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Abstract
Large-scale comparative genomics- and population genetic studies generate enormous amounts of polymorphism 
data in the form of DNA variants. Ultimately, the goal of many of these studies is to associate genetic variants to 
phenotypes or fitness. We introduce VIVID, an interactive, user-friendly web application that integrates a wide range 
of approaches for encoding genotypic to phenotypic information in any organism or disease, from an individual or 
population, in three-dimensional (3D) space. It allows mutation mapping and annotation, calculation of interactions 
and conservation scores, prediction of harmful effects, analysis of diversity and selection, and 3D visualization of 
genotypic information encoded in Variant Call Format on AlphaFold2 protein models. VIVID enables the rapid as-
sessment of genes of interest in the study of adaptive evolution and the genetic load, and it helps prioritizing targets 
for experimental validation. We demonstrate the utility of VIVID by exploring the evolutionary genetics of the para-
sitic protist Plasmodium falciparum, revealing geographic variation in the signature of balancing selection in poten-
tial targets of functional antibodies.

Key words: protein structure, variant interpretation, multi-dimensional analysis, data visualization, population 
genetics, evolution.
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Letter 

Introduction
The modern explosion of genomics, population genetics, 
and genome-wide association studies (GWAS) is produ-
cing enormous amounts of polymorphism data linking nu-
cleotide variation to phenotypic outcomes (Luo et al. 2011; 
Uffelmann et al. 2021) or disease (Duncavage and Tandon 
2015; Wu et al. 2016; Giannopoulou et al. 2019). Countless 
informatic and statistical methods have been developed to 

compile and quantify patterns in genotypic data that can 
be distilled into biologically meaningful results (Luo et al. 
2011; Uffelmann et al. 2021). However, visualization is 
one of the most powerful methods for pattern recognition 
because it is closely aligned to our brain’s processing of 
complex information (Bülthoff and Edelman 1992).

Many tools can display (Variation Viewer; ncbi.nlm.nih.-
gov/variation/view) and predict the impact of individual 
single nucleotide polymorphisms (SNPs) on protein 
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sequence and structure for large-scale population com-
parative studies and GWAS (Glusman et al. 2017). 
However, few can display the sum of these SNP locations 
in protein structures in an automated way. Moreover, cur-
rent 3D mapping and visualization tools are either manu-
ally driven (e.g., Chimera; Pettersen et al. 2004) or 
restricted to specialist applications. cBioPortal (Cerami 
et al. 2012), COSMIC-3D (cancer.sanger.ac.uk/cosmic3d/), 
CRAVAT (Douville et al. 2013), MoKCa database 
(Richardson et al. 2009), and cancer3D (Porta-Pardo 
et al. 2015) are limited to cancer-related variants. 
LS-SNP/PDB (Ryan et al. 2009), MuPIT (Niknafs et al. 
2013), PopViz (Zhang et al. 2018), and VarMap 
(Stephenson et al. 2019) are limited to humans. 
SNP2Structure (Wang et al. 2015) exclusively accesses gen-
etic variation from dbSNP (Sherry et al. 2001). Finally, to 
predict the mutational effects of noncancer and non-
human genetic variants on protein structure, users neces-
sarily depend on third-party software and databases. In 
turn, this requires multiple webservers and input file for-
mats, which is challenging and time-consuming, hamper-
ing comparison and accessibility. Furthermore, although 
existing tools allow annotation of individual SNPs, they 
do not scale to support the rendering of complex 
population-level variant data from any given organism or 
disease.

We present VIVID, a novel interactive and user-friendly 
platform that automates mapping of genotypic informa-
tion and population genetic analysis from Variant Call 
Format files in 2D and 3D protein-structural space. This 
platform provides an easy user experience and an inte-
grated analysis environment to yield both individual- 
and population-level insights, while generalizing to any or-
ganism or disease.

New Approach
VIVID is a unique ensemble user interface that enables 
users to explore and interpret the impact of genotypic 
variation on the phenotypes of secondary and tertiary pro-
tein structures. Using data from a standard VCF, VIVID 
integrates published algorithms, programs, and databases 
to map, annotate, analyze, and visualize the effects of mu-
tations on primary protein sequence, 2D protein residue 
interactions, and a variety of 3D protein-structural render-
ings at individual and population scales. Figure 1 provides a 
schematic workflow for VIVID, which consists of three key 
components: input, data preprocessing, and visualization. 
Overall, VIVID allows the integration of multiple analyses 
within one interactive visualization interface, adding new 
dimensions to variant annotation and functional effect 
prediction for any organism in any system.

