertex v.
Vertices that are at a short average length to every other reachable vertex have high closeness
centrality. The closeness centrality for isolated vertices is taken to be zero. Fig 4 shows the close-
ness gradient maps of the London and Beijing, which are calculated from the weighted networks
in the primal space. It displays that in London closeness forms the roughly round-like patterns
whereas in Beijing closeness forms the square-like patterns along with the periphery of ring
roads.

Using the resulting primal and dual graphs created, the average degrees then are calculated
for the two cities. Notably, Beijing shows much higher average degree in the dual space than
does London as (kpeijing) = 5 and (kpondon) = 3.6 respectively. Meanwhile, in the primal space
the average degrees in London is slightly less than for Beijing, as (kzondon) = 2.9 and (Kpejjing) ~
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3 respectively. The findings are in agreement with the literature [25, 33, 37]. Addtionally,
degree connectivity distribution and its corresponding cumulative distribution are calculated
for the London and Beijing in the dual space as shown in Fig 5 where there are fat-tailed distri-
butions for the both cities in the dual space where red straight lines are the theoretical power
law fit. The investigation of how well the fat-tailed distribution can fit power law in comparing
with other distributions (e.g. log-normal and exponential) shows that no significant evidence is
found for scale-free feature in the dual space. The finding about the degree distribution of the
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Fig 5. Left panel: Degree density and cumulative distribution in dual space for London.
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Right panel: Degree density and cumulative distribution in dual space

doi:10.1371/journal.pone.0141736.9005

PLOS ONE | DOI:10.1371/journal.pone.0141736 December 18,2015

7/20



@'PLOS ‘ ONE

Resilience of Street Networks in London and Beijing

street networks lacking a scale-free property is also in agreement with literature in previous
studies [19, 20, 33]. The reason is that the degree connectivity distribution is constrained by
the spatial embedding [33].

Furthermore, the interconnectedness of graphs of both cities is studied by calculating their
diameters in the dual space since diameter characterises the ability of two vertices to communi-
cate with each other and allows us to see whether the network has small-world property [8].
The diameter in a graph is defined as the longest path between any vertices in a graph. The
results show diameter of London is equal to 15, which is smaller than the value of 21 for Bei-
jing, suggesting London has fewer changes in roads across the city than Beijing. Apart from
their topological properties, the geometrical properties of both street networks in the primal
and dual space also are measured. It appears that London and Beijing are alike in areal extent,
with values of 2300 km?* and 2200 km” respectively. The total length of roads in London (14752
km) is longer than for Beijing (11346 km). The spans (network extension in latitude) also are
close (51 km for London and 54 km for Beijing). Complexity of urban street network also can
be characterised by fractal geometry [38]. Finally, correlation fractal dimension D is calculated
based on street intersections, which is defined by [39]

_ o lg(Bop?)
D_rlilzlo log(r) (6)

where the quantity ), p? is the probability of finding a pair of points in a cell of length r. Corre-
lation fractal dimension in London is 1.888, which is slightly larger than the value of 1.845 for
Beijing. Overall, Table 1 gives a summary of topological and geometrical properties of the both
street networks using quantitative measures, displaying similarities and distinctions in the pri-
mal and dual space. Finally, the relationship between the degree connectivity k and road length
I(k) is investigated in the dual space. Remembering that in the dual space a vertex is a collection

Table 1. Summary of topological and geometrical properties in London and Beijing.

