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Abstract: Phaseolus multiflorus var. albus (Leguminosae), commonly known as “white kidney bean”,
is a twining perennial vine whose fruit has been used as a popular food worldwide owing to its high
nutritional content, in terms of proteins, carbohydrates, fats, and vitamins. As part of our ongoing
study to investigate novel bioactive components from various natural resources, a phytochemical
investigation of the extract of P. multiflorus var. albus fruits resulted in the isolation of three phenolic
compounds (1–3) and one dipeptide (4). The chemical structures of the compounds (1–4) were
determined through 1D and 2D nuclear magnetic resonance spectroscopy and high-resolution-
liquid chromatography–mass spectrometry; they were identified as denatonium (1), trans-ferulic
acid ethyl ester (2), eugenin (3), and α-L-glutamyl-L-Leucine (4). Intriguingly, denatonium (1) is
known to be the most bitter chemical compound. To the best of our knowledge, denatonium (1)
was identified from natural sources for the first time, and compounds 2–4 were reported for the first
time from P. multiflorus var. albus in this study; however, compound 2 turned out to be an artifact
produced by an extraction with ethanol. The isolated compounds 1–4 were tested for their regulatory
effects on the differentiation between osteogenesis and adipogenesis of mesenchymal stem cells
(MSCs). Compound 4 slightly suppressed the adipogenic differentiation of MSCs, and compounds
1 and 4 stimulated osteogenic differentiation, unlike the negative control. These findings provide
experimental evidence that compounds 1 and 4 may induce the osteogenesis of MSCs and activate
bone formation.

Keywords: Phaseolus multiflorus var. albus; Leguminosae; white kidney bean; denatonium; osteogenesis

1. Introduction

Phaseolus multiflorus var. albus, also known as white kidney bean, is a twining peren-
nial vine belonging to the family Leguminosae. It has been cultivated for many purposes
worldwide, especially in China [1]. Historically, leguminous plants have been popular
worldwide because they are abundant in proteins (16–33%), minerals, carbohydrates,
fats, vitamins, and phytoestrogens [1,2]. Pharmacological studies of plants belonging
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to the genus Phaseolus have reported that its extracts exhibit various therapeutic prop-
erties, including antidiabetic [1,2], antiobesogenic [3], antiproliferative [4], antioxidant,
and gastroprotective activities [5]. In addition, previous studies on plants belonging to
the genus Phaseolus have shown that their nutritional contents possess insecticidal, im-
munomodulatory, antitumor, and antifungal activities [4,5]. Previous biological studies on
P. multiflorus var. albus reported that white kidney bean (P. multiflorus var. albus) treatments
induced glucose reduction and weight loss in a diabetes-induced mouse model compared
to the control group [6]. In this context, many clinical trials on the antiobesity effect of
P. multiflorus var. albus have revealed that the ingestion of white kidney beans induces
weight loss and waist circumference reduction [7]. In a recent study, P. multiflorus var.
albus extract showed dose-dependent inhibitory activity against α-amylase [8]. Despite the
health benefits of P. multiflorus var. albus extract, few studies have been carried out on its
chemical constituents. Only a few previous phytochemical investigations of P. multiflorus
have shown the presence of gibberellins A1, A5, A6, A8, and phaseic acid as plant hormones
with growth-promoting activity [9–12].

Therefore, as part of our ongoing study to investigate novel bioactive components
from various natural resources [13–19], we investigated the potential bioactive components
from the extract of P. multiflorus var. albus fruits. In the current study, the phytochemical
constituents of the ethanolic extract of P. multiflorus var. albus fruits were isolated, resulting
in the isolation of three phenolic compounds (1–3) and one dipeptide (4). The chemical
structures of compounds (1–4) were clearly elucidated through 1D and 2D nuclear magnetic
resonance (NMR) spectroscopic data and high-resolution electrospray ionization (HR-ESI)
liquid chromatography–mass spectrometry (LC/MS) analyses. In addition, the isolated
compounds, 1–4, were tested for their regulatory effects on the differentiation between
osteogenesis and adipogenesis of mesenchymal stem cells (MSCs). Herein, we report
the isolation and structural determination of the isolated compounds 1–4 as well as their
regulatory effects on the differentiation of MSCs.