Input Source
VIVID requires four main inputs in the submission page of 
the webserver. (1) The complete nucleotide coding se-
quence of a gene in FASTA format. (2) A general feature 

format (GFF) file to extract genomic coordinates of the 
queried coding sequence and to map SNPs from (3) a 
VCF file on (4) a protein structure (PDB file), which can ei-
ther be retrieved on request through VIVID from the 
AlphaFold2 predicted protein structure database 
(Jumper et al. 2021) or provided by users from any source, 
whether in silico predicted (Roy et al. 2010; Kelley et al. 
2015) or accessed via the RCSB Protein Data Bank API 
(https://www.rcsb.org) (Berman et al. 2000). VIVID also al-
lows users to select codon usage preference by selecting 
appropriate “genetic code” from the drop-down menu 
(default: standard code).

Data Preprocessing: web-server Mapping Mutations 
in 1D–3D
SNPs can be identified and explored within the VIVID 
interface based on their location in 1D linear display, 2D 
residue contact maps, and 3D protein-structural render-
ings. First, the 1D display is generated by mapping SNPs 
from the VCF file to the primary protein sequence based 
on the input GFF file and highlighted in the protein se-
quence viewer. Next, VIVID uses atomic coordinates 
from the PDB file to calculate the Euclidian distance be-
tween each pair of residues and display each mutated ami-
no acid in the context of long-range residue contacts. 
Finally, VIVID renders each mutated amino acid in the 
3D protein structure using NglViewer (Rose et al. 2018).

Data Preprocessing: web-server Annotation
Each mutated amino acid is classified as nonsynonymous 
or synonymous using an appropriate genetic code selected 
by the user. Protein sequences and structural renderings 
can also link to functional and domain-based annotations 
using data retrieved from UniProt (The UniProt 
Consortium 2021) and Pfam (Mistry et al. 2021), if 
available.

Data Preprocessing: Mutational Analyses
VIVID predicts the likely effects of substituted amino acids 
on protein structure using previously published algo-
rithms, tools, and APIs. Firstly, MODELLER is used to model 
nonsynonymous mutations (Fiser and Šali 2003). 
Dynamut2 (Rodrigues et al. 2020) is then used to predict 
the effects of missense mutations on protein structure sta-
bility and flexibility. Arpeggio (Jubb et al. 2017) is further 
used to calculate interatomic interactions of mutated resi-
dues in 3D space. Amino acid conservation score of mu-
tated residues is computed using the Position-Specific 
Scoring Matrix (PSSM) of PSI-BLAST (Altschul et al. 1997).

BCFtools (http://samtools.github.io/bcftools/howtos/ 
install.html) is used to calculate allele frequencies of 
each alternate allele from the VCF file. It generates consen-
sus sequences for each sample within VCF file by using a 
user-supplied coding sequence as a reference, then map-
ping population genetic observations on protein struc-
tures. Finally, a 3D sliding window-based application 
implemented in BioStructMap (Guy et al. 2018) is used 
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to map nucleotide diversity (π) and Tajima’s D onto the 
protein models. This enables users to identify possible links 
between the effects of natural selection and the structural 
or biochemical changes in the protein.

Data Preprocessing: web-server Visualization
Nglviewer is used to visualize protein structures in an inter-
active mode. It also allows the user to map information 
onto rendered protein structures by selecting options in-
cluding nonsynonymous and synonymous mutations, 
PSSM conservation scores, nucleotide diversity, Tajima’s 
D, SNP frequency, etc. In addition, user-selected residues 
associated with functional and structural domains (re-
trieved from Uniprot and Pfam databases) in the primary 
sequence viewer can also be rendered on the protein 
structure.

Results
The outcome of VIVID in figure 1 is represented in seven 
panels on the results page of the webserver (fig. 2).

External Information
The first panel provides an external link for UniProt and 
Pfam to allow users to render structural and functional do-
main information (e.g., conserved structural domains, ac-
tive sites, etc.) on protein sequence and structure to 
identify mutational hotspots.

Protein Sequence Viewer
The second panel displays the translated protein sequence 
of the residues present in the protein structure where syn-
onymous (purple) and nonsynonymous (yellow) muta-
tions are highlighted by default. Users can also click and 
select protein residues to view them in 3D space in the 
visualization panel.