Indicator

Topology N
E

O O =L

<K>
K_max
Diam_top
Geometry Alkm?]
L[km]
<I>[m]
Height[km]
Diam_geo [m]
Fractal_dim

Primal Dual
London Beijing London Beijing
74557 44770 35180 15729
107194 67941 62862 38206
0.22 0.26
0.89 0.63
1.438 1.518
29 3 36 5
309 395
209 199 15 21
2300 2200
14752 11346
138 167
51 54
67912 73968
1.888 1.845

Notation: N = number of nodes, E = number of edges, M = meshness, O = organic, <K> = average degree, C = connectivity, Diam_top = topological
network diameter, A = network area, L = network length, <I> = average segment length, Height = network extension in latitude, Diam_geo = weighted
network diameter, Fractal_Dim = correlation fractal dimension

doi:10.1371/journal.pone.0141736.t1001
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Fig 6. Upper panels: road length of street network as a function of connectivity degree in the dual space for London (Left) and Beijing (Right). Dark point is
road length associated with the vertex degree. Red point is value representative of binned data with error bar. Bottom panels: betweenness centrality as a
function of connectivity degree in dual space for London (Left) and Beijing (Right). Dark point is betweenness centrality associated with the vertex degree.
Red point is value representative of binned data with error bar.

doi:10.1371/journal.pone.0141736.9006

of edges in the primal space, each of which is associated with a road in the spatial street net-
work. The upper panels of Fig 6 show the road length I(k) as a function of degree connectivity k
for London and Beijing, indicating that road length scales with vertex degrees in a superlinear
way, with I[(m) o 80 - k''2 for London and I(m) x 74 - k' for Beijing. The correlation between
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the degree connectivity k and betweenness centrality C(k) in the dual space also is studied. The
bottom panels of Fig 6 show the betweenness centrality C(k) as a function of vertex degree k in
the dual space, revealing a superlinear scaling relationship as well with C(1m) o 753 - k> for
London and C(m) o 244 - k"' for Beijing. The superlinear scaling relations in the dual space
indicate doubling the road connectivity will lead to a larger-than-double increment in road
length and betweenness centrality for the both cities.

Results

Of considerable interest in the study of networked systems is that of their reliability in the
face of disruption. To investigate the robustness of the street network, two scenarios—ran-
dom and intentional attacks are considered to remove road links in the spatial network. The
first scenario is to simulate incidents in the transport network by deactivating the edges at
random step-by-step 1% in the primal space. That is, edges are picked up in the primal space
by a uniform random selection until all the edges in the street networks are erased. The sec-
ond is to attack roads by eliminating edges in the primal space with high betweenness central-
ity in the dual space following the method introduced by [26]. Starting from a primal graph
with which is associated a dual graph, an edge is removed in the primal graph, which has
high betweenness centrality in the dual graph. For each removal, a new primal graph and
new dual graph are built for evaluation until betweenness centralities equal to zero in the
dual. Notably, in comparison with existing studies [9, 40, 41], a different intentional attack
strategy is adopted by introducing a stochastic factor. That is, one of edges in the primal
space is chosen for removal using in terms of a certain probability:

p(i) = 2t

DY
i1

where P(i) is the removal probability of edge i in the primal space; Bf is the betweenness cen-

(7)

trality of an edge #; m is the number of edges in the primal space associated to a vertex in the
dual space. The primal edge with higher betweenness centrality would be more likely to be
selected for removal. For each removal, betweenness centrality in the dual space is updated
for next edge removal. In this work, one hundred realisations are carried out for each network
and each attack scenario. There is an intrinsically connected questions that naturally arise
when one wants to describe quantitatively how a dual space changes when edge is erased in
the primal space, which is how to assess the robustness of networks when the edges are elimi-
nated in the primal space. Arguably, if a network is not connected to begin with, it is unlikely
to function properly regardless of its intended purpose. By measuring the Maximum Cluster
Size and Second Largest Cluster Size change [14, 15], one can see how fast the network loses
its ability of transit when the edges are erased. Meanwhile, efficiency of the network also is
calculated to see how well the network performs in the information propagation under the
deactivating process.