2. Results and Discussion
2.1. Isolation of Compounds

The fruits of P. multiflorus var. albus were extracted with 30% ethanol/H2O. The resul-
tant extract was suspended for solvent partitioning in water and then fractionated with four
solvents, which afforded hexane-soluble (31.4 mg), dichloromethane-soluble (195.7 mg),
ethyl acetate-soluble (49.3 mg), and n-butanol-soluble (2.4 g) fractions. The LC/MS-based
analysis combined with our in-house built UV library and thin-layer chromatography
(TLC) analysis of the solvent-partitioned fractions suggested that the BuOH-soluble frac-
tion contained the majority of the organic acid derivatives. A phytochemical investigation
of the solvent-partitioned fractions was conducted under monitoring by TLC and LC/MS-
based analysis using repeated column chromatography with silica gel 60, RP-C18 silica gel,
and Sephadex LH-20, and high-performance liquid chromatography (HPLC) (Figure 1).
The final semi-preparative HPLC separation afforded a phenolic compound (1) from the
EA-soluble fraction, two phenolic compounds (2 and 3) from the hexane-soluble fraction,
and one dipeptide (4) from the n-butanol-soluble fraction (Figure 2).



Plants 2021, 10, 2205 3 of 10
Plants 2021, 10, x FOR PEER REVIEW 3 of 11 
 

 

 
Figure 1. Separation scheme of compounds 1–4. 

 
Figure 2. Chemical structures of compounds 1–4. 

2.2. Elucidation of Compound Structures 
Compound 1 was isolated as a white amorphous powder. The molecular formula 

was deduced to be C21H29N2O+ from the molecular ion peak [M]+ at m/z 325.2282 (calcu-
lated for C21H29N2O+, 325.2274) in the positive-ion mode of HRESIMS (Figure S1). The 1H 
NMR spectrum of 1 (Table 1, Figure S2) displayed the presence of the characteristic signals 
of two aromatic proton sets of a monosubstituted aromatic ring at δH 7.64 (2H, t, J = 7.5 
Hz), δH 7.62 (1H, t, J = 7.5 Hz), and δH 7.58 (2H, t, J = 7.5 Hz); 1,2,6-trisubstituted aromatic 
ring at δH 7.18 (1H, t, J = 7.0 Hz) and δH 7.17 (2H, d, J = 7.0 Hz); two pairs of relatively 
deshielded methylene groups at δH 4.94 (2H, s) and δH 4.16 (2H, s); two symmetric methyl 
groups at δH 2.30 (6H, s); and another two pairs of ethyl groups at δH 3.67 (4H, m) and δH 
1.56 (6H, t, J = 7.5 Hz). The 13C NMR data of 1 (Table 1, Figure S3), assigned with the aid 
of the HSQC (Figure S5) and HMBC experiments (Figure S6)confirmed 21 carbon signals 

Figure 1. Separation scheme of compounds 1–4.

Plants 2021, 10, x FOR PEER REVIEW 3 of 11 
 

 

 
Figure 1. Separation scheme of compounds 1–4. 

 
Figure 2. Chemical structures of compounds 1–4. 

2.2. Elucidation of Compound Structures 
Compound 1 was isolated as a white amorphous powder. The molecular formula 

was deduced to be C21H29N2O+ from the molecular ion peak [M]+ at m/z 325.2282 (calcu-
lated for C21H29N2O+, 325.2274) in the positive-ion mode of HRESIMS (Figure S1). The 1H 
NMR spectrum of 1 (Table 1, Figure S2) displayed the presence of the characteristic signals 
of two aromatic proton sets of a monosubstituted aromatic ring at δH 7.64 (2H, t, J = 7.5 
Hz), δH 7.62 (1H, t, J = 7.5 Hz), and δH 7.58 (2H, t, J = 7.5 Hz); 1,2,6-trisubstituted aromatic 
ring at δH 7.18 (1H, t, J = 7.0 Hz) and δH 7.17 (2H, d, J = 7.0 Hz); two pairs of relatively 
deshielded methylene groups at δH 4.94 (2H, s) and δH 4.16 (2H, s); two symmetric methyl 
groups at δH 2.30 (6H, s); and another two pairs of ethyl groups at δH 3.67 (4H, m) and δH 
1.56 (6H, t, J = 7.5 Hz). The 13C NMR data of 1 (Table 1, Figure S3), assigned with the aid 
of the HSQC (Figure S5) and HMBC experiments (Figure S6)confirmed 21 carbon signals 

Figure 2. Chemical structures of compounds 1–4.