Contact Map
The third panel displays an interactive protein contact 
map where all pairs of residues mapping within a user- 
defined Euclidean distance threshold (default: 
10 Ångstrom) in 3D-space and found more than six 
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FIG. 1. Schematic workflow of VIVID. The back-end of the VIVID webserver consists of a series of tools for population genetics and mutational 
analysis. The information of allele frequency in the population and consensus sequence of each sample in the population are extracted from user 
provided VCF file by using Bcftools v1.8 and are further used by BioStructmap v.0.4.1 to map population genetic indices onto the 3D protein 
structure. The 3D structure of nonsynonymous mutations is modeled by MODELLER 10.1 and their effects on protein stability and interatomic 
interactions are evaluated by Dynamut2 and Arpeggio, respectively. All analysis outcomes (variant frequency, stabilizing/destabilizing effects, 
interatomic interactions, conservation score, diversity, selection, mutations, etc.) are visualized on 3D protein structure using NGLviewer. 
The front-end of the VIVID webserver was designed with Materialize v1.0.0 and the back-end was based on Python 2.7 via Flask Framework 
version v1.0.2 on a Linux server running Apache.
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(default) amino acids apart in the primary sequence are 
displayed. This highlights long-range contacts that are im-
portant for stabilizing protein structure (Vendruscolo et al. 

1997; Toth-Petroczy et al. 2016), with pair-wise contacts 
involving (and potentially disrupted by) mutated residues 
highlighted in pink.

3D Visualization
In the fourth panel, users can visualize the protein struc-
ture with different representations and coloring options. 
Users can map and visualize mutations, annotations, and 
analyses on the 3D model to detect hotspots of genetic 
variation by selecting various coloring options. Color cod-
ing options include hydrophobicity, non/synonymous mu-
tations, PSSM conservation score, changes of folding free 
energy (ΔΔG), nucleotide diversity, Tajima’s D, etc.

Mutational Analysis
The fifth panel displays results from mutational analyses 
performed using Dynamut2 (Rodrigues et al. 2020). It pro-
vides a bar-chart of predicted changes of folding free en-
ergy (ΔΔG) of substituted amino acids on protein 

FIG. 2. Seven panels showing the VIVID output on the results page. 
These panels show the results of integrative analyses of SNPs (data 
derived from the MalariaGen Pf3k version5 dataset) on the 
EBA175 RII protein.

FIG. 2. Continued
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FIG. 3. Analyses of EBA175 RII polymorphisms from two different populations—Thailand (Asia) and Guinea (Africa) using VIVID. A part of the F2 
domain (circle) illustrates distinct balancing selection between Thailand and Guinea populations. Unless otherwise stated, only the results from 
the Thailand population are shown. (A) Schematic diagram of the dimerized EBA175 RII ligand binding to glycophorin A human receptor. (B) 
The highlighted residues (circle) indicated the target of known inhibitory antibodies from previous studies (Ambroggio et al. 2013; Chen et al. 
2013). (C) Map of nonsynonymous and synonymous mutations on EBA175 RII. (D) Map of ΔΔG values on EBA175 RII. (E) Map of spatial Tajima’s 
D on EBA175 RII. (F ) Map of PSSM scores on EBA175 RII. (G) Map of nucleotide diversity on EBA175 RII.

5

https://doi.org/10.1093/molbev/msac196


Tichkule et al. · https://doi.org/10.1093/molbev/msac196 MBE

structure stability and flexibility. The ΔΔG values are also 
reported in tabular format.

Arpeggio Results
The sixth panel shows interatomic interactions between 
the substituted residue and nearby residues in protein 
structures. It reports differences in 20 interatomic interac-
tions between wild-type and mutated residues in tabular 
format. It is useful to get information about the lost and 
gained interaction after substitution in a protein structure.

Download
The seventh panel allows users to download Dynamut2 
and Arpeggio results.