In order to understand the behaviour of robustness of the two real street networks, two ide-
alised models based on the Erdos-Renyi Planar Graph (hereafter ERPG) and the Square Grid
(hereafter GRID) are introduced as ERPG can be an idealised approximate for London [21]
and GRID can be a reasonable abstract for Beijing [42, 43]. The GRID is defined as Vs = N x
N vertices, where N is the number of vertices on each side, and Eg,;q = 2N(N — 1) edges. The
average degree of the GRID is deduced from (k,,) =3 = w
ERPG and GRID can be found in the literature [21]. In this work, the two networks are set

. The process for building the
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with the following parameters V,,,, = 9,467 and E,,,, = 15,000 for the ERPG, and V,,;; =
10,201(N = 101) and Eg,;4 = 20,200 for the GRID. In the GRID, the outer boundary of the four
sides is considered as one road with the same ID. The Hierarchical Intersection Continuity
Negation HICN method (see Analysis section) is utilised to identify IDs in the ERPG and
GRID as well for creating dual graphs for the ERPG and GRID. The results show that the
ERPG and GRID have respectively average degree (ke,p,) = 3.2 and (kgiq) ~ 3.96 in the primal
space and (k,pg) ~ 5 and (kg;4) ~ 100.5 in the dual space. Notably, there is a striking differ-
ence in the average degree of the GRID compared with the ERPG in the dual space. Values of
‘meshness’ and ‘organic’ (see Analysis section) of the ERPG of are approximately 0.29 and 0.52
when compared to 0.49 and 0.04 for the GRID, suggesting the ERPG is more ‘natural’ than the
GRID. Furthermore, values of ‘meshness’ and ‘organic’ for the London and Beijing (see

Table 1) are compared with those for the ERPG and GRID, showing that meshness values for
London and Beijing are lower than for the idealised networks. In contrast organic values for the
London and Beijing are greater than for the ERPG and GRID. This reflects the fact that struc-
ture of the London and Beijing networks is a ‘mixture’ of the ERPG and GRID.

To investigate catastrophic failure in the ERPG, GRID, London and Beijing networks, maxi-
mum cluster size (i.e. the number of largest connected vertices in a graph) and second largest
cluster size are plotted as a function of proportion of edges removed in the primal space and
dual space until 70% of edges are removed. Figs 7 and 8 show the results of random and
intended removals with one hundred realisations for the ERPG, GRID, London, and Beijing
networks in the primal space under the random attack scenario. A typical behaviour is visible
in the Figs 7 and 8 where there is a drop of maximum cluster size accompanied by a peak for
the second largest cluster size. It is found that for each realisation the maximum of the second-
ary component is a critical point where the network breaks in two. After this point the network
begins to be fragmented into small pieces and no spanning cluster exists. From Fig 7, it can be
seen that the GRID performs strongly in the random removal process and then collapses at
around 50% of edges removed on average as opposed to 26% in the case of London. Fig 8
shows the results for intended attack removal with one hundred realisations for each network.
As I might expect, under the intended attack scenario the networks break down earlier than in
the random removal process. Accordingly, the GRID is decomposed at around 34% of edges
removed, which is 16% less than in the random removal case shown in the upper left panel of
Fig 7. In the case of London, it appears that maximum cluster size drops straight down where
the critical point occurs at 8% of edges removed, a reduction of 18% from the random attack
scenario. Meanwhile, the breakup of the Beijing and ERPG happens at 16% and 18%, a fall of
21% and 19% respectively. The rates of descent for the Beijing and ERPG case are a bit faster
than the London and GRID in the intended removal process. Furthermore, Figs 9 and 10 show
the results for the random and intended removals in the dual space. The analysis used the
results of one hundred realisations for the ERPG, GRID, London, and Beijing networks. In con-
trast to the primal space, from Fig 9, it appears that the maximum cluster size in the GRID,
London and Beijing does not reduce monotonically but increases initially before beginning to
decline. The phenomena of ‘increase first and drop after’ in the dual is caused by different defi-
nitions to transportation unit (i.e. road) in the primal space and dual space. In the dual space, a
vertex corresponds to a collection of edges in the primal space. In the deactivating process,
only one edge is picked up for each removal instead of one road. This makes sense particularly
on the long-range connections (e.g. M25 in London and 6th ring in Beijing). The breakup of a
road will form a ‘new’ road given a new road ID in the dual space. This causes increment of the
size of largest component in the dual space until all the edges in the road are erased in the pri-
mal space. In fact, the effect of ‘increase first and drop after’ depends mainly on the long-range
connections in the dual space. This can be observed in the length distribution in the dual space.
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Here the length distribution of London and Beijing in the dual space is plotted in Fig 11, which
indicates the difference of resilience behaviors in London and Beijing shown in Figs 9 and 10.
It is found that long range connections across the networks such as M25 in London and 3th—
6th rings in Beijing are strongly skewed towards right (highlighted by the red circles). But,
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Beijing has more roads with long-range connections than London, causing the difference of