2.2. Elucidation of Compound Structures

Compound 1 was isolated as a white amorphous powder. The molecular formula was
deduced to be C21H29N2O+ from the molecular ion peak [M]+ at m/z 325.2282 (calculated
for C21H29N2O+, 325.2274) in the positive-ion mode of HRESIMS (Figure S1). The 1H NMR
spectrum of 1 (Table 1, Figure S2) displayed the presence of the characteristic signals of
two aromatic proton sets of a monosubstituted aromatic ring at δH 7.64 (2H, t, J = 7.5 Hz),
δH 7.62 (1H, t, J = 7.5 Hz), and δH 7.58 (2H, t, J = 7.5 Hz); 1,2,6-trisubstituted aromatic
ring at δH 7.18 (1H, t, J = 7.0 Hz) and δH 7.17 (2H, d, J = 7.0 Hz); two pairs of relatively
deshielded methylene groups at δH 4.94 (2H, s) and δH 4.16 (2H, s); two symmetric methyl
groups at δH 2.30 (6H, s); and another two pairs of ethyl groups at δH 3.67 (4H, m) and δH
1.56 (6H, t, J = 7.5 Hz). The 13C NMR data of 1 (Table 1, Figure S3), assigned with the aid
of the HSQC (Figure S5) and HMBC experiments (Figure S6)confirmed 21 carbon signals
composed of four methyl groups at δC 8.4 (2 × C) and δC 18.7 (2 × C); four methylene
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carbons at δC 54.9 (2 × C), δC 55.7, and δC 63.4; 12 aromatic carbons (δC 128.7, 129.1, 129.5
(2 × C), 130.7 (2 × C), 132.3, 134.1 (2 × C), 134.2, 136.7 (2 × C)); and a carbonyl carbon at δC
164.1. The partial structures of 1 were determined by 2D NMR experiments (1H-1H COSY
and HMBC). The gross structure of 1 was finally elucidated by the characteristic NMR
signals, and its molecular formula (C21H29N2O+) was confirmed by HRESIMS. The 1H-1H
COSY correlations (Figure S4) between H-2/H-3/H-4/H-5/H-6 as well as the HMBC
correlations of H-2(H-6)/C-7 (δC 63.4) and H2-7/C-1, C-2, and C-3 verified the presence
of benzyl functionality (Figure 3). Furthermore, the methylene of H2-7 showed HMBC
correlations with three other carbons: C-8 (δC 55.7), C-1′ (δC 54.9), and C-1” (δC 54.9)
(Figure 3), providing evidence that a quaternary atom linking C-7, C-8, C-1′, and C-1” is
present. Based on the 1H-1H COSY spectrum of H2-1′/H2-2′ and H2-1”/H2-2” and the
HMBC correlations of H2-1′/H2-1” with C-2′/C-2”, along with their symmetric NMR
signals, the two ethyl units were assigned and confirmed to be attached to the quaternary
atom by the HMBC correlations of H2-1′/H2-1” with C-7 and C-8. The relatively deshielded
methylene carbon NMR signals of C-7, C-8, C-1′, and C-1” and the markedly diminished
intensity of the carbon NMR signals observed for C-1′, and C-1” at δC 54.9 confirmed
that the quaternary atom linking them could be a quaternary ammonium cation, which
finally led to the partial structure of A (Figure 3). Another spin system was observed as
a cross-peak between H-12/H-13/H-14 in the 1H-1H COSY spectrum, representing the
1,2,6-trisubstituted aromatic ring, which was assigned to the 2,6-dimethylated benzene as
the partial structure of B by the HMBC correlations of H-12(H-14)/C-10, H-13/C-11(C-15),
C-16(C-17)/C-10, C-11, and C-12 (Figure 3). Finally, the connectivity through the amide
bond between the two partial structures of A and B was suggested by the C=O and NH
moieties remaining from the molecular formula (C21H29N2O+) of 1, the detected HMBC
correlation of H2-8/C-9 (δC 164.1), and the characteristic 13C chemical shifts of C-8 (δC
55.7) and C-10 (δC 134.2), although the key HMBC correlation between C-9 and C-10 was
missing in 1 due to the absence of protons. Accordingly, the complete structure of 1 was
established, as shown in Figure 1, and it was identified to be denatonium.