Case Study
Here, we demonstrate the utility of VIVID and its features 
by exploring the evolution of vaccine candidates within 
the parasitic protist Plasmodium falciparum, one of the 
world’s primary causes of malaria (Prugnolle et al. 2011). 
Strain-specific immunity hinders vaccine development, 
and vaccine escape is likely to occur at sites under balan-
cing selection. Drawing on an ensemble of published tools 
and algorithms, VIVID provides an intuitive and user- 
friendly interface to analyze functional divergence in 
more depth. We used SNP data from the published gen-
omes (MalariaGEN Pf3K v5.1) of naturally occurring P. fal-
ciparum infections from Guinea (n = 100) and Thailand 
(n = 148). We filtered these data for SNPs mapping to re-
gion II (AA residues: N152–V745) of the erythrocyte bind-
ing antigen protein (EBA175 RII) using the P. falciparum 
3D7 genome (PlasmoDB release v43). EBA175 mediates 
binding to human receptor glycophorin A during mero-
zoite invasion of the RBC (Tolia et al. 2005) (fig 3A). 
Region II (RII) of EBA175 is the functional binding domain 
consisting of two cysteine-rich Duffy binding-like domains 
called F1 and F2 (Sim et al. 1994). These F1 and F2 domains 
mediate dimerization of two EBA-175 proteins through di-
sulphide bond formation (Tolia et al. 2005), allowing P. fal-
ciparum merozoites to bind to the erythrocyte surface 
(fig 3A) during blood-stage invasion (Tham et al. 2012). 
Antibodies that block dimerization of EBA175 may inhibit 
glycophorin A binding, which is associated with protection 
from clinical malaria (Chen et al. 2013; Irani et al. 2015) (see 
residues highlighted in magenta in fig 3B). Most (>90%) of 
the SNPs mapping to this region in the Guinean (Africa) 
and Thailand (Asia) populations were nonsynonymous 
(fig. 3C). Spatially derived Tajima’s D analysis in VIVID 
identified a large region of the F1 domain (AA residues 
E226–L294, I312–K324, and W377–I400) of EBA175 RII as 
being under balancing selection (i.e., positive Tajima’s D 
values) in both populations (fig. 3E). Some of the F1 do-
main mutations, such as E274K, L482V (also under balan-
cing selection), were predicted to stabilize the parasite 
protein (i.e., positive ΔΔG) (fig. 3D). Such polymorphisms 
can be maintained at intermediate frequencies to help the 
parasite escape host immune responses while maintaining 

a functional protein. A second region within the F2 do-
main (AA residues C551–C591 and Y731–F743) was also 
identified under balancing selection, but this was specific 
to the Thailand population (circles in fig. 3E). Some of 
these residues with the F2 domain are targets of functional 
antibodies (Ambroggio et al. 2013; Chen et al. 2013) (fig 
3B). In contrast, the F1 domain has high nucleotide diver-
sity, less amino acid (low PSSM) conservation, and is under 
balancing selection in both the populations (fig 3E–G). 
Therefore, the results suggest geographically variable ef-
fectiveness of the EBA175 RII vaccine if the formulation 
is based on a single reference strain.

Conclusion
We developed a web-based application, VIVID, to support 
improved visualization, analysis, and understanding of how 
mutations impact protein structure and function in any 
organism, using a selection of standardized input format 
files. This method allows users to examine mutations 
from individuals or populations in multiple dimensions 
for solved or in silico predicted protein structures, which 
can either be imported directly from RCSB or 
AlphaFold2, or uploaded by the user. VIVID can assess 
SNPs for their impact on protein structure, inferred func-
tion, and surface biochemistry (e.g., hydrophobicity) using 
individual-based data. For population studies, in addition 
to these features, VIVID can use the SNP data to color 
any protein model based on localized differences in popu-
lation genetic metrics. This enables users to visualize pro-
tein evolution in 3D and identifies genomic regions under 
selection. The architecture of this browser-based tool is de-
signed to benefit the broader scientific community, pro-
vide an easy user experience, and offer an integrated 
analysis environment. Our web portal integrates features 
from multiple programs, algorithms, and databases, pro-
viding users with a single platform to explore and interpret 
variants in multiple dimensions. In addition, the user- 
friendly and interactive panels allow downloading multiple 
result outputs that can be used downstream in other pro-
grams. In this paper, we have demonstrated the utility of 
VIVID by using a case study of the evolution of vaccine 
candidates against malaria. This will be a valuable resource 
to the research community working in structural and func-
tional proteomics and genomics and will have numerous 
valuable applications.

Future Developments
We are in the process of expanding the usability of this ap-
plication by integrating additional features from the avail-
able wealth of bioinformatics resources. These include 
widely used variant repositories for model-organisms, an-
notation databases in addition to UniProt, and additional 
protein functional properties to map on 3D protein struc-
tures. Moreover, we plan to integrate other developed al-
gorithms and tools from our Biosig server (http://biosig. 
unimelb.edu.au/biosig). Furthermore, we are in the process 
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of expanding VIVID features for population and evolution-
ary genomics analyses and 3D visualization. Finally, we will 
make available a standalone package for free download. In 
addition to the current analyses, this will allow users with 
sufficient computational resources to scale VIVID to per-
form proteome-wide structural studies.
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