resilience behaviors in Figs 9 and 10.

Strikingly, the GRID has the strongest growth before beginning to decline. The critical point
found is at around 50% of removals in the GRID. The second strongest growth is found in the
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Beijing network with the critical point around 37%. London is in third place with a critical

point around 32%, which is similar to the 31% of the ERPG. Accordingly, Beijing is more like
the GRID where London is more like the ERPG. It is clear that the GRID and Beijing are more
robust than the ERPG and London from the measures of maximum and second largest cluster
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size. Fig 10 also shows that London and the ERPG look more sensitive than Beijing and the
GRID. To investigate critical point variation, Fig 12 shows a boxplot of critical points averaged
over one hundred realisations under the random and intended attacks in the both space, where
dashed red lines within the boxes are the critical points calculated by the averaged second

15/20
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largest cluster size. Table A in S1 Appendix shows a summary of the critical points averaged
over one hundred realisations in the primal and dual space under the random and intended
attacks for each network where the differences are observed in the primal and dual space. For
critical points of each realisation, it is found that the resilience of different space might be dif-
ferent caused by the distinct definitions to transportation unit (i.e. road) in the primal and dual
space, implying that even though the same deactivating process can lead to different resilience
effect. In another side, the different resilience of different cities can be explained by the differ-
ent network properties in the primal and dual space such as spatial structure, average degree,
and so on. For example, although London and Beijing have similar degree connectivity
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Fig 12. Boxplot of critical points over one hundred realisations under the random and intentional attack scenarios in the primal and dual space for
each net. Left panel: primal space. Right panel: dual space. Dashed red lines within the boxes are the critical points calculated by second largest cluster size
averaged over one hundred realisations shown in Table A in S1 Appendix.

doi:10.1371/journal.pone.0141736.9012
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distribution (i.e. scale-free like) in the dual space as shown in Fig 5 and small-world feature as
shown in Table 1, their resilience behaviour is different. This might be caused by the difference
of spatial structure (i.e. tree-like and grid-like structure measured by the indicators of ‘organic’
and ‘meshness’) in the primal space and average degree in the dual space as shown in Table 1.
The investigation into the betweenness centrality in the dual space (see Fig 3) also reveals the
difference of accessibility structure in London and Beijing.

Finally, network efficiency is used to assess how well street networks in the primal space per-
form under the random and intentional attack. Network efficiency is a measure of the informa-
tion propagation over the entire network, which is based on the assumption that one travels
along the shortest routes in a graph G [44]. It is easier to transfer information from one vertex
to other vertices if they are close to each other. Efficiency of network is defined as the average
of sum of inverse of shortest distance in the graph G = (V,E) between vertex i and v [45]:

(8)

where E(G) is global efficiency of network communication. It is normalised to its possible larg-
est values V(V-1) for the fully connected graphs having V(V-1)/2 edges. E(G) is finite even for
the disconnected graphs in the removal process. It is expected that the efficiency of network E
(G) declines when an edge is deactivated from the graph G in the primal space. Fig 13 shows
the efficiency of the network as a function of the proportion of edges removed among one hun-
dred realisations in the London, Beijing, ERPG, and GRID networks, where the gray dot is net-
work efficiency and the coloured dot is network efficiency averaged over one hundred
realisations. It can be seen that the Beijing and GRID networks drop more slowly in efficiency
than the London and ERPG networks under the both scenarios, suggesting that the former has
superior efficiency with respect to network information propagation. The conclusion that top-
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down planned Beijing is more efficient self-organised London in ability of handling traffic is
consistent with the previous studies in the literatures by [42].

Discussion

The paper has investigated the reliability of the urban street networks via resilience analysis in
London and Beijing which are considered as proxies for self-organised and top-down planned
cities dominated respectively by natural and central planning urbanisation process. It is found
that the reliability of self-organised London is different from the top-down planned Beijing
using the measures of maximum and second largest cluster size as shown in Figs 7-10 and net-
work efficiency as shown in Fig 13. The difference of the resilient behaviour of London and Bei-
jing can be explained by the distinctions of network properties in the primal and dual space. For
example, although London and Beijing have scale-free like distribution and small world feature
in the dual space, spatial structure of London and Beijing in the primal space is different from
the measures of ‘organic’ and ‘meshness’ as shown in Table 1. That is, the Beijing street network
is dominated by a grid-like structure whereas the London street network tends to a more den-
dritic and less grid-like structure. In addition, average degree of Beijing in the dual space is
much higher than that of London. Spatial pattern of betweenness centrality in the dual space for
London also differs from that of Beijing as shown in Fig 3. For example, in London the roads
with higher betweenness centrality are motorway, and arterials with radiation orientation
decaying from city centre to its periphery. However, in Beijing the roads with higher between-
ness centrality are ring roads and primary roads with grid-like shape. Motorway and ring roads
connect to arterials and minor roads which link to lower-capacity surface streets with the design
goals of distribution traffic throughout the city. The closeness gradient maps of Fig 4 show the
differences of closeness centrality patterns between London and Beijing. For examples, in Lon-
don the sites with higher closeness centrality locates at the city centre and spread to periphery,
forming round-like patterns whereas in Beijing the places with higher closeness centrality lie in
the city centre and ring roads, shaping square-like patterns spreading from inner to outskirt.

To investigate whether the reliability of the street network is related to the local connectivity of
networks, The property of assortative mixing in the networks is characterised by quantitatively
measuring level of assortative mixing. Associative mixing is a pervasive phenomena found in
many networks. If high-degree vertices in a network tend to be connected to other high-degree
vertices, it shows property of ‘assortative mixing’ [46]. Conversely, if high-degree vertices in a net-
work tend to ‘repel’ others high-degree vertices, it is called ‘disassortative mixing’. Degree associa-
tive mixing in the ERPG, GRID, London and Beijing is measured, showing that the GRID has
highest assortativity 0.659 and the Beijing is 0.184. In contrast, the London and ERPG have assor-
tativity coefficients 0.07 and -0.079 respectively. It is worth noting that networks with higher assor-
tativity also have bigger average degree, which can perform better with respect to its reliability.

Furthermore, the research also studied the correlations between the road connectivity k, the
road length I(k) and betweenness centrality C(k) in the dual space, showing consistent super-
linear scaling behaviours for London and Beijing as displayed in Fig 6. The existence of scaling
between them is important as it suggests that very general processes are governing the growth
of urban street networks no matter it is self-organised London or top-down planned Beijing.

City is a complex system. Its street network, as backbone of city system play a crucial role.
The study provides empirical evidence of how shape and appearance of street networks in Lon-
don and Beijing affects urban transport a from network perspective. The study provides insight
into the reliability of self-organised and top-down planned street networks via network analy-
sis. The results can inform those aspects of urban design and planning, where network resil-
ience is of importance.
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