Table 1. 1H and 13C NMR data of compound 1 in CD3OD (δ in ppm, 850 MHz and 212.5 MHz for 1H
and 13C, respectively) a.

Position
Denatonium (1)

δH (J in Hz) δC

1 128.7 C
2 7.64, d (7.5) 134.1 CH
3 7.58, t (7.5) 130.7 CH
4 7.62, t (7.5) 132.3 CH
5 7.58, t (7.5) 130.7 CH
6 7.64, d (7.5) 134.1 CH
7 4.94, s 63.4 CH2
8 4.16, s 55.7 CH2
9 164.1 C
10 134.2 C
11 136.7 C
12 7.17, d (7.0) 129.5 CH
13 7.18, t (7.0) 129.1 CH
14 7.17, d (7.0) 129.5 CH
15 136.7 C
16 2.30, s 18.7 CH3
17 2.30, s 18.7 CH3
1′ 3.67, m 54.9 CH2
2′ 1.56, t (7.5) 8.4 CH3
1” 3.67, m 54.9 CH2
2” 1.56, t (7.5) 8.4 CH3

a Coupling constants (Hz) are given in parentheses. 13C NMR assignments were based on HSQC, 1H-1H COSY,
and HMBC experiments.
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have served to prevent young children from swallowing small household items, including
toys and game packs, which has allowed denatonium to be widely employed in many
household items. Denatonium is known to be one of the most bitter chemical compounds;
thus, it was nominated in the Guinness Book of World Records as one of the most bitter
compounds that people can use [26].

2.3. Evaluation of the Biological Activities of Compounds 1–4

MSCs are pluripotent cells in bone marrow that are known to differentiate into osteo-
cytes and adipocytes. As microenvironmental changes cause alterations in the regulation
of gene expression in MSC differentiation, the alterations of related gene expression might
disturb the balance between adipocyte progenitor and osteoprogenitor cells in patients
with osteoporosis [27–29]. Thus, a therapy that can regulate gene expression in MSCs
would be promising for the management of postmenopausal osteoporosis. To determine
the regulatory effects of compounds 1–4 on MSC differentiation between adipogenesis
and osteogenesis, all the compounds were examined for their effects on the differentiation
of murine MSCs into adipocytes or osteoblasts. The murine MSC line C3H10T1/2 was
treated with 20 µM of the compounds during adipogenesis, and the differentiated cells
were stained with Oil Red O (ORO). Compound 4 slightly reduced the formation of lipid
droplets, resulting in fewer ORO-stained cells, compared to the normally differentiated
adipocytes (Figure 4A,B). In addition, C3H10T1/2 cells were cultured in osteogenesis-
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inducing media in the presence of compounds 1–4. The cells were then stained for alkaline
phosphatase (ALP), which is considered a distinctive marker of osteoblast differentia-
tion [30]. Cells treated with compounds 1 and 4 showed slightly higher staining intensity
and ALP enzyme activity than the negative control group (Figure 4C,D).
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Figure 4. The effects of compounds 1–4 on the differentiation of mesenchymal stem cells (MSCs)
toward adipocytes and osteoblasts. (A) Suppressive effects of compounds 1–4 on the adipogenic
differentiation of MSCs. C3H10T1/2 cells were treated with 20 µM of compounds 1–4. After
adipogenic differentiation, the cells were stained with Oil Red O (ORO). (B) The intensity of stained
lipid droplets was quantitatively examined. (C) Stimulatory effects of compounds 1–4 on osteogenic
differentiation of MSCs. Fully differentiated C3H10T1/2 cells were stained with alkaline phosphatase
(ALP) on day 9 post osteogenic differentiation with 20 µM compounds 1–4. (D) ALP enzyme
activity was determined in osteogenically differentiated C3H10T1/2 cells treated with compounds
1–4. The values were calculated relatively by setting the untreated negative control (NC) to 1.
Resveratrol (20 µM) and oryzativol A (5 µM) were added to the experimental set for adipogenesis
and osteogenesis, respectively, as a positive control (PC). * denotes p < 0.05 and *** denotes p < 0.001.

Compounds 1 and 4 showed the regulatory effects on the differentiation between
osteogenesis and adipogenesis of MSCs (Figure 4). Among the active compounds, com-
pound 4 was not sufficient for further experiments to examine its effects. To test the effects
of compound 1 on osteogenic differentiation, C3H10T1/2 cells were stained with ALP
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(Figure 5A), and ALP enzyme activity was measured (Figure 5B). Our results indicated
that increased concentrations of compound 1 led to the formation of darker-colored cells
(Figure 5A), which indicated that the treated cells exhibited greater promotion of bone
differentiation than the control group (Figure 5B). Moreover, compound 1 slightly enhanced
the gene expression of ALP (Figure 5C) and osteopontin (OPN) (Figure 5D), which are
osteogenesis-related factors, during osteogenic differentiation in a dose-dependent manner.

Plants 2021, 10, x FOR PEER REVIEW 7 of 11 
 

 

values were calculated relatively by setting the untreated negative control (NC) to 1. Resveratrol (20 
µM) and oryzativol A (5 µM) were added to the experimental set for adipogenesis and osteogenesis, 
respectively, as a positive control (PC). * denotes p < 0.05 and *** denotes p < 0.001. 

Compounds 1 and 4 showed the regulatory effects on the differentiation between 
osteogenesis and adipogenesis of MSCs (Figure 4). Among the active compounds, com-
pound 4 was not sufficient for further experiments to examine its effects. To test the effects 
of compound 1 on osteogenic differentiation, C3H10T1/2 cells were stained with ALP (Fig-
ure 5A), and ALP enzyme activity was measured (Figure 5B). Our results indicated that 
increased concentrations of compound 1 led to the formation of darker-colored cells (Fig-
ure 5A), which indicated that the treated cells exhibited greater promotion of bone differ-
entiation than the control group (Figure 5B). Moreover, compound 1 slightly enhanced 
the gene expression of ALP (Figure 5C) and osteopontin (OPN) (Figure 5D), which are 
osteogenesis-related factors, during osteogenic differentiation in a dose-dependent man-
ner. 

 
Figure 5. The effects of compound 1 on osteogenic differentiation. C3H10T1/2 cells were treated 
with sequential concentrations (5, 10, 20, and 40 µM) of compound 1 during osteogenic differentia-
tion. The effects of compound 1 were evaluated through ALP staining (A). The cells were evaluated 
by measuring the ALP activity (B). The mRNA expression of ALP (C) and OPN (D) was measured 
by real-time PCR. Oryzativol A (OryA) at a concentration of 5 µM was used as a positive control 
(PC). * denotes 0.01 < p < 0.05 and *** denotes p < 0.001. 

3. Materials and Methods 

3.1. Plant Material 
Plant material (fruits of P. multiflorus var. albus) was provided by Dongkook Pharm. 

Co., Ltd. (Suwon, Korea). The fruits of P. multiflorus var. albus cultivated in Egypt were 
purchased from the Weihai Solim trading Co., Ltd. (Beijing, China) in March 2019. The 
material was authenticated by one of the authors (K.H.K.) and Dongkook Pharm. Co., Ltd. 
A voucher specimen of the material (DKB117-PM-2018-0814) was deposited at the R&D 
Center, Dongkook Pharm. Co., Ltd. 

3.2. Extraction and Isolation 
The fruits (1 kg) of P. multiflorus var. albus were cut into small pieces and then ex-

tracted twice with 5-fold volumes of 30% ethanol (v/v) at 80 °C for 10 h. The extracts were 
filtered, and the filtrate was concentrated using a rotary evaporator. The resultant extract 

Figure 5. The effects of compound 1 on osteogenic differentiation. C3H10T1/2 cells were treated with sequential concentra-
tions (5, 10, 20, and 40 µM) of compound 1 during osteogenic differentiation. The effects of compound 1 were evaluated
through ALP staining (A). The cells were evaluated by measuring the ALP activity (B). The mRNA expression of ALP
(C) and OPN (D) was measured by real-time PCR. Oryzativol A (OryA) at a concentration of 5 µM was used as a positive
control (PC). * denotes 0.01 < p < 0.05 and *** denotes p < 0.001.

3. Materials and Methods
3.1. Plant Material

Plant material (fruits of P. multiflorus var. albus) was provided by Dongkook Pharm.
Co., Ltd. (Suwon, Korea). The fruits of P. multiflorus var. albus cultivated in Egypt were
purchased from the Weihai Solim trading Co., Ltd. (Beijing, China) in March 2019. The
material was authenticated by one of the authors (K.H.K.) and Dongkook Pharm. Co., Ltd.
A voucher specimen of the material (DKB117-PM-2018-0814) was deposited at the R&D
Center, Dongkook Pharm. Co., Ltd.

3.2. Extraction and Isolation

The fruits (1 kg) of P. multiflorus var. albus were cut into small pieces and then extracted
twice with 5-fold volumes of 30% ethanol (v/v) at 80 ◦C for 10 h. The extracts were filtered,
and the filtrate was concentrated using a rotary evaporator. The resultant extract was
fully dried by freeze-drying to obtain the crude ethanolic extract powder (110 g). The
extract powder (100 g) was suspended in 700 mL of distilled water and then sequentially
partitioned with hexane, MC, EtOAc, and n-butanol three times. Four major fractions
with different polarities were obtained: hexane-soluble (31 mg), MC-soluble (195 mg),
EtOAc-soluble (49 mg), and BuOH-soluble (2.4 g) fractions. The isolation procedure for the
compounds was conducted by monitoring via TLC and LC/MS-based analysis. First, the
hexane-soluble fraction (31 mg) was applied to Sephadex LH-20 column chromatography
and eluted with 100% methanol, yielding two fractions (HA and HB). Subfraction HA
(14 mg) was purified by semi-preparative HPLC (MeOH/H2O, 65:35) to isolate compounds
2 (tR 22.4 min, 0.7 mg) and 3 (tR 34.8 min, 0.5 mg). However, the isolation of compounds
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without any impurities failed in the MC-soluble fraction. The EtOAc-soluble fraction
(49 mg) was separated directly by semi-preparative reversed HPLC with a gradient solvent
system from 30% MeOH/H2O to 43% MeOH/H2O for 80 min to purify compound 1 (tR
37.5 min, 2.3 mg). Finally, the BuOH-soluble fraction (2.4 g) was subjected to reverse-phase
MPLC using a gradient solvent system from 5% MeOH/H2O to 100% MeOH/H2O for
90 min to obtain three fractions (BA, BB, and BC). Subfraction BA (1.1 g) was subjected to
reverse-phase MPLC using a different gradient solvent system from 5% MeOH/H2O to
30% MeOH/H2O for 110 min to produce four subfractions (BA1–BA4). Subfraction BA2
(45 mg) was separated by semi-preparative HPLC with a gradient solvent system from 20%
MeOH/H2O to 60% MeOH/H2O for 70 min to give compound 4 (tR 25.5 min, 1.2 mg).

3.3. Cell Culture and Differentiation

C3H10T1/2 mouse MSCs were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 1% penicillin-streptomycin (P/S) and 10% fetal bovine serum
(FBS) at 37 ◦C in a 5% CO2 incubator. For adipogenic differentiation, C3H10T1/2 cells
were plated in a 6-well plate (a density of 5 × 105 cells/mL). The cells were then treated
with 1 µM dexamethasone, 5 µg/mL insulin, 10 µM troglitazone, and 0.5 mM 3-isobutyl-1
methylxanthine for 48 h. Subsequently, the cells were cultured for an additional 72 h
with 5 µg/mL insulin and 10 µM troglitazone. During osteogenesis, 20 µM of compounds
1–4 was added to the cells, and resveratrol (20 µM) was used as a positive control. For
osteogenic differentiation, C3H10T1/2 cells were exposed to DMEM (5% FBS, 1% P/S)
containing 50 µg/mL ascorbic acid and 10 mM β-glycerophosphate for 9 days. During
osteogenic differentiation, 20 µM of compounds 1–4 was added to the cells, and 5 µM
oryzativol A was used as a positive control.

3.4. Oil Red O Staining

Cultured cells were washed with phosphate-buffered saline and fixed in 10% neutral-
buffered formalin at room temperature for 1 h. The cells were then stained with 0.5%
filtered ORO stock solution (Sigma, Saint Louis , MO, USA) in isopropanol. To evaluate the
intracellular triglyceride content, the stained cells were redissolved with isopropanol. The
absorbance at a wavelength of 520 nm was measured.

3.5. Alkaline Phosphatase Staining

Cultured cells were washed with 2 mM MgCl2 and then incubated with ALP buffer
(100 mM Tris-HCl, pH 9.5; 100 mM NaCl, 0.05% Tween-20, and 10 mM MgCl2). The cells
were then incubated in an ALP buffer containing 0.2 g/mL of 5-bromo-4-chloro-3-indolyl
phosphate (Sigma, USA) and 0.4 mg/mL of nitro-blue tetrazolium (Sigma, USA). After
washing with 0.5 mM of ethylenediaminetetraacetic acid, the cells were fixed by 10%
neutral-buffered formalin.

3.6. mRNA Isolation and Real-Time PCR

RNA was isolated from the cells via NucleoZOL reagent (NucleoZOL; Macherey-
Nagel GmbH & Co., KG, Dylan, Germany). Then, complementary DNA (cDNA) was
synthesized from total RNA (0.5 µg) by a ReverTraAce qPCR RT Master Mix Kit (FSQ-201;
Toyobo, Osaka, Japan) with random primers. The synthesized cDNA was mixed with the
amplification mixture including the Thunderbird SYBR qPCR Mix (Toyobo) and primers.
The cDNA was then subjected to 40 PCR amplification cycles by a Thermal Cycler Dice
(Takara, Kusatsu City, Japan). The results were normalized to the expression of 36b4. The
primers used in this study are as follows:

Acidic ribosomal phosphoprotein P0 (36b4): forward 5′-AGATGCAGCAGATCCGCAT-3′,
reverse 5′-GTTCTTGCCCATCAGCACC-3′; ALP: forward 5′-CCATTCTGGCCCACCAAC-3′,
reverse 5′-AATGCGAGTGGTCTTCCATCA-3′; osteopontin (OPN): forward 5′-CTGGCAGC-
TCAGAGGAGAAG -3′, reverse 5′- CAGCATTCTGTGGCGCAAG-3′.
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3.7. Statistical Analysis

Each sample was tested in triplicate, and the test was repeated three times. Data
are expressed as the mean ± standard deviation (SD). Differences between the control
and experimental groups were analyzed via a two-tailed unpaired Student’s t-test, and
statistical significance was defined as p < 0.05.

4. Conclusions

In the present study, the phytochemical exploration of P. multiflorus var. albus fruits
resulted in the isolation of four compounds: denatonium (1), trans-ferulic acid ethyl ester (2),
eugenin (3), and α-L-glutamyl-L-Leucine (4). The chemical structures of isolates 1–4 were
elucidated by 1D and 2D NMR, HR-ESIMS, and LC/MS analyses. Intriguingly, to the best of
our knowledge, denatonium (1), which is known to be the most bitter chemical compound,
was identified from natural sources for the first time, and compounds 2–4 were reported
for the first time from P. multiflorus var. albus in this study; however, compound 2 turned
out to be an artifact produced by the extraction with ethanol. Compound 4 exhibited the
dual functions of inhibiting adipogenesis and promoting osteogenesis, showing regulatory
effects on MSC differentiation. Although the stimulatory effect of the active compounds
on osteogenic differentiation was far behind that of the positive control, oryzativol A and
compounds 1 and 4 apparently helped promote the differentiation of MSCs into osteocytes.

Supplementary Materials: 1D and 2D NMR spectra of denatonium (1) and general experimental
procedures are available online at https://www.mdpi.com/article/10.3390/plants10102205/s1,
Figure S1: HR-ESIMS data of 1, Figure S2: 1H NMR spectrum of 1 (CD3OD, 850 MHz), Figure
S3: 13C NMR spectrum of 1 (CD3OD, 212.5 MHz), Figure S4: 1H-1H COSY spectrum of 1 (CD3OD),
Figure S5: HSQC spectrum of 1 (CD3OD), Figure S6: HMBC spectrum of 1 (CD3OD), Figure S7: The
total ion chromatogram of ethanol and methanol that we used for extraction in positive ion mode by
UPLC-QTOF MS.
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